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The world today is witnessing the significant role and huge demand for molecular detection and screening
in healthcare and medical diagnosis, especially during the outbreak of COVID-19. Surface-enhanced
spectroscopy techniques, including Surface-Enhanced Raman Scattering (SERS) and Infrared Absorption
(SEIRA), provide lattice and molecular vibrational fingerprint information which is directly linked to the
molecular constituents, chemical bonds, and configuration. These properties make them an
unambiguous, nondestructive, and label-free toolkit for molecular diagnostics and screening. However,
new issues in molecular diagnostics, such as increasing molecular species, faster spread of viruses, and
higher requirements for detection accuracy and sensitivity, have brought great challenges to detection
technology. Advancements in artificial intelligence and machine learning (ML) techniques show
promising potential in empowering SERS and SEIRA with rapid analysis and automatic data processing to
jointly tackle the challenge. This review introduces the combination of ML and SERS/SEIRA by
investigating how ML algorithms can be beneficial to SERS/SEIRA, discussing the general process of
combining ML and SEIRA/SERS, highlighting the molecular diagnostics and screening applications based
on ML-combined SEIRA/SERS, and providing perspectives on the future development of ML-integrated
SEIRA/SERS. In general, this review offers comprehensive knowledge about the recent advances and the
future outlook regarding ML-integrated SEIRA/SERS for molecular diagnostics and screening.
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1. Introduction

Surface-enhanced spectroscopy is a significant spectroscopic
technique and could be classified as Surface-Enhanced Raman
Scattering (SERS) spectroscopy,’ surface-enhanced infrared
absorption spectroscopy (SEIRA) spectroscopy,> and surface-
enhanced fluorescence (SEF).> SERS and SEIRA provide lattice
and molecular vibrational fingerprint information, respectively,
which is directly related to the molecular constituents, chemical
bonds, and configuration.*® This correlation makes them
powerful analytical tools for unambiguous, nondestructive, and
label-free detection of substances in biology, medicine, elec-
trochemistry, catalysis, materials science, etc.” Since the
intrinsic mechanisms of SEF and the other two are quite
different, we will not discuss them in this review. The discovery
of SERS stems from the unprecedentedly intense Raman spectra
of molecules adsorbed on specially prepared roughened silver
electrodes, as demonstrated by Fleischmann et al. in 1974.*°
This stronger-than-expected spectrum was further investigated
and carefully calculated as a million-fold enhancement by Van
Duyne et al. in 1977 and then it was dubbed the SERS effect."*
Serval years later (in 1980), a similar phenomenon in infrared
spectroscopy was observed by Hartstein et al. using films of
randomly distributed silver nanoparticles in the attenuated-
total-reflection (ATR) setup,'? which is known as SEIRA. Since
the underlying mechanism of SEIRA and SERS is the interaction
between molecules and plasmonic resonance, their excitation is
geometry-dependent and their substrate dimensions are on the
micro-/nano scale. Along with the rapid development of nano-
fabrication and nano-synthesis techniques in recent years,
SEIRA and SERS technologies have advanced rapidly and
various types of substrates and applications were demonstrated,
such as single-molecule (SM) SERS," Tip-Enhanced Raman
Spectroscopy (TERS)," scattering-type scanning near-field
optical microscope (s-SNOM)," shell-isolated nanoparticle-
enhanced Raman spectroscopy (SHINERS),” resonant SEIRA,*
graphene-based SEIRA,”” and more. Nonetheless, their
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technical limitations have become increasingly prominent in
the process of technological evolution and application.

First of all, it is challenging and time-consuming to deal with
the huge volumes of spectral data in many applications such as
the detection of multiple biomarkers and viruses and the
monitoring of biological responses in multiple processes.
Especially, the volume of spectral data is inevitably ever-
increasing with the development of sophisticated SERS/SEIRA-
based applications.® Furthermore, the processing of each set
of spectral data is also complex and time-consuming, which
generally includes normalization, baseline calibration, and
feature signal extraction. Another issue for SERS and SEIRA is
the spectral overlapping of various molecules, which greatly
limits the application scope of SERS and SEIRA. For instance,
almost all kinds of protein molecules suffer from IR spectral
overlapping between 1600 and 1700 cm™ ', where the amide I
and amide II vibration bands are located (proteins are special
types of amides)."® Third, anomalies and artifacts are critical
challenges for SERS and SEIRA, which restricts SERS and SEIRA
to low accuracy, poor stability and reliability. Factors that cause
anomalies and artifacts are various, ranging from instrumental
effects, sample effects, to contamination in sampling proce-
dures.” More specifically, the instrumental effects include
shifts in the wavenumber scale, multi-passing errors, detector
effects, noise effects, dark noise, etc. The sample effects contain
sample heating, fluorescence interference in Raman spectra,
and matrix absorption. The contamination in sampling proce-
dures includes ambient lighting, air, sample support surfaces,
sample containers, and sample movement. Finally, the manual
design of surface-enhanced spectroscopy substrates is time-
consuming and inefficient and various analytes require
customized structure designs to ensure the matching of
molecular vibrations and plasmonic resonances, which is
particularly prominent in SEIRA spectroscopy.” Therefore, the
automatic design of substrates is highly desirable and helps to
facilitate the practical application of the technology. In general,
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Fig.1 Development path of Al-augmented surface-enhanced Raman and infrared spectroscopy. The common SERS substrate is nanoparticles
with dimensions ranging from tens to hundreds of nanometers® and the common SEIRA substrate is nanoantennas with micro-level dimensions.
SEIRA and SERS are widely used in biochemical and energy fields. SERS: Surface-Enhanced Raman Scattering; SEIRA: surface-enhanced infrared
absorption; SM SERS: single-molecule SERS; s-SNOM: scattering-type scanning near-field optical microscope; TERS: tip-enhanced Raman
spectroscopy; PCA: principal component analysis; DFA: deterministic finite automaton; SVM: support vector machine; ANN: artificial neural
network; CNN: convolutional neural network; CFNN: cascade forward neural network; HCA: hierarchical cluster analysis. Reproduced with

permission.®* Copyright 2020 Royal Society of Chemistry.

in response to the above-mentioned bottlenecks, researchers
are looking for breakthroughs in other aspects.

A potential solution to the bottleneck is an algorithm anal-
ysis technique, which was widely employed in early chemo-
metrics.”* Specifically, it is used to analyze and mine chemical
data and to design optimal experiments or choose measure-
ment procedures. The well-known algorithms include principal
component analysis (PCA), principal component regression
(PCR), multiple linear regression (MLR), linear discriminant
analysis (LDA), and more.?** However, the implementation of
these algorithms requires the support of high-performance
computing. Therefore, the addressing of these issues can not
only rely on algorithms, but also requires the assistance of
computers. Artificial intelligence (AI) is a part of computer
science that tries to enable machines to perform tasks that
typically require human intelligence. It utilizes the computing
power of machines and intelligent algorithms to free people
from complicated data analysis.>* Therefore, AI could provide
novel strategies for overcoming the challenges faced by surface-
enhanced spectroscopy, which also makes common SEIRA and
SERS intelligent tools and analysis platforms. One of the basic
requirements for Al is learning, and it is generally agreed by
most researchers that there is no Al without learning.*® There-
fore, machine learning (ML) is one of the most rapidly devel-
oping and significant subfields of Al research.”*** At the very
beginning of ML development (1950s-1960s), there are three

540 | Nanoscale Adv, 2023, 5, 538-570

major branches, that is, symbolic learning proposed by Hunt
et al., statistical methods by Nilsson, and neural networks by
Rosenblatt.** Nowadays, these branches develop advanced
methods and can be divided into four categories, that is, clas-
sification, regression, clustering, and dimensionality
reduction.**** The algorithms for these branches include
support vector machine (SVM), k-nearest neighbor (kNN), deci-
sion tree (DT), convolutional neural network (CNN), k-means,
PCA, etc.*° These algorithms have been well employed in
SEIRA and SERS. The development path of Al-augmented
surface-enhanced spectroscopy is shown in Fig. 1.°**° During
the exploration, the researchers have demonstrated many
advantages of ML-augmented SEIRA and SERS over conven-
tional approaches. ML offers the inimitable possibility of
solving pressing challenges in the field of surface-enhanced
spectroscopy and is receiving increasing attention.

As noted above, although ML and surface-enhanced spec-
troscopy are complementary in terms of technical characteris-
tics, ML-augmented SEIRA and SERS are still in their infancy
and their efficient combination is challenging. The landmark
work of many researchers has greatly advanced the field, but
their technical approaches are diverse and their perspectives are
somewhat distinct. Therefore, the purpose of this review is to
summarize some of the masterpieces in the technological
evolution and to provide a timely discussion and perspectives of
ML-augmented SEIRA and SERS and their applications in

© 2023 The Author(s). Published by the Royal Society of Chemistry
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molecular diagnostics, the most representative and active field
according to our literature survey. Firstly, we introduce the
concept of ML-augmented surface-enhanced spectroscopy and
discuss the benefit of ML for SEIRA and SERS. Then, we present
the development and application of ML-augmented SEIRA and
SERS from the perspective of substrate design, data processing,
and decision-making. Finally, we conclude and look ahead to
the future of advanced technologies.

2. Concept of machine learning
enhancing SERS and SEIRA

2.1 Benefits of machine learning for SERS and SEIRA

The principles of SERS and SEIRA include electromagnetic field
enhancement and chemical effect.®” The underlying mecha-
nisms of electromagnetic field enhancement are mainly about
the interaction of molecules and plasmons excited in a SERS/
SEIRA substrate.®**® The detailed theoretically analysis of
SERS and SEIRA can be found in Note S1 (ESIt). Fig. 2a-d is the
schematic of electromagnetic field enhancement for SERS and
SEIRA. Another mechanism for SERS and SEIRA is the chemical
effect. It refers to contributions that are associated with the
transfer of electrons between adsorbed molecules and the SERS/
SEIRA substrate. It can be achieved by electron transfer in the
ground or excited states of the molecule-metal system. The
commonly used SERS substrates include anisotropic nano-
particles, core-shell nanoparticles, single-nanoparticle dimers,
self-assembled nanoparticles, nanostructure based on hole-
mask colloidal lithography, nanopillars, nanostructured
dielectrics and hybrids, and so on.*”> The SEIRA substrates are
sub-wavelength nanoantennas or metamaterials which are
artificial sub-wavelength structures with extraordinary physical
properties distinct from the intrinsic properties of naturally
available materials.”*® The nanofabrication technologies for
preparing SEIRA/SERS substrates include chemical preparation
methods, photolithography, electron beam lithography,
magnetron sputtering, electron beam evaporation, and
more.***” The widely used theory for modeling SERS/SEIRA
includes perturbation theory,"® temporal coupled-mode
theory,'**° coupled harmonic oscillator theory,"* and so on.
As mentioned earlier, machine learning is complementary to
SERS/SEIRA and offers unparalleled possibilities for solving
pressing challenges related to spectral artifacts, overlapping,
and huge volumes of spectral data (Fig. 2e). Based on the
current reported work, the benefits of machine learning for
SERS and SEIRA can be summarized as follows.*>'1>7123
Machine learning algorithms enable the automated design
of SERS/SEIRA substrates to avoid time-consuming and onerous
design processes. Taking SEIRA's antenna design as an
example,™* its first step is to analyze the infrared spectrum of
the analyte molecule and obtain the position of the molecular
vibration. Then, an appropriate antenna structure is chosen to
excite plasmonic resonances that match the molecular vibra-
tional frequencies. There is a lot of repetitive work involved
here. First, the selection of the structural shape is a critical and
continuous optimization process. It requires designers to utilize

© 2023 The Author(s). Published by the Royal Society of Chemistry
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simulation software (such as FDTD solutions) to compare the
figures of merit of different shapes, such as sensitivity,
enhancement factor, bandwidth, and so on. While design
experience can reduce the number of iterations in the process, it
could lead to design deviations due to personnel differences.
Another iterative work at this stage is to match antenna reso-
nances and molecular vibrations via the tuning of antenna
dimensions, since zero detuning allows for more efficient
molecule-plasmon coupling. Additionally, a multiband design
is necessary to enhance SEIRA's ability to identify molecules if
the detection target is a specific molecule in the mixture.
Furthermore, the limitations of nanofabrication are also issues
to be considered at the device design stage. A good design
considering all of these factors takes a lot of effort and time.
Fortunately, these time-consuming and repetitive tasks are easy
and efficient for ML-assisted design systems. For example,
genetic algorithms were used to automatically generate highly
sensitive antenna structures that match well with molecular
peaks.'”® Furthermore, the number of iterations and machine
learning efficiency can be improved by employing the physical
constraints of causality to directly learn the response functions
of antennas.” In common deep neural networks, the function
in the hidden layers to output predictions is unknown like
a black box. It works but it is unknown how or why it works. By
incorporating physical knowledge into hidden layers, the
network is able to learn the physical relationships between the
input physical parameters. Automatic learning of the under-
lying physics can improve the accuracy of prediction results.

Machine learning algorithm also helps SERS/SEIRA reduce
anomalies and artifacts. As mentioned earlier, anomalies and
artifacts are common in SERS/SEIRA, mainly caused by instru-
mental effects, sample effects, to contamination in sampling
procedures. The presence of anomalies and artifacts limits
SERS/SEIRA to high noise, low accuracy and resolution, poor
stability and reliability. Machine learning can address these
issues in the following ways."*®*'** Well-trained ML model can
identify and reduce noise by the difference with the sample
signal in changing frequency and spectral location. More
specifically, the change time of the sample is typically on the
second or even minute level, while some noise signals such as
background noise from the instrument are usually high
frequency. The position of the signal of some contaminants in
the substrate in the spectrum could also be distinct from the
sample. Based on these differences, a well-trained ML model
can distinguish and attenuate noise. Additionally, ML can
identify the “right” signals and correct anomalies to improve
the accuracy, resolution, and stability of SERS/SEIRA. More
specifically, during the training of the ML model, the correct
signal is used and “remembered” by the model via extracting
features.”*® When anomalous and artifact signals are fed into
a trained model, its features will be outside the normal range.
Models can ignore or even correct anomalies and artifacts
depending on what they were trained on."*' These improve-
ments are greatly crucial for SERS/SEIRA when it comes to on-
site applications.

Machine learning algorithms are beneficial for solving
problems about spectral overlap in SERS/SEIRA. Spectral

Nanoscale Adv., 2023, 5, 538-570 | 541
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Fig. 2 Concept of machine learning-enhanced SERS and SEIRA. (a) Conventional Raman scattering S,, and Raman spectrum with incident
radiation R,,,. (b) Surface-enhanced Raman scattering using nanoparticle substrates. Enhanced local field (EL,,) is achieved by utilizing the
localized surface plasmon polariton (LSP) of nanoparticles, and then the excitation and radiation efficiency of Raman scattering is improved by
the interaction with LSP, which is expressed as ES,,. (c) Conventional IR absorption and spectrum A, of molecules with incident IR radiation /,,

(d) Surface-enhanced infrared absorption. Enhanced absorption of molecules (EA,, ) is realized by the near-field coupling of LSP and molecules
(e) Challenges and issues of SEIRA and SERS. (f) Model categories of machine learning for SERS and SEIRA. (g) Relationship between Al, ML, and

DL. (h) Benefits of ML brought to SERS and SEIRA.

overlap of analytes is a common challenge for spectral detection
methods, and for SERS and SEIRA, it impairs the identification
capability and limits the scope of application. Fortunately, the
spectra of different analytes partially overlap, which presents an
opportunity for ML to address this issue."”**® By extracting the
complete spectral signature of an analyte, ML can quickly and
automatically identify and classify analytes. For example,
nucleotides and sucrose are spectrally overlapping around
1000-1200 cm ' due to their C-O stretching vibrations.
However, there is no spectral overlap around 1400-1600 cm ™.
Nucleotides are infrared active in this region due to the C-N

542 | Nanoscale Adv, 2023, 5, 538-570

stretching vibration, while sucrose lacks it. Therefore, well-
trained ML algorithms taking advantage of this distinction
can accurately identify and classify them in mixed analytes.>®
Finally, machine learning algorithms assist SERS and SEIRA
to analyze and process data quickly, directly, and automatically,
and relieve the pressure of massive spectral data through
dimensionality reduction. In the real-time monitoring applica-
tion of SERS and SEIRA, the output data is three-dimensional
information, including spectral intensity, wavelength, and
time. Additionally, if multiple analytes are targeted, the infor-
mation becomes four-dimensional (category information

© 2023 The Author(s). Published by the Royal Society of Chemistry
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added).”®'*® All these factors lead to the generation of a huge
amount of spectral data. Fast and accurate analysis and pro-
cessing of these data is a major challenge for SERS and SEIRA.
Some ML algorithms such as PCR can reduce the dimension of
information on the premise of preserving information features,
thereby reducing the amount of data, decreasing data
complexity, simplifying data processing, and quickly outputting
test results.’®* It can be foreseen that the increase in the amount
of data is inevitable due to the technological development of
SERS and SEIRA and the emergence of new applications.
Therefore, the dimensionality reduction of spectral data by
using ML algorithms is of great help to SERS and SEIRA.

2.2 General process for combining ML and SEIRA/SERS

Machine learning is a powerful analytical tool that is widely
used in the Internet of things (IoT),"**'** wearable sensors,*****
human-machine interaction (HMI),"*** and smart
sensing.'®*1%170181 According to the function of the algorithm
and the problem it solves, machine learning can be divided into
classification, regression, clustering, and dimensionality
reduction, as shown in Fig. 2f. From the perspective of learning
methods, machine learning is inspired by human learning
mechanisms, and can be divided into supervised, unsupervised,
and semi-supervised learning (Fig. 3a). Supervised learning is
the most common way."'®® Supervised ML algorithms first train
a model with known labeled or annotated input data (learning
set) and responses (output), and then use the trained model to
predict the response on new input data. This approach provides
the strictest framework and strongest guarantees. Due to the
relevance of the learning set and new data, the accuracy of the
response prediction of the model in supervised learning
depends on the training of the learning set. Common super-
vised ML algorithms include linear or logistic regression, deci-
sion trees and random forests, support vector machines,
convolutional neural networks, and recurrent neural networks.
When data is not annotated or labelled, the ML is called
unsupervised learning. Most unsupervised tasks are related to
probability density estimation. Representative unsupervised ML
algorithms include autoencoders, dimensionality reduction
(e.g., principal component analysis), and clustering (e.g., k-
means)."®® So far, the use of unsupervised ML has been more
limited than supervised learning. Semi-supervised ML is
a hybrid configuration between supervised and unsupervised."®
In semi-supervised ML, the expected output of the learning set
is partially known. One representative case is that semi-
supervised ML is used to cluster and then label the data space
to assist a supervised algorithm in finding the decision
boundary.’®® Some ML algorithms that are relevant to SERS/
SEIRA and have great research potential are listed in Note S2
(ESTH).

The process of combining supervised and unsupervised ML
algorithms with SEIRA/SERS is different. Supervised learning
requires supervision to train a model, and unsupervised
learning finds patterns in data, as shown in Fig. 3b, where the
model training presented in the dashed box is performed under
supervision. The top priority for the whole process is to select an

© 2023 The Author(s). Published by the Royal Society of Chemistry
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appropriate ML algorithm based on the task objective. Then,
the preprocessing of raw spectral data is required for both
supervised and unsupervised ML algorithms.™ Since baseline
wander is a common problem in analysis with IR and Raman
spectroscopy, baseline correction is the first step in the pre-
processing of raw spectral data. For infrared spectroscopy, the
common method includes polynomial baseline correction,
adaptive smoothness parameter penalized least squares
method,"° Lorentz fitting, and constrained base-line correction
based on a peak shift.*** In terms of Raman spectroscopy, the
Savitsky-Golay-smoothing method is used to correct the base-
line.” Then, by sequentially subtracting the signal from the
baseline and normalizing, a valid signal containing the target
molecular features is obtained, which is used as the input to the
ML algorithm.” Normalization is necessary because it can
compare the errors of the models and also reduce the impact of
abnormal samples on the training process. In many cases, PCA
is also used for noise reduction and dimensionality reduction
during preprocessing.' It is worth noting that some informa-
tive features in the original data may be accidently removed
during the preprocessing. Therefore, it is necessary to pay
attention to the change of features in preprocessing. The
learning of the ML model consists of three stages, namely
training, validation, and testing. The datasets corresponding to
the three stages are training set, validation set, and test set,
respectively. Therefore, the raw data needs to be divided into
training set, validation set, and test set in preprocessing, and
the ratio could be 60%, 20%, and 20%."** The training dataset is
the example dataset used during the learning process to find the
best hyperparameters for the model. The validation set is an
example dataset used to tune the hyperparameters of the model
throughout the model development process, adding a feedback
loop to the training of the model. The test dataset is a separate
dataset from the training and validation dataset and is used to
evaluate the final model chosen during the validation process.
Since the signal to the target is obtained from the same SERS/
SEIRA platform, the test dataset follows the same probability
distribution as the training dataset.

In neural network models, weight initialization is a crucial
design choice.™” Its purpose is to avoid layer activation outputs
exploding or vanishing during the forward pass through the
models. Common initialization methods include constant
initialization and random initialization.'”® For constant initial-
ization, all weights in the neural network are initialized to
a constant value C (typically 0). While constant initialization is
simple, it is nearly impossible to break activation symmetry,
making some models inefficient to learn. Random initialization
can break the symmetry and let each neuron learn a different
function of its input, but high or low weights could lead to
exploding or vanishing gradients. Some new initialization
techniques, such as He"™ and Xavier™ initialization, are
proposed to achieve a good starting point for initialization. After
weight initialization, hyperparameter tuning becomes a critical
task for the ML model.” Common hyperparameter types
include (i) x in k-NN, (ii) regularization constant, kernel type,
and constants in SVMs, and (iii) number of layers, number of
units per layer, and regularization in a neural network. To find

Nanoscale Adv., 2023, 5, 538-570 | 543


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2na00608a

Open Access Article. Published on 07 névember 2022. Downloaded on 7.8.2024 16:14:28.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

View Article Online

Nanoscale Advances Review
a Supervised learning Semi-supervised learning Unsupervised learning
° A/ A A A
@ Known label| ©® o® o ‘'mm Al LY m ’/‘A’:‘ 4
O Ooa’ A 1, A 1Ay A A
o o%0 % "n U VESN YV YR
£ \
H Known label Il ¢ 0....,’ 3 .. = A, A/, N & \AAAA IA’A A A
...’-I/ W A ,I A \‘_A,/ ’/ :AA Al,
0¢®e /'m _ ® A qa/ A Ay A A ALA S
A Unknown label g o -l . A s lmha a A

Training raw

Data
preprocessing

Input raw
spectral data

Confusion Matrix

C A é d 15 a o 3 71.4% e iy f_
— Low learning rate 9255 | 40.5% 81% 00% 81% 28.6%
—— Good learning rate
0 1 0 0 100%
— Test set eS| oo% | 27% | oo% | oo% | oo% 2
g 2 — Stage |, Il
$ S shrubs 1 1 5 1 62.5% ? 05 I (AUC: 0.912)
o g_ 27% 27% 135% 27% 37.5% $ — Stag el
- o 3 (AUC: 0.910)
Overfitting 0 ) o 7 100%
! ees|  po% 0.0% 00% | 189% | oo% —— Stage IA
(AUC: 0.844)
93.8% 20.0% 100% 63.6% o ¥ !
9 6.3% 80.0% 0.0% 36.4% O 0 5 1
» b
Epoch 3 : z 3 1- Specificity

e
Target Class

Fig. 3 Machine learning algorithm. (a) Schematic diagram of the three classic learning frameworks. (b) General process of ML-based SERS/SEIRA
data training and testing. (c) Loss curve during the training process. The loss of the test set increases when overfitting, indicating that fitting
should be stopped within the dashed line. (d) Representation of a confusion matrix showing the performance of the classification models for the
test data.*®> Copyright 2019 MDPI. (e) ROC curves and corresponding AUC values.**¢ Copyright 2020 American Chemical Society.

the optimal value for hyperparameters, the tuning methods
such as grid search, random search, and Bayesian optimization
could be implemented. After hyperparameter tuning, cross-
validation is often utilized to estimate the prediction perfor-
mance of a model with the hyperparameter. An appropriate
hyperparameter helps avoid under-fitting (high training and
test errors) and overfitting (low training error but high test
error). Under-fitting and overfitting can be observed in a loss
curve which reflects the model error and answers the question

544 | Nanoscale Adv., 2023, 5, 538-570

“how bad our model is doing”.*** As shown in Fig. 3c, the loss
decreases over time as the model learns, and the lower the loss,
the better the model performance. Notably, it means overfitting
starts when the loss on the test/validation set transitions from
decreasing to increasing.*®® The performance of the classifica-
tion models for the test data can be displayed in a confusion
matrix, as shown in Fig. 3d. It is represented in the form of
a matrix and divided into two dimensions, the actual and pre-
dicted results along with the total number of predictions.*** It

© 2023 The Author(s). Published by the Royal Society of Chemistry
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shows the error of the model performance, hence also called the
error matrix. Another representative evaluation parameter is the
receiver operating characteristics (ROC) curve, which reveals the
performance of the classification model across all classification
thresholds, as shown in Fig. 3e. The area under the ROC curve is
called AUC. AUC provides an aggregated measure of perfor-
mance across all possible classification thresholds and repre-
sents the trade-off between sensitivity and specificity.”® In
addition to the confusion matrix, ROC and AUC, there are many
evaluation parameters, such as accuracy, precision, recall,
specificity, f1 score, and precision-recall curve.?***® The key
metrics that are commonly used for evaluating and reporting
the data processing performance include mean squared error
(MSE), root mean squared error (RMSE), mean absolute error
(MAE), and average standard deviation of the mean (SDM). MSE

. 1

is computed as MSE = - Z (Y; — Y;)%, where Y and Y are the
i1

measured and predicted values, respectively. RMSE is

computed as RMSE = v/RMS. MAE is calculated as the sum of

) 1 & .
absolute errors, that is, MAE = ” Z le;|, where e; is the abso-
=1

lute error. SDM is expressed mathematically as

1
SDM = \/1/n 3 (X; — Xp)?, where Xy, = > Xi. MSE, RMSE,

and MAE are often used to evaluate the difference between
measured and predicted results. After introducing the benefits,
algorithm types, and general process of ML-based SERS/SEIRA,
we will explain and demonstrate it in the later section by
reviewing the detailed application of machine learning in SEIRA
from the perspective of substrate design, data processing, and
decision-making.

3. Machine learning-enhanced
substrate design of SERS and SEIRA

As discussed in previous chapters, machine learning algorithms
enable the automated design of SERS/SEIRA substrates, thereby
avoiding time-consuming and tedious design processes. Many
efforts have been invested in it.>*’>** In 2018, Jafar-Zanjani and
co-workers demonstrated that an adaptive GA simplifies and
automates the design of increasingly complex SEIRA
substrates.”'® To achieve algorithmic manipulation of substrate
patterns, digitized binary elements are proposed as alternative
high-dimensional building blocks for complex customizable
multifunctional applications, as shown in Fig. 4a-i. Binary-
pattern antennas provide more degrees of freedom for
complex designs targeting multi-functional design goals under
the support of powerful computing resources. GAs are inher-
ently parallel algorithms capable of speeding up optimization
tasks by a factor close to the number of parallel workers.
Therefore, it has advantages in dealing with multi-dimensional
function domains and discrete solution domain problems such
as binary-pattern antenna design. For conventional GA, the
weights of different objective functions are constant throughout
the optimization process, and important objectives have higher
priority and weight. However, the small weights given to less

© 2023 The Author(s). Published by the Royal Society of Chemistry
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important objectives could deviations in the optimization and
very slow convergence. The adaptive GA they proposed could
overcome this problem by only considering the non-zero cost of
high-priority objectives and updating the objective update
criteria for the objective function in the optimization process
(Fig. 4a-ii). As a result, the spectrum of the binary-pattern
antennas automatically designed by adaptive GA is in good
agreement with the target spectrum (Fig. 4a-iii).

Of course, binary-pattern antennas are not the solution that
all designers want. In most cases, with the antenna pattern
already selected, researchers only need algorithms to optimize
the performance of the antenna to high-level goals. In 2019,
Nadell and co-workers demonstrated the use of deep neural
networks (DNN) to model complex all-dielectric antennas and
achieve performance optimization, as shown in Fig. 4b-i.>"” A
DNN is a kind of ANN with multiple layers between the input
layer and the output layer. It finds the correct mathematical
manipulation of whether the input and output are linear or non-
linear. The geometric parameters x of the antenna such as
radius, height along with ratios were used as the input layer of
the DNN, and the corresponding spectra S was set as the
predictions of the output layer in the training process. While
DNNs could build hidden layers by exploiting additional
network parameters during training, it increased the difficulty
of optimization and led to poorer generalization. Taking
knowledge of the underlying physics as input and pre-learning
these quantities during training could improve network
performance and reduce the difficulty of optimization (Fig. 4b-
ii). The agreement of the prediction spectrum of the model with
the target spectrum demonstrated the power of the DNN in the
optimization of SEIRA substrate design. The MSE for the cross-
validation set after training can be used to evaluate the
prediction accuracy of the model (Fig. 4b-iii).

When considering coupled molecules in substrate design,
machine learning is required to model the vibrational behavior
of molecules and optimize the enhancement performance of
the SEIRA signal. In 2021, Li and co-workers utilized a GA-based
ML to automatically design a sensitive SEIRA substrate for
COVID-19 (severe acute respiratory syndrome coronavirus 2)
detection, as shown in Fig. 4c-i."*® Currently, the commercial-
ized COVID-19 diagnostic methods include
transcription-polymerase chain reaction (RT-PCR) test, sero-
logical test or immunoassay, and chest computed tomography
(CT). These methods suffer from their respective disadvantages,
such as low sensitivity for CT and time-consuming for RT-PCR.
Plasmonic methods with the potential for point-of-care (POC)
diagnostics are highly desirable. The first step for modeling the
vibrational behavior of molecules was the extraction of molec-
ular complex permittivity from its infrared spectrum. Then, the
optimal solution, with high sensitivity, zero detuning of plas-
monic resonance and molecular vibration, high enhancement
factor, and so on, is rapidly found from multi-design parameter
problems by exploiting the excellent parallel capabilities of GA
(Fig. 4c-ii). Furthermore, the mutation of COVID-19, which
poses a great challenge to common diagnostic methods, can be
easily distinguished by SEIRA methods by comparing the
intensity and frequency of peaks of the virus. Overall, the use of
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Machine learning-enhanced substrate design. (a) Schematic view of SEIRA substrate designed by using an adaptive genetic algorithm.?

(i): 3D view of the substrate. (ii): Design process using GA. (iii): Comparison of the predicted and simulated spectra. Copyright 2018 Springer
Nature Limited. (b) Illustration of the all-dielectric SEIRA substrate designed by using neural network architecture.? (i): 3D view of the substrate.

(ii): Design process using neural network algorithm. (iii): MSE error in

cross-validation. Copyright 2019 Optical Society of America. (c) SEIRA

substrate design using a genetic algorithm for the detection of COVID-19.2¢ (i): 3D view of the substrate. (ii): Design process. Copyright 2021

American Chemical Society.

machine learning in the design of SEIRA antennas is booming,
while its use in SERS substrate design is rare. Because antennas
for SEIRA are generally on the micrometer scale, wherein
antenna patterns with various design parameters can be real-
ized by using top-down fabrication-based photolithography and
direct writing technique. That is, the multi-parameter complex
design of antennas for SEIRA requires the help of powerful
technical resources of machine learning. In terms of SERS, its
signals are large and complex in many applications. Studies
employing ML to aid SERS process data and make decisions are
more common.

Systematic inverse design based on machine learning can
accelerate the design of SEIRA/SERS substrates to achieve
tailored optical responses. The underlying idea of the ML-
assisted reverse design is to train an ML model by learning
the relationship between physical responses and structures,
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and then provide structural patterns based on the desired
physical responses. A well-trained model can remove the need
of computationally intensive numerical simulations from the
pattern. Fig. 5