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Artificial keloid skin models: understanding the
pathophysiological mechanisms and application in
therapeutic studies
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Keloid is a type of scar formed by the overexpression of extracellular matrix substances from fibroblasts

following inflammation after trauma. The existing keloid treatment methods include drug injection, surgi-

cal intervention, light exposure, cryotherapy, etc. However, these methods have limitations such as recur-

rence, low treatment efficacy, and side effects. Consequently, studies are being conducted on the treat-

ment of keloids from the perspective of inflammatory mechanisms. In this study, keloid models are

created to understand inflammatory mechanisms and explore treatment methods to address them. While

previous studies have used animal models with gene mutations, chemical treatments, and keloid tissue

transplantation, there are limitations in fully reproducing the characteristics of keloids unique to humans,

and ethical issues related to animal welfare pose additional challenges. Consequently, studies are under-

way to create in vitro artificial skin models to simulate keloid disease and apply them to the development

of treatments for skin diseases. In particular, herein, scaffold technologies that implement three-dimen-

sional (3D) full-thickness keloid models are introduced to enhance mechanical properties as well as bio-

logical properties of tissues, such as cell proliferation, differentiation, and cellular interactions. It is antici-

pated that applying these technologies to the production of artificial skin for keloid simulation could con-

tribute to the development of inflammatory keloid treatment techniques in the future.

1 Introduction

Keloid is a scar that is harder and thicker than other scars,
induced by the overexpression and deposition of extra-cellular
matrix components (ECMs) such as collagen resulting from
the overproliferation of myofibroblasts through the differen-
tiation of fibroblasts.1 It has been known to be caused by infec-
tion at the wound region after injury.2 During wound recovery,
inflammatory programs influence fibroblasts directly or
indirectly through various inflammatory cells or cytokines
such as toll-like receptors (TLR); pro-inflammatory factors,
such as interleukin-6 (IL-6), IL-8, and Monocyte
Chemoattractant Protein-1 (MCP-1); anti-inflammatory factors
such as IL-10; and inflammatory cells such as macrophages,
mast cells, lymphocytes, and neutrophils.1 These fibroblasts,
influenced by inflammatory mechanisms, are differentiated
into myofibroblasts, inducing an excessive expression and
secretion of ECMs (Fig. 1). Consequently, the resulting scars

become abnormally large and hard, particularly along the
border of the wound.1,3 Therefore, the keloid scar is larger and
thinner than healthy scars, and it contains a higher amount of
moisture and water-soluble collagen, influencing collagen syn-
thesis and degradation of collagen cross-linking, than those in
healthy skin, indicating over-synthesis of collagen on the
keloid scar.1,4–7

Therefore, keloid scars are enlarged, harder, and darker
than normal scars, accompanied by an aesthetic problem,
itching, and movement discomfort in the keloid scar region.8,9

To resolve these issues, various therapeutic methods including
surgery, radiation therapy, steroid injection, pressure therapy,
cryotherapy, and laser therapy have been used. These methods
were applied both independently and in combination as
follows.10

First, steroids are commonly administered through intrale-
sional injections. Corticosteroids are primarily used for keloid
prevention or treatment. It has been reported to suppress
inflammation and has a therapeutic effect on 50–100% of
keloid scars.11 It is known to exert therapeutic effects on more
than 80% of keloid scars, accompanied by other methods such
as surgical excision. However, possible adverse side effects
include hypopigmentation, skin and subcutaneous fat atrophy,
telangiectasias, necrosis, ulcerations, and Cushingoid
habitus.12 To minimize these adverse factors, attempts have
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been made to adjust steroid dosage depending on the scar
area.13

Also, silicone gel sheeting on scars has been reported to
improve scar color and softness in existing scars but causes
side effects such as itching and skin rashes.14

In order to solve the limitation of the therapeutic effects of
corticosteroid injection or the silicone gel method, surgical
excision has also been used as a second-line treatment to
remove keloid scars.15 It has been reported to reduce the recur-
rence rate to <50% after other treatments, such as steroid
administration or silicone gel treatment.8 However, stimulat-
ing the region of excision can promote collagen synthesis,
resulting in additional collagen deposition and scar enlarge-
ment. Therefore, intramarginal excision should be performed
to prevent collagen stimulation.16,17

For relieving some features of keloid, such as pigmenta-
tion or thickness, especially shown as side effects of the
above treatment methods, pressure earrings are used to sup-
press keloid tissues after excision by continuously applying
pressure. It has been known to notably relieve vascularity,
pigmentation and thickness by controlling molecular-biologi-
cal modulators, such as Matrix metalloproteinase-28
(MMP-28),18,19 a regulator protein for keloid formation,20 or
IL-1β, accompanied by dermal apoptosis.21 However, it has
been reported that this method requires at least 12 hours
per day for several months for effective keloid scar

suppression.22,23 Thus, the method of intermittently apply-
ing pressure has been investigated to offer convenience to
patients using pressure-earring therapy by repeating the
application-resting cycles.24

Meanwhile, to selectively treat the targeted components of
scar tissues, laser-scar interactions, such as hemoglobin,
water, melanin, and collagen, have been used.25 Pulsed–dye
laser (PDL) and intense pulsed light (IPL) are used for target-
ing hemoglobin and treating erythema, pruritus, hyperpig-
mentation, and dyschromia.26–29 CO2 laser systems are com-
monly used for drug delivery because they influence the
dermis through microchannels.30 Laser treatment has excel-
lent therapeutic effects, primarily on keloids; however, it has
high recurrence rates.31 Therefore, a combination of multiple
lasers or superficial cryotherapy is required for the effective
therapeutic effects of laser treatment.32

In cryotherapy, liquid nitrogen is applied to destroy patho-
logical cells in the dermis, resulting in the destruction of
keloid scar tissue.33,34 In particular, intralesional cryosurgery
allows the needle to be inserted into the dermis and the appli-
cation of liquid nitrogen directly to the keloid tissue.33

Improved penetration of the dermis occurs compared with pre-
vious cryosurgery methods such as contact cryosurgery/spray
cryosurgery.35,36 Additionally, this method significantly
reduces scar volume, deformity, hardness, darkness, tender-
ness, itching, and aesthetic discomfort.37 Despite these advan-

Fig. 1 Inflammatory Mechanisms of Keloid Disease Onset. After injury at the skin tissue, infection occurs at the wound region and inflammation
program is processed through various paths such as stimulating Toll-like receptors (TLRs) expressed on inflammatory cells (mast cells,
T-lymphocytes, neutrophils, macrophages, etc.) or fibroblast. It activates fibroblast by inducing differentiation to myofibroblast through directly TLR
signalling to fibroblast or cytokine signaling of up-regulated inflammatory cytokines such as pro-inflammatory factors (IL-6, IL-8, MCP-1, etc.) or
anti-inflammatory factors (IL-10, etc.) from inflammatory cells. Differentiated myofibroblast promotes excessive expression of ECM components,
deposition of them and further formation of keloid scars.
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tages, the intralesional cryosurgery method has been reported
to cause mild local edema and epidermolysis.33,36

In addition, radiotherapy has been used to inhibit angio-
genesis, reduce fibroblast proliferation, and reduce collagen
deposition.38 In particular, radiotherapy following excision has
shown good efficiency rates; however, it has severe adverse
effects, such as malignant changes or carcinogenesis.31

Therefore, the dose and size of the radiation field should be
controlled to reduce the dose to any non-target tissues and
prevent undesired side effects, such as carcinoma.39

In this way, conventional keloid treatment methods focus
on inflammation relief and tissue interaction, such as inhibit-
ing cell proliferation, inhibiting fibrous material accumu-
lation, removing keloid scars, or exerting effects on scar hard-
ness, fibrous material, and color alleviation. Nevertheless,
despite these efforts, there are limitations and side effects
associated with each method, including pigmentary changes,
necrosis, ulcerations, rashes, concurrent surgical interven-
tions, keloid expansion due to wound site extension, pro-
longed wearing of devices, recurrence, and carcinogenesis.
Therefore, to address these challenges, an inflammatory
approach to keloid occurrence and treatment is necessary.

To understand the inflammatory pathway of keloids and
explore therapeutic alternatives to overcome the limitations of
previous keloid therapeutic techniques, a keloid model based
on a pathological approach for keloids has been investigated.40

In this review, the current status and future perspectives of the
development of an artificial keloid skin model are introduced,
and the model mimics the native keloid complex structures by
inducing inflammatory factors in animal equivalent models,
developing keloid-specific fibrosis by promoting the differen-
tiation of fibroblasts into myofibroblasts through inflamma-
tory activation for ECM overexpression and accumulation,41,42

and transplanting/implanting cells and tissues derived from
keloids or artificial scaffolds mimicking keloid tissue structure
into animal models,43,44 and further in vitro establishing of
layered skin structures with promising scaffold engineering
techniques, and finely describing the microenvironment and
tissue structure specific to humans, crucial for cell–cell com-
munication, cell proliferation, migration, and differentiation,
and possibility of clinical applications for resolving the limit-
ation of animal equivalent models, such as animal ethics and
cost issues (Fig. 2).45–51

2 Animal model equivalents

In clinical approaches to keloid research, the construction of
artificial keloids has been explored using several techniques
such as genetic mutation, chemical treatment, and implan-
tation of keloid tissue in animal models (Fig. 3).41–44

2.1 Genetic models

Through the mutation of inflammatory genes for the
expression of fibrosis, a phenomenon of keloids, a genetic
animal model has been introduced and studied (Fig. 3(a)).41

Genetic mutations are applied to construct genetic animal
models for keloids by inducing inflammatory ECM over-
expression and accumulation through inflammatory gene
mutations that trigger fibrosis. The main genes for fibrosis are
tight skin 1 and 2 (Tsk1/2), which are used for a genetic
mutation in mice as a common animal model.52,53 Then, the
Tsk1-positive mouse group duplicated the fibrillin-1 gene on
mouse chromosome 2.52 In addition, in the Tsk2-positive mice
administered ethylnitrosourea as a mutagenic agent, gain-of-
function missense mutations were expressed in Collagen Type
III Alpha 1 Chain (Col3a1) on chromosome 1.53,54 The result-
ing fibrosis of both Tsk mutation models showed tight scars,
thickened dermis, and abnormal dermal structural com-
ponents, with approximately 5–6 weeks of wound recovery, a
delayed period compared with 2–3 weeks in the wild-type
groups, and granulation tissue on the surrounding wound
edge.41,55 However, neither model completely duplicates
specific fibrotic diseases such as keloids.40

2.2 Trauma-induced animal models

Keloids are trauma-induced scars; therefore, trauma-induced
animal models have been investigated using fibroproliferative
scarring through excision and wound healing in pigs,56–58

rabbits59–62 and horses.63,64 However, it is yet to be shown that
this model, using other animal models, does not completely
duplicate the native keloid-specific characteristics in humans,
with an insufficient degree of disfigurement and
contractures,57,58 thickened, haphazardly arranged collagenous
bundles,56,62,65 despite the proliferation of fibroblasts and
minimal vascularity in the dermis layer, as well as increased
amounts of randomly arranged collagen.63

2.3 Chemical treatment models

2.3.1. Bleomycin. Bleomycin is a glycopeptide antibiotic
used for anticancer therapy and is known to cause fibrosis in
various diseases through up-regulating inflammatory cytokines
and reactive oxygen species (ROS), promoting inflammatory
myofibroblast differentiation and fibrosis. Therefore, it has
been used as a chemical model for fibrosis or keloid
(Fig. 3(b)).42,66–69 Bleomycin has been widely used to induce
fibrosis in various organs through injection into animal
models, expressing not only many pro-inflammatory cytokines,
such as IL-1β, IL-4, IL-6, and C–X–C motif chemokine ligand 2
(CXCL2), in the skin in mice but also many inflammatory
cells, including cluster of differentiation 45+ (CD45+) leuko-
cytes, F4/80+ macrophages, CD3+ T lymphocytes, mast cells,
and α-smooth muscle actin (αSMA) positive myofibroblasts
with higher numbers in the skin of bleomycin-treated
animals.67,68,70 The resulting collagen deposition was shown
to be 2–3 fold higher in dermal thickness and hydroxyproline
content than in the control group.67,68,70,71 Despite of visible
fibrosis, many other factors related to abnormal scarring, such
as hypoxia, genetic susceptibility, and trauma, were not
observed in this model. Additionally, the resulting fibrosis was
self-limiting for less than 6 weeks after the cessation of bleo-
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mycin treatment.66 In addition, the model does not completely
reflect the pathogenic characteristics of any disease.66,67,71

2.3.2. Reactive oxygen species model. Reactive oxygen
species (ROS)-inducing substances, such as hypochlorous acid
(HOCl), hydrogen peroxide (H2O2), peroxynitrites (ONOO−),
and superoxide anions (O2

−), have been known to induce fibro-
sis from fibroblasts in dermal tissues.72–74 Induced ROS are
known to promote fibroblast proliferation by elevating the cir-
culating concentrations of anti-DNA topoisomerase 1 and anti-
centromere protein-B (anti-CENP-B) antibodies. Meanwhile,
transforming growth factor-β (TGF-β) has not been shown to
have a significant role in the ROS model because its expression
has not been detected.72 The fibrotic pathways in this model
are independent of classical fibrotic signaling cascades.
Therefore, a pathological keloid approach should be
investigated.40

2.4 Humanized animal model equivalents

2.4.1. Direct xenograft/tissue graft. This method involves
the transplantation of human keloid skin tissues into animal
models. To construct a keloid-specific fibrosis model based on
pathological aspects, human keloid tissue is transplanted into
immuno-deficient animal models to establish a graft model for

keloid with a comparable environment (Fig. 3(c)).43 Animal
models have been used in immune-deficient states to prevent
immune rejection responses between implanted human tissues
and animal models during tissue grafting.75,76 It has the follow-
ing advantages: a comparable animal model for the specific
human tissue in vivo environment, preservation of complex
human cell–cell interactions in both the epidermal and dermal
layers, and continuous growth of cells such as fibroblasts in a
3-dimensional organotypic environment.40 The viability of keloid
xenografts can be maintained for several weeks to months after
implantation or transplantation based on angiogenesis and col-
lagen production in the dermal layer.76–78

However, for several months post-xenograft, most groups
lost more than 50% of their weight, and ECM production
decreased.76,78,79 Moreover, although an immune-deficient
model was used, the immune system was not completely
absent, including functioning natural killer cells with humoral
adaptive immune systems. Additionally, graft rejection can
occur through the remaining immune cells or antigenicity of
the skin tissue. This can influence the viability of xenografts
and limit the effectiveness of the model. Universal acceptance
of the graft model as a model for keloid pathology is
limited.78,80

Fig. 2 The keloid-specific skin model developments based on pathological approaches for understanding the inflammatory pathway of keloid and
development of clinical applications. (Left) Animal equivalent keloid-induced models mimicking native keloid structure through genetic-mutated,
ROS-induced, chemical-induced, and humanized approaches such as xenograft/tissue graft transplantation or artificially engineered tissue implan-
tation. There have been limitations such as completely duplicating human specific properties of keloid for these models, and ethical issues for using
animal experiment. (Right) Alternative artificial 3-dimensional (3D) keloid models for recapulating human-specific keloid complex structures.
Artificial 3D keloid model consists of full thickness skin layers: epidermis layer and dermis layer. The fabrication of the complex structure of dermis
layer has been developed through various scaffold engineering strategies such as freeze drying, electrospinning, 3D printing, skin-on-a chip, etc.
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2.4.2. Tissue-engineered models. It was constructed by
implanting an artificially engineered keloid skin tissue into an
animal model. The introduction of scaffold engineering allows
for the refinement of the microstructure and cellular inter-
actions of keloid tissue for the construction of a keloid-
specific fibrosis model (Fig. 3(d)).44 During the preparation
of artificial keloid tissue, fibroblasts are isolated from
human keloid tissue and cultured in 3D scaffolding
materials as in vitro models or implanted in immunocom-
promised mice as in vivo models.81–83 Matrigel and collagen
were used as scaffolding materials. In such materials, keloid
fibroblasts maintain an elevated expression of collagen I

monoclonal antibody (Col-1), MMP-9, and MMP-13.84 The
fibroblast-containing scaffolds maintained their weight post-
implantation and histologically demonstrated increased col-
lagen deposition, mostly type I collagen, within the scaffold
matrix, with significant neovascularization in the host
animal.82 Despite of various animal equivalent keloid
models, the challenge of the complete duplication of
human-specific properties in keloids remains. Additionally,
most animal tests have limitations such as high cost, time-
consuming processes, ethical concerns, and immune
rejection.50,51 To resolve these issues, a non-animal keloid
model was investigated.

Fig. 3 Construction of keloid/fibrosis models through animal model equivalents. (a) Genetic mutation models. Tight skin 2 (Tsk2), as the main
inflammatory gene for fibrosis, has been used for genetic mutation, expressing fibrosis in animal models. Reprinted with permission from ref. 41;
Copyright 2014, Elsevier. (b) Chemical-induced models (reactive oxygen species (ROS) through bleomycin-induced fibrosis). Bleomycin has been
treated into animal model for promoting fibrosis through expressing pro-inflammatory cytokines and inflammatory cells, and inducing ROS, which
have been known to induce fibrosis. Reprinted with permission from ref. 42; Copyright 2021 American Chemical Society. (c) Direct tissue xenograft
models. Human keloid skin tissue has been transplanted into immune-deficient animal model, and maintained for several weeks to months through
cell–cell interaction in both epithelial layers and dermal layers, and further angiogenesis and collagen production in comparable animal model.
Reprinted with permission from ref. 43; Copyright 2023, Springer Nature. This article is licensed under a Creative Commons Attribution 4.0
International License. (d) Engineered tissue-implanted Models. Artificially engineered keloid tissue has been fabricated through 3D scaffold tech-
nique using human-derived fibroblast, and implanted into immunocompromised animal model, promoting ECM component deposition. Reprinted
with permission from ref. 44; Copyright 2020, MDPI.
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3 Non-animal keloid model
3.1 2D (mono- and co-culture) models

A two-dimensional (2D) keloid model typically consists of a
separated single layer of keloid-derived fibroblasts or keratino-
cytes through mono- or co-cellular culture (Fig. 4(a)). The
advantages of 2D models are their simple process, high repro-
ducibility and cost-effectiveness because the culture period is
short.85 However, cells grown in 2D monolayers cannot
capture the relevant complexity of in vivo-environment inter-
actions between an individual cell, its immediate neighbors,
and the ECM, which are responsible for the control of cell be-
havior.86 Therefore, 2D culture models have limitations in
achieving realistic tissue representations owing to insufficient
cellular communication and cell signaling in native whole
skin.61,87–89

3.2 3D (organoid and organotypic) culture models

Organoid culture models are prepared by the formation of
multicellular aggregates through cultured keloid-derived biop-
sies in suspension (Fig. 4(b)).90,91 They have the advantages of
medium-throughput testing for keloid therapies and simple
culture conditions.92 In contrast, organotypic models, which
are full-thickness skin structures, consist of stratified layers of
epidermal and dermal-derived cells (Fig. 4(c)). They show rela-
tive biological complexity, longevity in culture, and similarities
in stratification and cell components to human skin. However,

short-term use is a major problem. In organotypic culture
models, multiple skin cell types are absent during multicellu-
lar interplay. They usually lack structural complexity and
mimic the human dermis.75,77,79,93–95

3.3 Organ-culture

Organ culture is performed by harvesting tissue from a keloid
patient through biopsy, followed by embedding in a collagen
matrix and culturing in a medium for the growth of epidermal
and dermal layers of the skin (Fig. 4(d)).96 This model has a
long-term pathological state, as well as therapeutic effects.96,97

However, it also has limitations, such as complex and relatively
expensive medium components, which are essential for organ
culture growth.67,68,71,98 Owing to the drawbacks of previous
non-animal models, the overall duplication of native keloid
skin structure and time-cost-effective alternatives have been
further explored.

4 Artificial keloid skin model
platform
4.1 3D multi-layered keloid models

Artificial 3D keloid skin models, with full-thickness multi-
layered structures, are introduced to overcome the limitations
of the previous keloid models related to multicellular interplay
as well as structural complexity. By mimicking the actual skin

Fig. 4 Non-animal keloid models. (a) Cell monolayer structures through mono cellular cultures or co-cellular cultures using keloid-derived fibro-
blasts or keratinocytes. (b) Organoid culture models through multicellular aggregation cultures using keloid-derived biopsies. (c) Organotypic
models with full-thickness skin structures, consisting of stratified epidermal layers and dermal layers with biological complexity. (d) Organ culture
models by embedding harvested keloid tissues through biopsy in medium with/without collagen matrix for culture and differentiation of both epi-
dermal and dermal layers.
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structure, these models allow in vitro studies, thereby avoiding
ethical concerns related to animal use. Additionally, they con-
tribute to time and cost savings in research. For these models,
various types of cells, such as keloid fibroblasts, keratinocytes,
and ECM scaffold components have been employed. Dermal
cells, such as keloid fibroblast cells, are seeded with a scaffold
material in the lower layer to form a 3D structure.99 The epi-
dermal layers were seeded on the top for cultivation and differ-
entiation to corneal layers at the air–liquid phase
(Fig. 5(a)).100,101 This method achieves a multilayered struc-
ture, allowing bidirectional growth with cell–cell and cell–ECM
communication and interaction. This enabled the activation of
growth factors. Owing to its similarity to the actual skin tissue
structure, this model is applicable to therapeutic efficacy
experiments.45,46

Scaffold materials, including biocompatible materials such
as gelatin, hyaluronic acid, and collagen, allow the dermal

layer to provide elastic and tensile properties to the skin struc-
ture through the formation of collagen and elastic fiber
networks,102–104 support the cells in tissue structures,47 and
control tissue segregation and intracellular communication
through signaling processes involving growth factors and/or
enzymes.48,105 These functions are essential for cell prolifer-
ation and differentiation.49 These materials possess biodegrad-
ability, low immunogenicity, and high water retention.106

When creating scaffold structures using these materials,
adjusting the pore size promotes cell regeneration and facili-
tates the formation of intricate structures.107,108 Additionally,
the precise control of pore size enhances cell attachment and
proliferation over a large surface area.109 Especially, collagen
and elastin are commonly used as scaffold materials for keloid
skin models.110–113 Collagen, the most common connective
tissue material, promotes cell adhesion, constructs tissue
architecture, and activates platelets,114 with excellent biode-

Fig. 5 In vitro artificial full-thickness keloid skin model platform with full-thickness 3D structures. (a) Construction of artificial 3D skin models with
multi-layer structure consisting of various cells such as keloid-derived fibroblast and keratinocyte, and scaffolds for 3D keloid model, with cell–cell
and cell–ECM communication and interaction. (b) Promising scaffold engineering for complete native keloid-skin model/pathological mechanism-
mimic 3D keloid structure models (freeze-drying, 3D printing, electrospinning and skin-on-a-chip), and application of skin model for clinical
approaches for keloid. Scaffold engineering would be important for cell adhesion and growth through controlling pore sizes, and duplicating the
native matrix complex structure.
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gradability, high tensile strength in cartilage and tendons,
mechanical strength, low antigenicity, cell-binding capability,
and stratified squamous epithelium.115,116 Meanwhile, elastin
influences the physical and biological characteristics of tissue
functions by exhibiting low stiffness, high extensibility, and
effective elastic properties.117–119

4.2 Future perspectives of scaffold engineering for complete
3D keloid structure model

To create an artificial keloid skin that faithfully mimics the
actual keloid skin structure, inflammatory mechanisms as well
as microenvironment, composed of various types of cells such
as fibroblast, myofibroblast, keloid-derived stem cells, macro-
phages, mast cells and neutrophils,120 with multiple activated
signaling pathways, such as TGF-β/Smad, YAP/TAZ, α1β1 or
αvβ3, it is particularly crucial to reproduce cell proliferation,
differentiation, migration, collagen synthesis, expression of
profibrotic genes, keloid-relative receptor expression and cell–
cell communication.121–125 In controlling these aspects, matrix
scaffolds play a significant role in contributing to cell attach-
ment, support, and behaviour. Therefore, by applying scaffold
formation and structure refinement technologies, adjusting
pore sizes, mimicking the actual matrix structure, and optimiz-
ing physiological conditions within the body, it is possible to
advance technologies that not only replicate the structure but
also reproduce the functions of keloid skin. Additionally,
tensile properties of the scaffold have a significant role in con-
trolling cell proliferation and ECM component synthesis by
regulating the expression of keloid-relative proteins such as
integrin αvβ3 and α2β1.125,126 Recent studies have reported
various techniques for constructing artificial skin models,
such as electrospinning, 3D printing, and microfluidic
systems, as skin-on-a-chip systems, realizing the intricate
structure of human skin (Fig. 5(b), left).127

The freeze-drying technique is known to control pore size at
the freezing rate, freezing temperature and pH environment
through solvent lyophilization of the frozen polymer solution
under high vacuum and low-temperature conditions.128

Therefore, it would be suitable for a wide range of biomedical
applications, primarily because it allows for exquisitely
mimicking actual keloid tissue by reproducing the prolifer-
ation and differentiation processes of cells.50 3D printing is a
technology that reproduces multilayered skin structures by
layer-by-layer deposition of ECM material scaffolds and con-
stituent cells.129,130 This technique not only provides precision
and reproducibility but also enables precise control of internal
and outer scaffold structures,131,132 such as the shape, arrange-
ment, size, and structure of pores.133 Therefore, cell prolifer-
ation, differentiation, migration, and ECM substance
expression are promoted,134 which would be crucial for repli-
cating the characteristic fibrosis as well as the pathological
mechanism in keloid disease. Electrospinning is known to
reproduce the resulting fiber structure, similar to the actual
ECM fibers, using a strong electric field to draw out a polymer
solution into thin, continuous fiber forms. It is applied to cell
interactions and tissue fabrication135 controlled by variables

such as polymer properties (e.g., viscosity and concentration),
electrical conductivity, surface tension, solvent, electric field
strength, solution injection rate, temperature, and humid-
ity.136 It allows for the resulting electrospun nanofiber network
to enable the achievement of morphological similarity to the
native ECM structure with an optimized surface-to-volume
ratio and porosity,137,138 allowing for improving cell adhesion
and proliferation.139 These advantages of electrospinning
would be applied to mimic the interaction between keloid con-
stituent cells and ECM, further extending to replicate the struc-
ture and function of tissues by emulating the actual keloid
ECM structure. Microfluidic systems, such as the skin-on-a-
chip technique, are known to mimic complex skin tissue struc-
tures and microenvironments by allowing for dynamic cultiva-
tion of internal cells to mimic the physiological characteristics
of the tissue.140 Additionally, it imparts physical and chemical
stimuli to the tissues within the chip, allowing control over
micro-environmental factors such as flow, force, and chemical
gradients,141–146 influencing cell differentiation, cell inter-
actions, and cell morphology.147 Meanwhile, the application of
porous materials that separate microchannels has led to
research on tissue barrier functions and tissue
interactions,144,148 with each layer separated by porous
membranes,149,150 which would be suitable for realistic keloid
models.

3D skin model platform technology developed through
scaffold engineering would hold significance in mimicking
pathological paths based on multiple cellular signal pathways
through optimizing porous structures as well as tensile pro-
perties of artificially engineered scaffolds and reproducing
dermal and epidermal architectures of keloid tissues. Its appli-
cation in replicating keloid skin structures can be extended to
foundational clinical research for keloid.

4.3 Limitation and future perspective of clinical approach for
3D keloid model

Artificial skin models have been widely applied in basic clini-
cal research to develop therapeutic systems for various skin
diseases or wounds (Fig. 5(b), right).151,152 With increasing
regulations on animal experiments in drug and treatment
research, there is growing interest in the development of artifi-
cial skin models that mimic the actual skin structure. Thus,
research would be conducted on the development of an artifi-
cial keloid model that mimics the actual keloid structure for
application in the treatment of keloid. However, there has
been limited research and therapeutic development using 3D
artificial skin models for keloid treatment. Therefore, there is
a need for the development of a 3D full-thickness artificial
skin platform specifically tailored for keloid studies.

5 Conclusions

Research efforts are underway to artificially develop keloid
skin models based on pathophysiological mechanisms for the
development of keloid treatment methods. These studies have
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progressed in terms of reproducing the actual skin structure
and function, adhering to animal ethics, and optimizing pro-
duction time and cost efficiency. In particular, a 3D full-thick-
ness artificial keloid model can be produced in vitro without
the need for animal experiments, and its ability to replicate
the epidermis, structure, and ECM-based cellular interactions
of real skin makes it fascinating. Additionally, engineering
studies on scaffolds would be conducted to optimize cell
growth, differentiation, and communication through the
refinement of the ECM network structures as well as multiple
cellular signalling pathways induced by the tensile property of
the scaffold. Therefore, the development of an artificial keloid
structure that closely mimics the actual skin structure is antici-
pated, and further applications in the development of treat-
ments for keloid are promising. However, for keloids, more
research is needed to mimic the inflammatory processes and
unique skin structures over an extended period. Consequently,
investigations into keloid treatment using skin disease mimic
models are expected to continue in the future.
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