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1. Introduction

NH3;, a value-added chemical and also a renewable hydrogen-
rich carrier, is vital to modern agriculture and industry.'”
Electrochemical nitrate reduction to ammonia (NO;RR) rep-
resents a fascinating approach to realising both green NH;
generation and wastewater purification.”® However, NO3;RR
effectiveness is still retarded by the complex multi-electron
transfer process and easy occurrence of side reactions
especially competing for the hydrogen evolution reaction
(HER).””® Therefore, it is urgently required to explore effective
NO;RR electrocatalysts for active and selective NO; -to-NH;
conversion.'>**

To date, substantial efforts have been devoted to exploring
many potential NO3;RR catalysts.">>> Metal chalcogenides
have attracted wide attention in electrolysis due to their
layered structure and high electrochemical stability.>®®
Among them, VS, is most appealing due to its metallic
nature with high conductivity, facilitating accelerated electron
transfer for boosting the catalytic kinetics.”>*® Nevertheless,
investigations on VS,-based catalysts for the NO;RR remain
largely unexplored due presumably to the poor intrinsic
activity of VS, for NO;™ activation. Metal doping is a promis-
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with a corresponding NHz vield rate of 11.3 mg h™* cm™ at —0.6 V vs. RHE. Theoretical computations
unveil that La-dopants and S-vacancies synergistically promote NOsz™ activation, suppress hydrogen
evolution and lower the energetic barriers, leading to the enhanced NOzRR activity and selectivity of

ing approach to tuning the surface electronic structure of the
catalysts to significantly enhance the catalytic activity.”® By
virtue of the unique 4f structure and rich redox capability,
rare-earth lanthanides emerge as intriguing metal dopants to
considerably improve the catalyst activities.*** Nevertheless,
the use of rare-earth metal dopants to tune the electronic
structure and NOz;RR activity of the catalysts has not yet
been explored.

In this study, we report a rare-earth La-doped VS,_, (La-
VS,_,) enriched with S-vacancies (Vg) towards the NOz;RR. La-
VS,_, delivers excellent NO3RR performance with a highest
NH;-faradaic efficiency (FEnp,) of 96.6% with the corres-
ponding NH; yield of 11.3 mg h™ em™ at —0.6 V vs. RHE.
Detailed experiments combined with theoretical investigations
are employed to unravel the catalytic NO;RR mechanism of La-
VSy_x.

2. Results and discussion

La-VS,_, (4.8 wt% La) grown on carbon cloth (CC) was fabri-
cated using a simple hydrothermal approach. The XRD
pattern of La-VS,_, (Fig. 1a) shows major diffraction peaks
assigned to the hexagonal VS, phase (JCPDS No. 89-1640).
The SEM image of La-VS,_, (Fig. 1b) shows numerous
nanosheets which grow perpendicularly on the CC substrate,
and the nanosheet morphology of La-VS,_, is further verified
by the TEM image (Fig. 1c). The elemental mapping images
of La-VS,_, (Fig. 1d) reveal a uniform distribution of La
elements. The HRTEM image of La-VS,_, (Fig. 1e) shows two
d spacings of 0.25 and 0.60 nm, corresponding to the (011)
and (001) facets of VS,, respectively. The corresponding
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inverse fast Fourier transform (IFFT) pattern (Fig. 1f) and
lattice line scanning analysis (Fig. 1g) signify the loss of
some lattice atoms (dotted circles), indicating the presence
of abundant defects/vacancies on La-VS,_,.>> The elemental
analysis further reveals a much reduced S/V molar ratio of
1.85 compared to the nominal ratio of VS, (2), demonstrating
the Vgrich nature of La-VS,_,.>°

As shown in the electron paramagnetic resonance (EPR)
spectrum (Fig. 2a), La-VS,_, displays a much enhanced EPR
signal compared to pristine VS,, further attesting to the exist-
ence of abundant Vg on La-VS,_,.**° The X-ray absorption
near-edge structure (XANES) spectra (Fig. 2b) show that the
white line intensity of La-VS,_, is lower than that of the La,0;
reference, suggesting that La-dopants carry a partially positive
charge.*® The extended X-ray absorption fine structure (EXAFS)
spectra (Fig. 2c) show that La-VS,_, presents a dominant peak
at 2.16 A, assigned to the La-S scattering path. Besides, no La-
La (3.96 A) scattering paths can be detected, confirming that
La-dopants are atomically dispersed in La-VS,_,. The evidence
for the presence of atomically dispersed La-dopants in La-
VS,_, can be further proved by the wavelet transform (WT)
plots (Fig. 2d), showing the absence of a La-La signal in La-
VS,_..*"™*® The EXAFS fitting results (Fig. 2e, Table S1t) reveal
that the La-S coordination is around 5, implying that La-
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Fig. 1 (a) XRD pattern of La-VS,_, on CC. (b) SEM image of La-VS,_, on CC. (c) TEM image of La-VS,_,. (d) Elemental mapping images of La-VS,_,

on CC. (e) HRTEM image of La-VS,_, and (f) the corresponding IFFT pattern and (g) lattice line scanning analyses.

dopants mainly substitute the five-fold coordinated V atoms of
VS, _, (Fig. 2f).

Theoretical calculations are carried out to examine the
electronic structure of La-VS,_,. The calculated La-dopant for-
mation energy (Ep,, Fig. S11) reveals a much reduced E;, of
La-VS, , (1.94 eV) compared to Vg-free La-VS, (3.61 eV),
suggesting that Vg plays a critical role in making the incor-
poration of La-dopants into VS,_, lattices more thermo-
dynamically feasible.**** Electron contour maps reveal abun-
dant electrons accumulated in the Vg region (Fig. S2 and
S37), while La-dopant affects little the electron accumulation
nature of Vg in La-VS,_, (Fig. 2g). These accumulated elec-
trons are apt to be transferred to the antibonding orbital of
NO;~ for the activation and dissociation of the N=O
bond,>** facilitating the boosted NO;RR process. The partial
densities of states (PDOS) plot of La-VS,_, (Fig. S47) reveals a
significant La/S orbital hybridization, suggesting the strong
La-S electronic interactions which allow La-dopants to be
atomically dispersed and firmly stabilized in VS,_,, resulting
in the high thermodynamic stability of La-VS,_, (Fig. S51).*°
Furthermore, compared to VS, and VS,_,, La-dopant incor-
poration makes La-VS,_, exhibit the occupied electron states
across the Fermi level (Fig. 2h) and reduced work function
(Fig. S67), thus endowing La-VS,_, with enhanced conduc-

Inorg. Chem. Front., 2023, 10, 2014-2021 | 2015


https://doi.org/10.1039/d2qi02757g

Published on 14 febrlar 2023. Downloaded on 11.11.2025 10:30:01.

Research Article

View Article Online

Inorganic Chemistry Frontiers

Q
(o

La,0, d

[Lavs,,
-~ s, - La-vs,,
3 3
< s
B 2
E . —— o
(-4
= [
3 -
= £
203 202 201 200 199 198 5480 5500 5520 5540 5560 =
g value Photon energy (eV) =
[+
c e o Data ;:
La-0 - ==-Fitting
- La-La =™
3 ; 3
S | La,0, 8
2 2
a La-S 2
= La-Vs,,

N
o

DOS (electrons/eV)
-
S

2
Energy (eV)

Fig. 2 (a) EPR spectra of VS, and La-VS,_,. (b) La Ls-edge XANES, (c) EXAFS spectra and (d) WT profiles of La-VS,_, and reference La,Os. (e) EXAFS
fitting curve of La-VS,_, and (f) the corresponding fitting model. (g) Electron contour map of La-VS,_, (red: charge accumulation, blue: charge

depletion). (h) DOS plots of VS,, VS,_, and La-VS,_,.

tivity to accelerate electron transfer and catalytic kinetics
(Fig. S71).*77>!

The electrochemical NO3;RR activity of La-VS,_, directly
used as the working electrode is evaluated in an H-type cell
on the basis of a standard procedure flow chart
(Fig. S81).>>7° The electrolyte used is 0.5 M Na,SO, with 0.1
M NaNOs; (Fig. S9t). As displayed in Fig. 3a, La-VS,_, exhibits
a much higher current density in the presence of NO;™, indi-
cating that La-VS,_, is catalytically effective towards the
NO;RR. The NH; yield rates and FEyy, of La-VS,_, are then
quantitatively estimated by the combination of chronoam-
perometric (Fig. S10%) and colorimetric approaches (Fig. S11-
$131).>°° As shown in Fig. 3b, La-VS,_, exhibits the highest
FEnu, of 96.6% at —0.6 V. The corresponding NH; yield rate
and partial current density at —0.6 V are 11.3 mg h™" cm™>
and 121.2 mA cm™> (Fig. S14f), respectively. Such NO;RR
performance of La-VS,_, exceeds that of most reported
NO;RR catalysts (Fig. 3c, Table S21). We also investigate the
effect of the La-dopant content on the NO;RR performance
of La-VS,_, and determine that 4.8 wt% is the optimum La-
dopant content (Fig. S151). Meanwhile, FEny, is dramatically
higher than the FEs of other byproducts shown in Fig. 3d,

2016 | /norg. Chem. Front,, 2023, 10, 2014-2021

demonstrating the exceptional selectivity of La-VS, , for
electrocatalytic NO;™-to-NH; conversion.

Several control tests are carried out to validate the NH;
origin. It is shown in Fig. S167 that NH; is barely detected
both in the NO; -free electrolyte and at the open circuit poten-
tial (OCP). The N source is further confirmed by isotopic label-
ing 'H nuclear magnetic resonance (NMR) spectroscopy
(Fig. 3e). Visibly, upon using '“NO;~ and '*NO;” tracing
agents, the resulting NMR spectra show three characteristic
signals of NH," and two signals of '>NH,", respectively,
proving that the detected NH; originates from the NO;RR.®%"%?
We further tested the catalytic stability of La-VS,_, for the
NO;RR. Fig. 3f depicts no obvious decay in NH; yield rates and
FEny, during ten consecutive NO3;RR cycles, indicating the
good cycling durability of La-VS,_,. During the chronopoten-
tiometric test for 20 h of continuous electrolysis (Fig. 3g), neg-
ligible variations in current density and corresponding FEgn;
can be observed, suggesting the outstanding long-term stabi-
lity of La-VS,_,. After the stability tests, La-VS,_, reveals no
obvious changes in the morphology, crystal phase and La
content (Fig. S177), confirming the robust structural and com-
positional stability of La-VS,_,.

This journal is © the Partner Organisations 2023
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Fig. 3 (a) LSV curves of La-VS,_, with and without the addition of 0.1 M

NOs™. (b) NH5 yield rates and FEny, of La-VS,_, at various potentials. (c)

NO3RR performance comparison between La-VS,_, and reported catalysts. (d) FEs of different products after NOsRR electrolysis at various poten-
tials. (e) *"H NMR measurements fed by **NO3;~/*>NOs~ after NO3RR electrolysis. (f) Cycling and (g) long-term chronoamperometry tests at —0.6 V.

(h) Comparison of the NOsRR performance between VS, and La-VS,_, at —

We also evaluate the NO3;RR activity of pristine VS, under
the same conditions at —0.6 V (Fig. 3h). Obviously, the NO;RR
performance of VS,_, is considerably lower than that of La-
VS,_x, with FEyy, and the corresponding NH; yield rate being
1.4 and 1.9 times poorer than those of La-VS,_,, respectively,
suggesting that La-dopants have a significant contribution to
the NO;RR activity of La-VS,_,. We measured the electro-
chemical surface areas (ECSAs) of the two catalysts and found
that the ECSA-normalized performance of La-VS,_, is still con-
siderably better than that of VS, (Fig. S187), indicating the
superior intrinsic NO;RR activity of La-VS,_,. The in-depth
mechanistic understanding of the enhanced NOz;RR of La-
VS,_, is elucidated by theoretical investigations.

Since NO;~ adsorption is a critical prerequisite for the
NO;RR,*® we first examined NO,~ adsorption on various cata-
lysts. As shown in Fig. S19, in contrast to the negligible N—O
bond elongation on pristine VS,, the N=—O bond of the
absorbed NO;~ on the Vj site of VS,_, is stretched to 1.305 A,
and it is further stretched to 1.365 A on La-dopant-adjacent Vg
site of La-VS,_,, indicating that NO;~ can be significantly acti-
vated on La-VS,_,. This is further corroborated by the differen-
tial charge density maps, showing that compared to the cases
of VS, and VS,_, (Fig. S20t), La-VS,_, exhibits a more intense
charge transfer with the adsorbed NO;™ (Fig. 4a). The corres-
ponding electron location function maps (Fig. 4b) reveal that

This journal is © the Partner Organisations 2023

0.6 V.

both the Vg-induced unsaturated V atom and the La-dopant (or
La-Vs site) synergistically donate electrons to the absorbed
NO;™,* resulting in effective NO;~ activation on La-VS,_,.
Benefitting from the enhanced NO;™ activation on the La-Vg
site, La-VS,_, shows a largely reduced binding free energy of
NO;™ relative to VS, and VS,_, (Fig. 4c), thus facilitating the
subsequent NO3;RR process. Meanwhile, compared to the Vg
site of VS,_,, the La-V; site of La-VS,_, exhibits a more energy
requirement for H, evolution (Fig. 4d), and thus La-VS,_, can
effectively impede the HER to benefit NO;RR selectivity.>®

The free energy changes of NO;RR pathways of all con-
sidered VS,, VS,_, and La-VS,_, catalysts are further assessed,
with their corresponding atom configurations being displayed
in Fig. S21-523.1 It is known that the electrocatalytic NO;RR
process for NH; formation comprises the initial deoxidation
steps of *NO; — *NO, — *NO and the following hydrogenation
steps of *NOH — *N — *NH — *NH, — *NH3.°*°® As shown
in Fig. 4e, in comparison with VS, and VS,_,, La-VS,_, shows
the lowest energy barrier of —0.63 eV for its rate-determining
step (RDS) of *NO — *NOH, suggesting its favorable energetics
to boost the NO3;RR process. Therefore, the co-introduction of
Vs and La-dopants can synergistically promote NO;~ acti-
vation, retard the HER and lower the reaction energetic bar-
riers, thereby greatly promoting the NO;RR activity and selecti-
vity of La-VS,_, for NO;-to-NH; conversion.

Inorg. Chem. Front., 2023, 10, 2014-2021 | 2017
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Fig. 4 (a) Differential charge density maps of NOz™ adsorption on La-VS,_, (yellow: accumulation, cyan: depletion) and (b) the corresponding elec-
tron location function maps (red: accumulation, blue: depletion). (c and d) Binding free energies of (c) NOz~ and (d) H on different catalysts. (e)
Gibbs free energy diagrams of the NO3zRR pathway of VS,, VS,_, and La-VS,_,, respectively.

3. Conclusion

In summary, La-VS,_, is verified to be a highly active and selec-
tive NO3;RR catalyst. Theoretical computations reveal that the
excellent NO;RR performance of La-VS,_, originates from the
synergy of La-dopants and Vg to promote NO;~ activation, sup-
press the HER and lower the energetic barriers. This work
demonstrates the great potential of rare earth catalysts toward
the efficient NO;RR for NH; electrosynthesis.
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