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Text mining in MOF research: from manual
curation to large language model-
based automation

Suyeon Bae,a Mingyu Jeon *b and Hoi Ri Moon *a

The rapid expansion of metal–organic framework (MOF) literature presents both a rich resource and a

significant challenge for knowledge extraction. Text mining, which enables the conversion of unstruc-

tured scientific texts into structured, machine-readable data, has emerged as a key tool for accelerating

data-driven research in the MOF domain. This review traces the development of text mining approaches

in MOF research, from early manual curation and rule-based methods to recent breakthroughs powered

by large language model (LLM)-based automation. We discuss the foundational role of natural language

processing (NLP) and machine learning (ML) techniques such as named entity recognition and vector

embedding models, followed by an in-depth analysis of LLM-based frameworks that enable flexible,

scalable, and context-aware information extraction. Additionally, we introduce and compare their

accuracy, and explore their diverse applications—including prediction of synthesizability, materials

properties, and thermal stability. We conclude with a perspective on future directions for text mining in

MOF research, including its integration into interactive graphical user interfaces, autonomous

laboratories, multi-agent AI systems, and multi-modal LLM frameworks that can process textual, visual,

and structural information in a unified way. This review aims to provide a foundational understanding for

both experimental and computational researchers interested in adopting or advancing text mining

methods in the MOF field.

1. Introduction

Metal–organic frameworks (MOFs) represent one of the most
versatile and innovative material classes developed in recent
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decades. Formed through the coordination of metal ions or
clusters with organic ligands, MOFs exhibit an exceptional
combination of high porosity, tunable chemical functionality,
and structural adaptability.1,2 These distinctive characteristics
have propelled MOFs to the forefront of materials science,
positioning them as key enablers in addressing critical chal-
lenges in energy, environmental sustainability, and biomedical
applications.2–6 Furthermore, their highly customizable and
tunable nature allows for precise structural and chemical
modifications, reinforcing their significance in both funda-
mental research and industrial application.

Despite their immense potential, the structural diversity that
makes MOFs highly attractive also introduces significant chal-
lenges. Given the vast number of synthesized MOFs and
computationally generated hypothetical MOFs, exploring opti-
mal materials for specific applications has become increasingly
complex.7,8 This challenge is further compounded by the
inherent limitations of conventional trial-and-error approaches
and the labor-intensive nature of experimental validation. In
response, researchers have increasingly advocated for systema-
tic, data-driven methodologies to effectively navigate the vast
chemical landscape of MOFs and accelerate the discovery of
application-specific materials (Scheme 1).9,10

To overcome these challenges, text mining has emerged as a
powerful approach for systematically analyzing large-scale scien-
tific literature. By applying natural language processing (NLP)
techniques, researchers can extract structured and informative
data from unstructured text, tables, and figures.11–13 The sys-
tematic compilation of information on MOF synthesis condi-
tions, experimental methodologies, and performance metrics
facilitates the construction of high-quality databases, establish-
ing a robust foundation for the accelerated discovery of novel
materials. Beyond streamlining data extraction and enabling
automated database curation, text mining also aids in identify-
ing emerging research trends and uncovering previously over-
looked structure–property relationships within the literature.9,14

The most straightforward and fundamental text mining
approach is manual curation by researchers, which involves
searching for relevant publications, identifying those that align
with a specific research focus, and extracting key textual
elements such as paragraphs, sentences, and relevant terms.
However, this method heavily depends on domain expertise,
making it less scalable and efficient for widespread use. More-
over, with the rapid expansion of published literature, manually
processing such a vast amount of information is increasingly
impractical, highlighting the necessity for more automated and
systematic approaches.15–17

The breakthroughs of NLP and machine learning (ML)
methodologies has transformed text mining research by
enabling enhanced automation and more precise data extrac-
tion. Techniques such as Word2Vec, Paragraph2Vec, and
Paper2Vec facilitate the automated selection and classification
of research papers.18–20 Named entity recognition (NER) using
bidirectional long short-term memory (Bi-LSTM) ML techni-
ques improve the classification, identification, and extraction
of key information from unstructured text based on user-
defined labels, further improving data accessibility and
usability.21–23 With the emergence of the transformer architecture
in 2017,24 text mining research underwent a significant advance-
ment, driving the development of transformer-based models such
as bidirectional encoder representations from transformers
(BERT).25 BERT has since been adapted in various chemistry
and materials science domains through specialized models like
MatBERT,26 SciBERT27 and BatteryBERT28 substantially enhan-
cing automation, efficiency, and accuracy compared to earlier
Bi-LSTM-based NER models. Despite their advantages, rule-based
methods still required manual curation, limiting them to partially
automated workflows and single-purpose tools designed for
domain experts. These approaches struggled to handle the com-
plexity and diversity of scientific literature.

The advent of large language models (LLMs), pretrained on
vast datasets, has driven the innovation in text mining
research.29–32 LLMs such as GPT-3.5, GPT-433 Gemini1.5,34

and Llama3.135 demonstrate the ability to tackle tasks in chem-
istry and materials science, even without explicit domain-specific
training. Integrating LLMs into text mining facilitates a more
comprehensive and automated data extraction process while
offering users with greater flexibility in decision-making. Recent
studies have explored fine-tuning of LLMs with prompt engi-
neering using small, domain-specific chemical knowledge data-
sets—consisting of only a few dozen samples—to further
enhance the performance and adaptability of LLMs.36–38 A
significant development in this area has been the emergence
of iterative NLP workflows, where LLM-based models undergo
repeated cycles of extraction, error correction, and rule refine-
ment to enhance precision and recall in multi-step information
harvesting.

In this feature article, we introduce the role of text mining in
MOF research, with a particular focus on data extraction
techniques and their impact on scientific discovery. We begin
with rule-based text mining, which relies on human interven-
tion through conventional NLP and ML approaches to extract
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relevant information. We then review the latest advancements in
LLM-based text mining, highlighting how LLMs have trans-
formed methodologies and research trends of rule-based text
mining. Finally, we discuss key insights and future directions for
integrating text mining into MOF research. Our aim is to make
text mining more accessible to both experimental and computa-
tional MOF researchers, facilitating its seamless adoption into
their workflows and accelerating data-driven discoveries.

2. Machine learning and rule-based
text mining in MOF research
2.1 Performance and stability descriptor extraction

Before the advent of rule-based or machine learning-driven text
mining techniques, early efforts in MOF data extraction relied
almost exclusively on manual curation by domain experts.39 This
foundational approach involved researchers meticulously iden-
tifying relevant publications, carefully examining experimental
sections, and extracting key textual information, numerical
values, and structural descriptors into organized formats, often
spreadsheet-like databases. While inherently labor-intensive and
limited in scalability—heavily depending on the specialized
knowledge of individual researchers—this method was critical
for establishing the initial landscape of MOF research.

Crucially, this considerable manual input provided the high-
quality, reliable foundational data that underpinned the devel-
opment of early MOF databases. These manually assembled
datasets, such as early iterations of the computation-ready,
experimental (CoRE) MOF Database and meticulously curated
subsets within the broader Cambridge Structural Database
(CSD), served as invaluable ground truth for validating subse-
quent automated text mining and data extraction systems

(Table 1). The meticulous human oversight ensured the fidelity
and chemical correctness of the extracted information, which
was paramount for the nascent stages of computational MOF
research and played a pivotal role in developing this area of
research. This legacy of expert-driven manual efforts continues
to inform current practices, with hybrid approaches combining
automated logic with expert oversight remaining vital in today’s
semi-automated data pipelines, particularly for validation and
handling complex cases.

Early NLP methodologies, predominantly rule-based approaches,
relied on pre-defined heuristics and keyword-based extraction tech-
niques. While effective in well-structured text formats, these meth-
ods struggled with linguistic variability and the complexity of
scientific discourse. To overcome these limitations, such ML tech-
niques have been incorporated into NLP workflows, enabling more
flexible and scalable data extraction.

In 2018, the earliest application of text mining to MOFs was
conducted by Kim et al., who developed a rule-based extraction
system using regular expressions (RegEx) to retrieve surface
area (SA) and pore volume (PV) from MOF-related literature.40

This algorithm was specifically designed to work with articles
as hypertext markup language (HTML) format and employed
RegEx to detect numerical values associated with SA and PV by
identifying their commonly used units (e.g., m2 g�1 for SA and
cm3 g�1 for PV).

The study’s workflow consisted of HTML parsing, text
tokenization, keyword filtering, and unit detection. Beautiful
Soup 4.0 python library was used to preprocess HTML documents,
eliminating irrelevant tags and extracting meaningful text. The
algorithm then categorized tokens into four groups—MOF name,
unit, numerical value, and keyword—to systematically match SA
and PV data to the correct MOF structures (Fig. 1a). A key
challenge addressed in this approach was that MOF names were

Scheme 1 Timeline showing the evolution of text mining in MOF research, from rule-based NLP (2018) to ML-based approaches (2022), and LLM
integration (2023–2025). Ref. 23, 40, 43, 46, 47, 56 and 57.

Table 1 Overview of major metal–organic framework databases. Contents and access information for key MOF repositories, indicating CIF availability,
included properties, and URL or DOI reference

Database name CIF included? Additional properties Access

CoRE MOF Yes Experimental SA, PV, density https://doi.org/10.5281/zenodo.3677685
CSD MOF subset Yes Crystallographic metadata, topology https://www.ccdc.cam.ac.uk/(CSD access)

ChemComm Highlight

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
jú

lí 
20

25
. D

ow
nl

oa
de

d 
on

 1
5.

7.
20

25
 0

4:
13

:2
3.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.5281/zenodo.3677685
https://www.ccdc.cam.ac.uk/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc02511g


Chem. Commun. This journal is © The Royal Society of Chemistry 2025

often not located in the same sentence as their corresponding SA
or PV values. To address this challenge, the algorithm searched
for up to four sentences forward and backward, ensuring a more
accurate data mapping.

To further assess its accuracy, the algorithm was applied to
2315 HTML files from the CoRE MOF database,41,42 an exten-
sive collection of experimentally synthesized MOFs. This data-
base, largely derived from the CSD, shows how extensively MOF
collections have been curated and organized for computational
applications. The CSD, a widely popular repository of crystal-
lographic information, has drawn considerable attention since
incorporating a comprehensive MOF subset. Notably, this sub-
set is recognized as the world’s first automatically updated
MOF dataset, containing nearly 100 000 structures as of 2020.43

The development of the CSD MOF subset marks a significant
advancement in automated, large-scale data extraction and
database maintenance. This infrastructure enables targeted
searches and detailed analysis of various MOF properties.

From the complete set of articles in HTML format, the system
extracted 490 SA values and 250 PV values, establishing a com-
prehensive dataset for computational modelling. The remaining
documents either did not report SA/PV values explicitly (for
example, presenting only graphical adsorption isotherms without
accompanying numerical data), employed non-standard units or
abbreviations beyond the predefined regex patterns, or exhibited
HTML structures that impeded reliable parsing.

Given the impracticality of manually validating each extrac-
tion, we randomly selected 50 papers for spot-checking. In
these cases, 134 of the 183 SA values (73.2%) and 200 of the
235 PV values (85.1%) matched the manually curated reference,
compared to the 90% (SA) and 88.8% (PV) accuracies previously
obtained on curated review papers.

Additionally, the text-mined surface areas were compared
with Zeo++-calculated values for the same collection of

structures (Fig. 1b). While a general linear trend is evident,
several outliers in the bottom-right quadrant indicate instances
where the simulation overestimated experimental BET results.
These deviations likely stem from various factors, including
incomplete solvent removal in laboratory measurements, fra-
mework distortions during activation, or the idealized pore
geometries assumed by Zeo++.44

While the observations presented here highlight areas for
improvement in future work, particularly regarding the hand-
ling of unit formats and structural complexities, the overall
consistency with simulation data demonstrates the utility of
rule-based text mining for extracting MOF performance proper-
ties from unstructured literature. An important advance in this
context has been the emergence of iterative NLP workflows,
where LLM-based models undergo repeated cycles of extrac-
tion, error correction and rule refinement to improve both
precision and recall in multi-step information harvesting.

To overcome the limitations of purely rule-based methods,
subsequent work has focused on integrating machine learning
models with NLP techniques to boost both extraction accuracy
and predictive power. For example, Kulik et al. introduced
MOFSimplify in 2022, combining ChemDataExtractor (CDE)45

with ML classifiers to extract and predict stability-related
descriptors.43 This study utilized NER and dependency parsing
to retrieve solvent removal stability and thermal decomposition
temperatures from scientific texts (Fig. 2a). The resulting
dataset encompassed 2179 solvent removal stability entries
and 3132 thermal stability annotations, forming one of the
largest MOF stability datasets curated through NLP.43

A significant advancement introduced in this study was the
integration of user-contributed thermogravimetric analysis
(TGA) traces, allowing direct validation of text-mined data
against experimental results (Fig. 2b). Comparative analyses
with manually curated datasets confirmed the high accuracy of

Fig. 1 (a) Example cases illustrating the identification scheme of a rule-based text mining algorithm. The algorithm extracts surface area (SA) and pore
volume (PV) values from scientific literature by recognizing MOF names, numerical values, keywords, and units, distinguishing between BET and Langmuir
SA types, and correctly mapping data points. (b) Comparison between surface area values extracted by the algorithm (code output) and those calculated
using Zeo++ for various MOFs. A strong correlation indicates the reliability of the extraction process. Reprinted from ref. 40 with permission from
American Chemical Society, Copyright 2018.
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the NLP-assigned stability labels, while the extracted TGA-
derived decomposition temperatures exhibited strong correla-
tion with manually annotated values. For instance, MOFs having
refcode of SANGUM and SANHOH in the CSD demonstrated
decomposition temperatures of 514 1C and 343 1C, respectively,
highlighting the capability of automated NLP approaches in
retrieving experimental stability data from the literature
(Fig. 2b). The distribution of thermogravimetric analysis TGA-
derived decomposition temperatures for MOFs reveals a normal
distribution centered around 359 1C with a standard deviation of
87 1C (Fig. 2c). This visualization highlights the variability in
MOF thermal stability and validates the robustness of the NLP-
extracted dataset through systematic temperature extraction.

To further utilize the extracted data, artificial neural net-
works (ANNs) were trained using the mined stability dataset,

achieving over 90% accuracy in predicting solvent removal
stability and decomposition temperatures. This study exempli-
fies how the synergy between text mining and ML enables
the transformation of literature-derived MOF descriptors into
predictive modelling frameworks. In addition to stability
assessment, ML and NLP-driven text mining has facilitated
the extraction of MOF synthesis conditions, including reaction
temperatures, solvents, and metal precursors. Kim et al. pio-
neered an NLP-based system that extracted synthesis-relevant
information from 28 565 MOF-related publications.23 This
study utilized logistic regression, support vector machines
(SVM), and random forest models for synthesis paragraph
classification, with logistic regression achieving the highest
precision (498%) in identifying synthesis-related passages.
Within the synthesis paragraph, bi-LSTM combined with con-
ditional random field (CRF) layer was used to extract and
categorize the relevant chemicals. Using the extracted dataset,
an ANN was trained with positive-unlabeled (PU) learning to
assess whether specific synthesis conditions would enable
successful synthesis. This text mining study enables research-
ers to facilitate ideal synthesis conditions and predict synthe-
sizability based on literature patterns.

2.2 Synthesis condition extraction and database construction

The use of natural language processing (NLP) in MOF research
has significantly improved the extraction and analysis of synth-
esis conditions. Earlier studies primarily focused on extracting
performance-related descriptors, such as thermal stability43 or
identifying synthesis-relevant sections from scientific texts.23

More recent efforts have shifted toward constructing large-scale
databases that systematically organize MOF synthesis para-
meters. This transition is necessary to address the limitations
of manually curated datasets, which often restrict the scalabil-
ity of computational approaches for MOF synthesis analysis.

One of the most comprehensive implementations of this
large-scale text mining approach is DigiMOF, which applies
rule-based NLP parsing using ChemDataExtractor (CDE) to
systematically structure MOF synthesis data.46 To ensure
extraction accuracy, DigiMOF employs an iterative parser train-
ing process, where text mining rules are refined and validated
through continuous feedback (Fig. 3a). This iterative refine-
ment allows the database to improve precision while integrat-
ing newly published MOF synthesis studies.

DigiMOF extracts key synthesis parameters, including sol-
vents, metal precursors, and organic linkers, from a dataset of
over 43 000 scientific publications. The database construction
follows a structured pipeline designed for efficient and accurate
data retrieval. Initially, digital object identifiers (DOIs) linked to
MOF-related publications were automatically retrieved from the
CSD MOF subset. The extracted documents then underwent
preprocessing steps, including tokenization, part-of-speech
(POS) tagging, and chemical entity recognition, to segment
and classify relevant textual components. This process
improves the accuracy of parameter identification and mini-
mizes classification errors.

Fig. 2 Validation and application of machine learning (ML)-driven text
mining for solvent removal stability and thermal decomposition tempera-
ture prediction. (a) Comparison of NLP-assigned stability labels to manually
assigned labels for 100 MOFs, where correctly classified cases are marked in
green, incorrect assignments in red, and ambiguous cases in gray. (b)
Extraction of decomposition temperature (Td) from thermogravimetric
analysis (TGA) traces for selected MOFs (SANGUM and SANHOH), high-
lighting variations in thermal stability. (c) Distribution of extracted decom-
position temperatures (Td) for the full dataset, with representative MOFs
exhibiting the lowest (WEVQOD01) and highest (IFAREN) thermal stability.
Reprinted from ref. 43 with permission from Nature, Copyright 2022.
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To assess the reliability of the extracted data, a comparative
analysis with manually curated datasets was conducted, con-
firming the high reliability of the NLP-based extraction process.
This validation step ensured that the structured synthesis data
in DigiMOF aligned well with known synthesis conditions. The
final dataset contains 52 680 synthesis property relationships
across 15 501 unique MOFs, covering approximately 15% of the
CSD MOF subset. This automated text mining approach facil-
itates the generation of a high-quality database that integrates
MOF synthesis data for future predictive modeling and high-
throughput materials screening.

In addition to data extraction, DigiMOF’s corpus quantifies
topology usage at an unprecedented scale, confirming the
dominance of sql and pcu frameworks while cataloguing 112
distinct topologies (Fig. 3b). The co-occurrence of synthesis

parameters including solvent, temperature, and additive with
topology and linker data enables multivariate correlation ana-
lyses that may uncover subtle protocol–structure relationships
and inform targeted experimental design. Likewise, linker-
occurrence mapping (Fig. 3c) verifies the predominance of
carboxylate and pyridyl ligands and also reveals less common
chemistries, such as azolate, warranting further investigation.
By structuring these extensive datasets, DigiMOF establishes a
foundation for data-driven hypothesis generation and the sub-
sequent development of predictive machine-learning frame-
works for MOF synthesis.

While DigiMOF provides a structured repository of MOF
synthesis conditions, further efforts have focused on refining
text mining techniques to extract synthesis-specific parameters
with greater accuracy. Tsotsalas et al. developed such an
approach, implementing a multi-step workflow to systematically
extract MOF synthesis parameters from scientific literature.47

Tsotsalas et al. applied a structured text mining approach to
systematically extract MOF synthesis parameters, beginning
with the collection of 6099 journal articles from major publish-
ers. First, a paragraph classification step was conducted using a
decision tree-based string search method to automatically
select synthesis-related sections from this large corpus, signifi-
cantly reducing the need for manual curation and improving
both efficiency and scalability. Next, the ChemicalTagger soft-
ware was applied to the selected paragraphs to identify and
extract key synthesis parameters, including solvents, reaction
temperatures, additive use, and reaction times.

After identifying relevant text, ChemicalTagger, an NLP tool
designed for parsing experimental procedures, was used to
extract key synthesis parameters, including solvent, reaction
temperature, additive use, and reaction time. To improve
accuracy, domain-specific modifications were made to the
NLP pipeline, ensuring proper recognition and classification
of MOF-related terminology, such as coordination environ-
ments, solvent polarity effects, and metal precursor names.
Additionally, crystallographic information files (CIFs) were
obtained from two well-curated structural repositories—the
CoRE MOF and the CSD—and analyzed to extract structural
attributes such as metal-center oxidation states, linker compo-
sitions, and framework connectivity (Fig. 4a).

To validate the accuracy of the extracted data, a comparative
analysis with manually curated datasets was performed. The
dataset was further analyzed to identify trends in synthesis
parameter relationships. The temperature–solvent–additive
relationships with DMF and water dominating the 80–160 1C
range (Fig. 4b), water being universally used above 160 1C
(consistent with hydrothermal methods), and acidic additives
largely limited to syntheses below 80 1C, are well established in
MOF chemistry. However, automated text-mining at scale
quantifies how frequently each protocol occurs across more
than 6000 publications and reveals unusual instances, such as
high-temperature syntheses using acidic additives, that deviate
from conventional practice. Furthermore, these comprehensive
statistics serve as a resource for generating hypotheses, drawing
attention to underexplored solvent–additive combinations.

Fig. 3 Workflow and topological analysis of MOFs extracted through text
mining. (a) Iterative parser training process, where extraction rules are
refined and evaluated for precision until accuracy exceeds 80%. (b)
Histogram of the most frequently occurring MOF topologies identified
using ChemDataExtractor (CDE), with sql and pcu being the most com-
mon. (c) Histogram of the most frequently occurring MOF topologies
extracted from 3D structures using CrystalNets. Reprinted from ref. 46
with permission from American Chemical Society, Copyright 2023.
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Importantly, incorporating this structured dataset into
machine-learning frameworks such as SynMOF enables predic-
tive synthesis capabilities, thereby accelerating the discovery
and optimization of novel MOF synthesis routes.

Using the structured dataset obtained through text mining,
the study further explored the application of machine learning
(ML) models to predict MOF synthesis conditions, including
reaction temperature and solvent selection. The SynMOF data-
base, established through this automated text mining approach,
served as the basis for training ML models for synthesis condi-
tion prediction. However, the primary focus remained on refin-
ing text mining techniques to achieve accurate extraction of
synthesis parameters. This work demonstrates the potential of
combining text-mined synthesis data with computational
models to assist in guiding MOF synthesis strategies.

3. LLM-based text mining

Despite significant improvements in accuracy and adaptability
of text mining achieved through ML and NLP techniques, rule-
based approaches still required extensive domain-specific fea-
ture engineering and struggled to handle the variability and
complexity of scientific language. To address these limitations,

recent advancements in LLMs have introduced a more flexible
and context-aware approach to text mining. Unlike rule-based
text mining approaches, which required extensive human inter-
vention, LLMs have transformed knowledge extraction by
enabling interpretation of complex information without requir-
ing extensive manual rules. They can process and analyse text
with minimal examples (zero-shot or few-shot learning) or be
fine-tuned for specialized domains, allowing for flexible and
adaptive data understanding.

The application of LLMs is expanding rapidly in various
materials systems, beyond MOF research. Very recently, Lee
et al. introduced a language modeling-based protocol, text-to-
battery recipe (T2BR), for the automated extraction of complete
battery material recipes—from synthesis to cell assembly—by
integrating ML-based NLP and LLMs.48 Through the construc-
tion of a structured dataset comprising 165 end-to-end recipes,
the study enabled the identification of trends such as precursor–
method associations. In the field of water-splitting catalysis, Kim
et al. developed MaTableGPT, an LLM-based framework for
extracting complex and diverse tabular data from scientific
literature.13 By introducing two key strategies—table data repre-
sentation and table splitting—they improved GPT comprehen-
sion and effectively filtered hallucinated information. Notably,
the few-shot learning approach emerged as the most balanced
solution, offering both a high extraction score (nearly 95% total
F1 score) and low cost (GPT usage cost of 5.97 US dollars and
labeling cost of 10 I/O paired examples). Furthermore, Jain et al.
developed a LLM-based framework for extracting structured
scientific knowledge from text, with a focus on diverse materials
domains: dopant–host relations, MOFs, and general composi-
tion/phase/morphology/application relationships.49 By fine-
tuning pre-trained LLMs—OpenAI’s GPT-3 (closed source) and
Meta’s LLama-2 (open source)—they achieved high performance
in joint NER and relation extraction (NERER), accurately trans-
forming complex and hierarchical information into structured
formats like JSON.

While LLMs have shown great promise in academic research
for extracting structured scientific knowledge, their impact is
also extending rapidly into the industrial sector. Very recently,
Sattar et al. provide a comprehensive overview of how LLMs are
transforming industry by automating complex natural language
tasks, delivering high accuracy in data mining, and decision-
making.50 Applied across sectors such as medical,51

automotive,52 education,53 e-commerce,54 and finance,55 LMs
enable applications ranging from predictive diagnostics and fraud
detection to personalized learning and real-time language transla-
tion. Aforementioned studies collectively underscore the pivotal
role of LLMs in both various material science and industrial
domains, highlighting a potential to further integrate LLMs
within MOF science. LLM-driven text mining into MOF fields
can facilitate the extraction of synthesis conditions, prediction of
material properties, and large-scale dataset generation.

In 2023, Yaghi et al. introduced a ChatGPT-based LLM
framework (GPT-3.5 and GPT-4) specifically designed for text
mining in MOF chemistry, with a primary focus on extracting
synthesis parameters from MOF-related publications.56 By

Fig. 4 (a) Text-mining pipeline for extracting MOF synthesis parameters
from literature. Synthesis-relevant paragraphs are first identified, then
tagged using ChemicalTagger to extract parameters including metal
source, linker, solvent, additive, temperature, and synthesis time. (b)
Statistics of the SynMOF database constructed from the extracted infor-
mation: frequency of different metal sources, most commonly used
linkers, and their structural diversity. Reprinted from ref. 47 with permission
from Wiley, Copyright 2022.
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using prompt engineering with chemistry-related tasks,
researchers developed a ChatGPT chemistry assistant (CCA).
To construct CCA, the study introduced a systematic prompt
engineering approach, termed ChemPrompt Engineering,
which was central to enabling domain-specific information
extraction in a controlled and reproducible manner. The frame-
work consists of three core steps: (1) minimizing hallucination
by designing role-based prompts that clearly define ChatGPT’s
task and scope as a chemistry assistant; (2) providing task-
specific instructions that guide the model to extract only
relevant synthesis parameters—such as metal sources, linkers,
solvents, temperatures, and reaction times—from varied experi-
mental contexts; and (3) structuring the output format to
ensure consistency and usability, typically in tabulated or
JSON-style entries. This strategy not only improved the accuracy
and interpretability of extracted information but also demon-
strated that LLMs, when guided by domain-adapted prompts,
can serve as scalable alternatives to traditional rule-based text
mining systems in chemical literature analysis.

This model processes full-text research articles, automati-
cally identifies key synthesis parameters such as metal sources,
linkers, solvents, reaction temperature, and reaction time. In its
initial validation, CCA was applied to a curated corpus of 228
MOF research articles (and their 225 supporting documents),
yielding 2387 unique synthesis condition relationships. On this
set, CCA achieved true positive counts exceeding 2000 for most
parameter categories, demonstrating high extraction precision
across metal source, linker, solvent, reaction temperature, and
reaction time (Fig. 5a).

Furthermore, performance evaluations across three
independent extraction processes revealed consistently high
precision, recall, and F1 scores, highlighting the robustness
of LLM-based text mining approaches in handling complex
scientific language (Fig. 5b). In this study, the three processe-
s—process 1 (sentence-level extraction), process 2 (paragraph-
level summarization), and process 3 (multi-step extraction
combining classification, summarization, and structur-
ing)—were designed to test the model’s adaptability to different
input formats and task complexities. The consistently high
performance across all three processes underscores the flex-
ibility of CCA in processing scientific texts under varying levels
of context and abstraction.

To demonstrate scalability, the pipeline was subsequently
deployed across approximately 800 unique MOF structures,
extracting 26 257 distinct synthesis parameter instances from
peer-reviewed publications. Compared to conventional rule-
based data mining methods, the CCA has demonstrated the
potential for a more flexible and scalable approach to proces-
sing unstructured synthesis descriptions. LLM-based text
extraction enables the creation of large-scale MOF synthesis
databases, facilitating data-driven materials discovery and pre-
dictive synthesis modelling.

The ability to process vast amounts of scientific literature is
a key advantage of LLMs over traditional NLP and ML-based
text mining techniques. One of the most significant demonstra-
tions of this capability is the very recent study by Kim et al.,

which implemented a LLM framework to extract and categorize
MOF synthesis data from 41 681 scientific papers.57

To handle this large-scale dataset, the study employed a
systematic pipeline consisting of three core tasks: categoriza-
tion, inclusion, and information extraction. First, the model
classified whether each paragraph was relevant to MOF synth-
esis (categorization task), followed by a decision on whether the
synthesis information in the paragraph was complete enough
to include in the dataset (inclusion task). Finally, for the
paragraphs that passed both stages, detailed synthesis para-
meters such as metal sources, organic linkers, solvents, and
additives were extracted using structured prompts (extraction
task). The LLM achieved high F1 scores across all three tasks,
with especially strong performance in the categorization and
extraction steps, demonstrating the model’s ability to process
highly unstructured experimental text with minimal rule-based
intervention.

The resulting dataset, compiled from synthesis-relevant
paragraphs, encompasses detailed information on synthesis
conditions and material properties. Statistical analysis of the
mined data revealed meaningful trends: solvent types were the

Fig. 5 Performance evaluation of text-mining processes for extracting
MOF synthesis parameters. (a) True positive counts for 11 synthesis para-
meters, including compound name, metal source, linker, solvent, reaction
temperature, and reaction time, demonstrating the accuracy of parameter
extraction across 2387 synthesis conditions. (b) Comparison of precision,
recall, and F1 scores across three different text-mining processes, showing
consistently high performance with minor variations. Standard deviations
are represented by gray error bars. Reprinted from ref. 56 with permission
from American Chemical Society, Copyright 2023.
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most frequently extracted, followed by metal sources, linkers,
and additives. Furthermore, compound-wise statistics showed
that a large portion of MOFs were associated with multiple
synthesis records, reflecting the diversity of experimental con-
ditions under which the same material can be synthesized. The
authors also analysed the distribution of synthesis data by
publication year and journal, highlighting the steady increase
in MOF synthesis reports and the broad coverage of the mined
dataset across the chemical literature.

The use of LLM-based text mining enables the construction
of large-scale experimental property datasets that were pre-
viously difficult to compile using manual or rule-based meth-
ods. Leveraging this capability, the authors performed a large-
scale comparison between text-mined experimental values and
simulation-derived values for surface area (SA) and pore volume
(PV), allowing for a more systematic evaluation of their

consistency (Fig. 6b and c). The analysis revealed notable
discrepancies between the two data sources. While simulation
values were consistent and singular for each MOF structure, the
experimental values obtained from literature showed substan-
tial variation, even for the same compound (Fig. 6d and e). This
variance can be attributed to several factors. Simulations are
typically based on idealized, defect-free models and do not
account for real-world influences such as temperature, pres-
sure, humidity, or the presence of guest molecules. Further-
more, experimental values can vary depending on synthesis
routes, measurement techniques, and inconsistencies in
reporting practices across different publications. These factors
contribute to the broad range observed in the experimental
data, in contrast to the uniformity of simulation outputs.

These findings highlight the importance of accounting for
such discrepancies when integrating computational and experi-
mental datasets in MOF research. As LLM-based text mining
becomes more widely used for database construction, it will be
critical to consider the contextual and methodological varia-
bility inherent in experimental data to ensure robust compar-
ison and integration with simulation results.

4. Conclusion and perspectives

The integration of text mining into MOF research represents a
paradigm shift in material design, synthesis, and optimization.
This feature article highlights key advancements in text mining
across the MOF landscape, spanning from traditional rule-
based extraction to state-of-the-art LLM-based text mining.
Conventional NLP and ML techniques, such as part-of-speech
tagging and NER, have revolutionized data extraction by con-
verting unstructured scientific literature into structured data-
sets, thereby uncovering critical synthesis trends. LLM-based
text mining has further streamlined this process, significantly
improving data accessibility and usability. By automating infor-
mation retrieval, interpretation, extraction and curation, LLMs
lower the technical barrier, making complex computational
tools more accessible to researchers across various disciplines.

Despite these advancements, several challenges remain in
fully harnessing text mining for MOF research. To address
these challenges and further expand its capabilities, we pro-
pose four key directions for future advancements in text mining
applications.

4.1 Integration of GUI in MOF informatics

Even prior to the release of ChatGPT, several pre-trained
transformer models were available; however, their adoption
was not very impactful. The emergence of ChatGPT (GPT-3.5)
in 2022 marked a turning point, catalyzing the application of
LLMs across diverse domains including computer science,
materials science, biology, industry, and finance. While this
rapid expansion can be partly attributed to technological
advancements and improved model performance, a critical
enabler was the development of a chat-style graphical user
interface (GUI), which significantly lowered the barrier to entry

Fig. 6 (a) Overview of the L2M3 data extraction and organization work-
flow. Literature papers are processed by a data extraction agent that
identifies and extracts information from tables and text, including synthesis
conditions and characteristic properties. Extracted data are then struc-
tured and matched with entries in the CCDC database by the data
organizing agent to build the L2M3 database. (b) Scatter plot comparing
surface area (SA) values extracted by L2M3 with those calculated from
MOF crystal structures. (c) Scatter plot comparing text-mined and calcu-
lated pore volume (PV) values. Color gradient represents the number
density of data points. (d) Box plot of mined SA values for nine represen-
tative MOFs; red dots indicate the corresponding calculated values. (e) Box
plot of mined PV values for the same MOFs, highlighting distribution and
deviation from simulation-derived values. Reprinted from ref. 57 with
permission from American Chemical Society, Copyright 2025.
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by allowing users to interact with LLMs through a simple,
intuitive webpage. In this context, embedding a GUI with text-
mined data offers a powerful approach to make structured
materials datasets more accessible and interpretable to a
broader research community.

Interactive GUI platforms such as the materials project58

and the Cambridge Structural Database59 have played a pivotal
roles in recent advancements in AI-assisted materials infor-
matics by enabling intuitive data retrieval. The GUI-based
platforms are now being actively developed into other materials
field, such as catalysts60,61 and batteries62 to support structure-
performance visualization, and machine learning-assisted
material screening. In the MOF domain, the QMOF database
was integrated into Materials Project, providing DFT-derived
properties (e.g., optimized structures, bandgaps, and band
structures).63 Similarly, the recent update of the CoRE MOF
2025 database64 introduced a streamlined web interface that
allows users to simply drag and drop CIF files to compute
geometric descriptors and predict properties such as water and
thermal stability. Beyond simple data retrieval, integrating
extracted data into chatbot-based GUIs (like ChatGPT) can
assist users in better understanding the data and generating
research ideas.56,65

Therefore, developing accessible and user-friendly GUIs will
become increasingly important in materials science to ensure
that a wider range of researchers can utilize available tools and
data. Integrating text-mined information into interactive GUIs
is able to eliminate the need for rigid, formally structured
queries, lowering the barrier for non-experts. As these tools
evolve, they hold the potential to support intuitive data explora-
tion and significantly accelerate materials discovery.

4.2 Text mining-driven multi-agent AI systems

MOF synthesis process is inherently complex, requiring precise
control over numerous variables such as metal precursors,
organic linkers, solvents, and reaction conditions. Due to the
intricate nature of laboratory workflows, AI is often applied only
to isolated stages of research, leading to a disjointed process
that heavily depend on human intervention. Multi-agent AI
systems trained on domain-specific text-mined knowledge offer
a more integrated and robust solution.66 By assigning specia-
lized AI agents to tasks such as reaction condition prediction,
structure–property correlation, and synthesis planning,
researchers can develop an autonomous and precise system
capable of continuously optimizing MOF synthesis strategies
based on structured knowledge extracted from the literature. A
recent study by Yaghi et al. demonstrates a team of seven
distinct AI research assistants which was assembled to opti-
mize the crystallinity of MOFs and covalent organic frameworks
(COFs).67 Each AI assistant specialized in specific research
tasks, including literature review, laboratory operations, and
data interpretation, working collaboratively to expedite the
discovery of optimal synthesis conditions. To develop such
multi-agent AI systems, training each agent on text-mined data
from specialized fields is essential, ensuring that AI-driven
decision-making is grounded in accurate, context-specific

scientific knowledge. A well-established text mining architec-
ture enables multiple AI agents to collaborate effectively,
thereby reducing reliance on human oversight and accelerating
advancements in MOF research.

4.3 Integrating text mining into autonomous laboratory

An autonomous laboratory (A-Lab) aims to integrate robotics
hardware and AI-driven software to accelerate materials dis-
covery with minimal human control.68–70 These systems are
designed to plan, execute, and analyse experiments in a closed-
loop workflow, optimizing synthesis conditions and improving
reproducibility. The ultimate goal of A-Lab is to transition from
manual experimental design to fully automated material synth-
esis and characterization, where AI-driven decision-making
guides every step. However, current A-Lab primarily focus on
reaction execution, while data curation and interpretation
remain major bottlenecks, as synthesis and characterization
results are often unstructured and require expert analysis.
Integrating real-time text mining into A-Lab enables the extrac-
tion of structured insights from both scientific literature and
in situ experimental data, enhancing active learning through
continual data feeding and refinement while optimizing user-
desired material synthesis by dynamically improving AI-driven
synthesis planning, reaction parameter selection, and character-
ization analysis. For example, retrieval-augmented generation
(RAG) is a framework that enhances LLMs by dynamically
retrieving and integrating external, up-to-date information into
their generative process,71,72 thereby enabling A-Lab to autono-
mously refine experimental decisions and adapt synthesis pro-
tocols with enhanced accuracy. Notably, integrating accurate text
mining into RAG transforms unstructured experimental and
literature data into structured, actionable insights, significantly
improving data interpretation in the feedback loop of A-Lab. The
integration of text mining allows A-Lab to continuously update
their knowledge base, facilitating machine-to-human commu-
nication through natural language, thereby accelerating explora-
tion of vast MOF chemical spaces.

4.4 Multi-modal LLM-enhanced data mining for
comprehensive MOF data extraction

In scientific literature, data can be represented in various
forms, including 1D text, 2D images, and 3D chemical files
(e.g. XYZ, crystallographic information file; cif, protein data bank;
pdb), each providing unique insights and information.73,74 Con-
ventional text mining techniques primarily focus on extracting
information from unstructured text, often neglecting critical data
embedded in tables, graphs and files. However, many essential
aspects of MOF research, such as synthesis conditions, character-
ization results, and structure–property relationships, are com-
monly presented in graphical plots, reaction schemes, and even
simulation videos. For instance, nitrogen adsorption isotherms
used to determine BET surface area are typically presented as
graphical plots; powder X-ray diffraction patterns appear as a
combination of graphs and textual annotations; and gas diffusion
behaviors within MOF pores are often illustrated through mole-
cular dynamics trajectory videos. Multi-modal LLMs, such as
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Kosmos-2,75,76 Flamingo,77 LLaVA,78 and PaLM-E,79 have demon-
strated the capability to process and interpret diverse data types,
making them ideal for end-to-end MOF data mining. Data mining
using multi-modal LLMs will enhance the feasibility and usability
of extracted data by enabling seamless integration of information
across different formats within scientific literature. This not only
improves accessibility for experts conducting advanced analyses
but also streamlines data interpretation for non-experts, bridging
the gap between computational tools and experimental research.
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