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ce models for polymer upcycling:
signatures of the mechanism in the molecular
weight evolution

Ryan Yappert a and Baron Peters *ab

Chemical and catalytic upcycling processes could help realize a circular plastics economy, but current

models for testing mechanistic hypotheses and designing catalysts remain primitive. This work shows

how proposed catalytic mechanisms can be incorporated into population balance models to predict the

time evolution of molecular weight distributions. We develop models for homogeneous and

heterogeneous catalysts, including catalysts that cut at chain ends and catalysts that cut at random

locations. For heterogeneous catalysts, we illustrate the effect of adsorption constants that depend on

polymer chain length. We discuss ongoing efforts and challenges in measuring and modeling the time

evolving molecular weight distributions in polymer upcycling processes.
1. Introduction

Millions of tons of plastic are produced each year. Most is dis-
carded in landlls, lost to the natural environment, or incin-
erated.1 Polymer upcycling efforts aim to transform plastics into
value-added products.2 In its broadest denition, polymer
upcycling includes a variety of strategies: producing novel
composites,3 use of functionalization4 and compatibilizers,5

conversion to carbon materials (nanosheets, nanotubes, etc.),6

and selective degradation to fuels, lubricants, etc.7 For this
work, we focus primarily on upcycling via selective catalytic
degradation.

Before polymer upcycling technologies can be implemented,
challenges in plastics collection and sorting, process design,
and catalyst development must be addressed.6,8–11 Catalyst
development for polymer upcycling is complicated by some
particularly unique challenges.12–16 First, the starting reactants
in polymer upcycling are a jumble of polymers with many
different molecular weights. Second, the process involves
thousands of intermediates all being consumed and generated
en route to products. Third, if things go badly, the process may
yieldmultiphase mixtures containing hundreds or thousands of
different products.

Because so many species are involved, we cannot use the
familiar “initial rates” or “integrated rate law” analyses for small
molecule reactions.17 Moreover, experiments cannot monitor
the rates at which each product is formed. They can monitor
time-evolving molecular weight distributions (MWDs) by
iversity of Illinois at Urbana-Champaign,

linois at Urbana-Champaign, 61801, USA

, 24084–24095
sampling reactions at various time points, e.g. with chromato-
graphic or spectrographic methods.13,18–20

Many experimental studies have reported the number
average and/or weight-average molecular weight. Across
multiple studies, with entirely different catalysts, polymers, and
reaction conditions, the results show a fast initial drop in
molecular weight with slower and slower decreases inmolecular
weight at long times.7,12,17,21 These results could be due to
catalyst deactivation or to length-dependent selectivity.21 Zhang
et al. provided a quantitative model to help explain these
results.12 In brief, cleavage of long polymers at early times
results in a massive reduction of molecular weight, but as
depolymerization proceeds there are more chains to cut and
each cut results in a smaller reduction of molecular weight. In
the model of Zhang et al., the rate of cutting was also affected by
product inhibition.12

Here we further simplify the model from Zhang et al.12 Let N0

be the initial number of molecules and let r(t) be the rate of
cleavage events per unit time. Each cleavage event increases the
number of molecules by one, and so the total mass is gradually
distributed across an increasing number of molecules. Using
only the denitions of the average molecular weightMN, with no
further assumptions, it can be shown that the number average
molecular weight declines with time (t) as22

MNðtÞ
MNð0Þ ¼

�
1þ 1

N0

ðt
0

r dt

��1
(1)

Eqn (1) holds regardless of how, which, or where polymers
are cleaved. The result is always an MN(t) vs. t curve with
approximately the same shape, whether chains are cut by
hydrogenolysis12,21,23,24 or tandem metathesis/chain isomeriza-
tion,7,18 longest chains rst or shortest chains rst,25 at the
This journal is © The Royal Society of Chemistry 2022
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chain ends26,27 or at random locations along the chain,28–30 etc. It
also applies to linear or branched polymers. In this sense, eqn
(1) is a universal feature of depolymerization. Eqn (1) also
provides a simple way to extract a cleavage rate (cuts per time)
from data, and (given the amount of catalyst) to obtain a quan-
titative catalyst activity, for example from r(t) divided by the
number of catalyst sites. Because of its generality, it enables
activity comparisons across different catalysts and different
polymer chemistries.

Despite the utility of eqn (1), the fact that all catalysts,
mechanisms, and polymers lead to a similar MN vs. t curve
limits its value as a tool for identifying the underlying mecha-
nism. Additional information, like weight-average molecular
weight vs. time data can be used to construct the polydispersity
as a function of time, but this has a similarly mechanism-
agnostic shape for similar reasons. Moreover, MW primarily
reects the longest chains and thus provides limited informa-
tion about small reaction products. Mechanistic studies require
more detailed models that can predict both the product distri-
bution and the entire MWD as a function of time.

The widely-used bottom-up strategy for modeling catalytic
processes starts from molecular mechanistic hypotheses, ab
initio calculations, microkinetic modeling, and ultimately
predicts the product formation kinetics, reaction orders, acti-
vation parameters, etc.31–33 Bottom-up models have successfully
predicted kinetics and MWDs in some polymerizations, and the
bottom-up strategy may also be successful for polymer
upcycling.34–36 However, polymer upcycling by a heterogeneous
catalyst involves polymer adsorption at sites, surfaces, or pores,
in conjunction with multistep reactions involving many rate
constants. With so many parameters to compute, errors in the
quantum chemistry, force elds, or adsorption models may
impair the predictions even if the hypothesized upcycling
mechanisms are correct.

An alternative approach is to construct phenomenological
kinetic models based on specic mechanistic hypotheses and
test them against experimental data.37–40 This can be done with
deterministic rate equations or kinetic Monte Carlo,41 cf. studies
of long-chain vs. short-chain selectivity and product distribu-
tions from selectivity for different cleavage locations.21,42–45 Note
that, even at the lab scale, experiments begin with upwards of
billions of chains. Therefore the stochastic simulation results (if
converged) should match the predictions of the corresponding
deterministic rate laws46 and (when they can be solved) the
deterministic models are more easily tted to quantitatively
extract rate parameters from experimental data.47

What types of deterministic kinetic models can predict
MWDs for depolymerization? Kinetic lumping models48,49

predict the rates at which groups or “lumps” are consumed and
generated, e.g. the reactants and products may be lumped into
gases, liquids, and wax fractions. Recent work by Wu et al.25

takes this direction.
Population balance equations (PBEs) go a step further, pre-

dicting the entire evolving MWD.39 This work shows how,
without specifying the mechanism at the most detailed level of
elementary steps, we can already categorize upcycling mecha-
nisms into a few “motifs” and construct the appropriate PBE.
This journal is © The Royal Society of Chemistry 2022
For constructing population balance models, most catalytic
depolymerization processes will t into one of sixteen
categories.

� A catalyst may be homogeneous or heterogeneous.21,50

� It may operate processively or non-processively.51,52

� It may cleave chains near their ends or at random locations
along the chain.13,21

� The polymers themselves may be dissolved in a solvent or
a liquid melt with no solvent.44,45

Each category gives a different population balance model,
different solutions for the molecular weight evolution in time,
and a different interpretation for the kinetic parameters. Each
upcycling strategy implies a specic type of PBE with solutions
that predict characteristic “signatures” of the mechanistic
motif. Our goal is to discover easily identied signatures that
can help to identify the underlying mechanism.

In constructing the population balance model, note that
polymer llers and even chemically inert particles in a composite
may add new scission pathways. For example, they may change
the importance of mass transfer and/or increase levels of shear
induced mechanical chain scission. In some cases, the observed
behavior is a combination of multiple mechanisms. Some
processes employ “tandem” catalysts to combine advantages of
the individual catalyst mechanism categories.7,18,45,53 We restrict
ourselves here to ideal cases with single mechanisms.

In the following sections, we illustrate the predicted molec-
ular weight evolution for the proposed mechanisms in several
upcycling strategies. Each calculation starts from a lognormal
MWD with MN(0) = 3.0 kDa and MW(0) = 3.3 kDa. First, in
Section 2, we dene a dimensionless time scale that helps to
place the molecular weight evolution on a commensurate time
scale regardless of the mechanism, the rate parameters, and
their absolute sizes.
2. Activity comparisons

The mechanisms we discuss in this work span a range of
conditions, catalyst concentrations, and reaction orders.
Accordingly, the absolute time t is oen inconvenient for
comparing them. As previously noted by Helfferich, there is no
universal way to nondimensionalize the rate equations that
emerge from different mechanisms.54 To allow comparison
between mechanisms aer a similar number of cleavage events,
we invoke a dimensionless “cut time” s. s is the equivalent of
the integral in eqn (1), andmay be alternatively written based on
the number of newly created molecules in the population:

sðtÞ ¼ 1

N0

ðt
0

r dt

¼ 1

N0

ðN
1

ðrðn; tÞ � rðn; 0ÞÞdn
(2)

where r(n,t) is the continuous concentration of polymers of
length n, i.e. the count per unit volume of chains with length
between n and n + dn. All models considered in this work
exclude recombination, so each cleavage reaction creates one
new chain.
J. Mater. Chem. A, 2022, 10, 24084–24095 | 24085
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3. Homogeneous mechanisms

We begin our discussion of mechanistic motifs for homoge-
neous reactions (catalytic or not) of the form

Cn /
k
Cn�m þ Cm (3)

where Cn is an arbitrary polymer with n repeat units and k is the
pseudo-elementary rate constant. Models for the kinetics of
these reactions have been used to describe radical depolymer-
ization,55 thermal degradation,40,56 and radiation-induced
degradation,57 among others.25,58,59
Fig. 2 Time evolution of the MWD for homogeneous random
cleavage. Each line denotes the MWD at a point in rescaled time s, with
s = 0 (purple) the initial distribution. Lines are evenly spaced in s, with
Ds = 0.3.
3.1. Random cleavage

Random cleavage usually refers to any process in which all
bonds are equally likely to be cut, although nonuniform cases
have also been studied.60 An schematic of random cleavage for
a single starting chain is shown in Fig. 1. Examples of polymer
upcycling strategies based on this method include an ami-
nolysis process for polyesters61 and homogeneous cross alkane
metathesis schemes based on work of Goldman and
Brookhart.62

A kinetic model may be constructed by considering polymer
length as a discrete or continuous quantity. Discrete models are
(in principle) more accurate because the number of monomers
is countable. However, continuous models tend to be more
mathematically convenient for large chains, so we focus on
models with a continuous chain length here.63 We borrow the
continuous formulation of Staggs to account for cleavage
steps:64

drðn; tÞ
dt

¼ � knrðn; tÞ þ 2k

ðN
n

rðm; tÞdm (4)

Eqn (4) describes the change in r(n,t), i.e. the population of
chains of length n at time t, as n-mers are cut to form smaller
species and as larger chains are cut to form n-mers. As an n-mer
possesses approximately n bonds that can break independently,
the rst term is weighted by that length. The integrand is like-
wise weighted by m, but the probability of cutting an m-mer to
an n-mer is 2m−1 dm. The overall timescale of the process is
determined by k, which in this case is an effective rst order rate
constant with units of cuts per time per bond.
Fig. 1 Illustrating homogeneous random cleavage. Circles represent
monomers in a large polymer. Long chains are repeatedly broken into
smaller chains, with each cleavage site marked with a red X.

24086 | J. Mater. Chem. A, 2022, 10, 24084–24095
The simplicity of this model makes it amenable to analytic
and numerical solutions, and we direct the reader to the exist-
ing literature for a more detailed discussion of those solu-
tions.29,30,65,66 The time evolution for homogeneous random
cleavage is shown below in Fig. 2.

Homogeneous random cleavage manifests as a rising
plateau, particularly among small species that are not present in
the initial distribution. As depolymerization proceeds, the
plateau grows narrower due to the preferential cutting of the
longest chains, and taller, as further cuts increase the number
of small fragments.

Homogeneous random cleavage quickly generates all
possible chain lengths, from monomer to the largest initial
chain. This rapid accumulation of small chain lengths can
cause a rapid initial increase in the dispersity of the population,
as shown in Fig. 3.

As random cleavage quickly generates lengths that were not
part of the initial MWD, dispersity will rapidly increase. At later
stages, long chains will be depleted, and the dispersity will
Fig. 3 Plot of number average chain length (MN, solid blue), weight
average chain length (MW, dashed blue), and dispersity (Đ = MW/MN,
dotted red) for homogeneous random cleavage as shown in Fig. 2.

This journal is © The Royal Society of Chemistry 2022
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eventually decrease again. In principle, at innite time, all
bonds will be cleaved, and all polymers will be transformed to
monomer, with MN = MW = Đ = 1. An analysis of the moments
of the MWD for homogeneous random cleavage processes has
been given by McCoy and Madras.60
Fig. 5 Time evolution the MWD by homogeneous chain-end
cleavage. Monomer concentration is not shown to prevent distortion
of the vertical axis. Lines are evenly spaced in s, with Ds = 200.
3.2. Non-processive chain-end scission

These mechanisms remove a xed-size oligomer or monomer
from an end of a polymer chain. Such behavior is common in
biological systems, e.g. b-amylase depolymerizes large, poly-
meric starches (blood sugar) into glucose by hydrolyzing
glucosidic linkages.67 An example upcycling process based on
this mechanism is the tandem chain migration + olen
metathesis scheme proposed by Guironnet and Peters.18 An
illustration of this mechanistic motif is shown in Fig. 4.

The discrete nature of the cuts make fully continuous
formulations difficult, and in most cases the smallest species
must be explicitly modeled.63,68 Zeman and Amundson devel-
oped tools to model chain length as a continuous variable, with
a simple pseudo-elementary rate constant k, and with the
monomer concentration separately determined by conservation
of mass.18,69 The balance equation at the continuum population
level for chain-end cleavage in homogeneous solution is:26

vrðn; tÞ
vt

¼ k
XN
i¼1

1

i!

virðn; tÞ
vni

(5)

The required number of terms for the continuous treatment
to be valid depends on the smoothness and broadness of the
polymer distribution. Typically, the second derivative term (i =
2) is sufficient.26 Because cuts are always made at the end of
a chain, the rate constant k is rst order in chains rather than
bonds. Guironnet and Peters have shown how the appropriate
pseudo-elementary rate constant k can be derived from more
detailed kinetic schemes.18 The monomers and long chain
populations must both be considered when computing the
number and weight averages. The time evolution for a chain-
end scission process is shown in Fig. 5.

Chain-end scission results in a gradual broadening and
translation of theMWD towards lower chain lengths. The rate of
this broadening and translation depends on the initial width of
the MWD and the size of the fragment removed. Systems that
Fig. 4 Illustration of a chain-end cleavage process. Circles represent
monomers in a large polymer. With each cleavage reaction, marked by
a red X, a monomer is removed from the end of the chain.

This journal is © The Royal Society of Chemistry 2022
cleave variable length oligomers will give faster broadening
than systems that cleave the same fragment each time.18 When
viewed on a log n scale, this broadening does result in a rising
plateau like that of homogeneous random scission (Fig. 2).
However, the initial MWD gradually shis leward from chain-
end scission, while the initial MWD is decimated aer orders of
magnitude fewer random cleavage steps. In this sense, random
cleavage is more efficient at rapidly altering the MWD than
chain-end cleavage.

Unlike random cleavage, there is typically a clear demarca-
tion between volatile and nonvolatile products in chain-end
cleavage, particularly when the initial distribution is primarily
long polymer chains.70 An easy separation between products
and long polymers may have practical reaction engineering
advantages at the process design stage. However, it can create
difficulties for data analysis in bench-scale experiments. Dis-
carding the small molecule products when characterizing the
MWD will affect the results.70 Procedures that include vs.
exclude the very small fragments produced by chain-end scis-
sion can give very different trends in MN, MW, and Đ, as shown
in Fig. 6.

With the simplest cases of random and chain-end scission
discussed, it is important to note that many processes are in fact
combinations of the two.30,38,56,68,71–73 For example, in the
polysaccharide/amylase system, there are three classes of
enzymes that work together to depolymerize starches: a-
amylase catalyzes random cleavage, while b- and g-amylase
catalyze chain-end cleavage.74–76 The relative concentration and
activity of these amylases can dramatically alter the evolution of
the MWD.77,78 A single catalyst that targets bonds at random
may also have a signicant chain-end scission preference due to
different chemistries at chain ends.40
4. Heterogeneous mechanisms

We now focus on models for polymer upcycling by heteroge-
neous catalysts. Heterogeneous catalytic mechanisms introduce
additional theoretical difficulties. In particular, one must
J. Mater. Chem. A, 2022, 10, 24084–24095 | 24087
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Fig. 6 Plot of number average chain length (MN, solid blue), weight
average chain length (MW, dashed blue), and dispersity (Đ = MW/MN,
dotted red) for the population evolution in Fig. 2. Note the large
difference in dispersity scale between plots. (a) Small molecule prod-
ucts are not counted, and (b) small molecule products are counted
when calculating averages and dispersity.

Fig. 7 For a polymer melt in contact with a heterogeneous catalyst,
only bonds within the layer near the catalyst (red dashes) can be
cleaved. Enthalpy is largely irrelevant for adsorption because all surface
sites will be in contact with portions of some chemically similar chain.
Preferential adsorption of small chains may occur because the
conformational entropy loss upon adsorption is smaller for small
chains.
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consider the bulk MWD and the distribution of molecular
weights for adsorbed polymers.47 Long chains and short chains
compete for adsorption sites on the surface, with preferential
adsorption determined by the loss of entropy upon adsorption
and enthalpic interactions that (in some cases) favor adsorp-
tion.79,80 We address two regimes in this work: a polymer melt in
which a polymer in the bulk is surrounded by like polymers, and
a dilute solution in which the polymer in the bulk primarily
interacts with a solvent. In both cases, we utilize quasi-
equilibrium adsorption models. The models will be inaccurate
if the reaction is too fast for polymer conformations in the
interfacial layer to relax to a local conformational equilibrium,
or if boundary layer transport (where applicable) is too slow to
maintain an equilibrium with the bulk.
4.1. Random cleavage at melt-catalyst interface

In this section we consider a polymer melt in contact with
a heterogeneous catalyst that cleaves chains at random loca-
tions. A schematic for this case is shown in Fig. 7. Examples of
catalysts that likely work via this mechanism include hydro-
genolysis by Ru/C43 and Ru/TiO2,42 tandem hydrogenolysis and
24088 | J. Mater. Chem. A, 2022, 10, 24084–24095
aromatization on Pt/g-Al2O3,12 and melt hydroconversion by Pt/
WO3/ZrO2.81

In a melt, the entire catalyst surface is in contact with poly-
mers, but the contacts may be segments from chains with
different lengths. Therefore, we dene a surface coverage such
that the fraction of all catalytic sites occupied by segments of an
n-mer is given by q(n). Because the surface must be covered
entirely,

Ð
q(n)dn = 1. The MWD of the adsorbed chains may

deviate from the MWD of chains in the bulk. We may account
for this nonideality by writing

qðnÞ ¼ qidealðnÞ þ qexcessðnÞ
qidealðnÞ ¼ fbulkðnÞ (6)

where the ideal surface coverage of a species is given by the bulk
volume fraction of that species fbulk. A model for the surface
excess was given by Van der Gucht et al. as

qexcess(n)/fbulk(n) = A(1 − n/MW) (7)

where A is a constant related to the enthalpic and entropic
differences experienced by chain ends relative to an internal
monomer.82 A is determined jointly by the surface, polymer end,
and polymer backbone chemistries. A > 0 indicates a surface
that is attractive to small chains, either due to favorable
enthalpic effects of the chain-end chemistry being proportion-
ally larger for smaller chains, or due to the lesser entropic
penalty for conning small chains at the surface.

If we assume quasi-equilibrated coverages, then the fraction
of the surface covered by n-mers is

qðn; tÞ ¼ nrðn; tÞÐN
1

mrðm; tÞdm ð1þ Að1� n=MWÞÞ (8)

In formulating eqn (8) we have ignored excess mixing
volumes by assuming that, for each n, nr(n,t) is proportional to
This journal is © The Royal Society of Chemistry 2022
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Fig. 9 Time evolution of the MWD for random-cleavage at a melt-
catalyst interface. Black line denotes initial polymer population. Red
denotes a long chain favoring surface (A = −1), dashed blue denotes
a short chain favoring surface (A = +1), per Fig. 8. Lines are evenly
spaced in s, with Ds = 0.5.
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the bulk volume fraction fbulk(n). Now the bulk MWD changes
in response to the equilibrium adsorption and kinetics of
scission as

drðn; tÞ
dt

¼ � rqðn; tÞ þ 2r

ðN
n

1

m
qðm; tÞdm (9)

where r is the effective rate of depolymerization, per eqn (1).
Eqn (9) parallels the result for homogeneous random scis-

sion, eqn (4), except the surface coverage q allows the depen-
dence on chain length to be more complex. In homogeneous
random scission, the polymer reactivity is proportional to the
number of bonds in the chain (eqn (4)). Non-zero values of
parameter A lead to length-dependent adsorption and to
a length-dependent cleavage selectivity that deviates from the
bulk volume fractions. For example, when A < 0, long chains are
favored to adsorb and cleave. When A > 0, short chains are
favored. The preferential adsorption relative to the bulk pop-
ulations is shown in Fig. 8 for a series of different A values.

If products of an intermediate molecular weight are desired,
e.g. in hydrogenolysis of polyethylene, the catalyst should be
designed such that A < 0 if possible. If A > 0 instead, then long
chains will be excluded from the surface, causing the short
chains to be repeatedly cut and resulting in a mixture with large
fractions of over-hydrogenolysis products (like methane) and
uncut chains. Fig. 9 shows that, according to eqn (8) and (9), the
MWD evolves in a manner like that for homogeneous random
scission. Fig. 9 shows the dependence on parameter A by plot-
ting solutions for A = −1.0 and A = +1.0.

As in Section 3, we may also consider the dispersity of the
resulting polymer. This is demonstrated in Fig. 10. Surfaces that
favor the adsorption of longer species (A < 0) result in a less
disperse polymer product relative to the homogeneous case
shown in Fig. 3. Short chain favoring surfaces (A > 0) do exactly
the opposite, with an increase in dispersity.

In the melt, where enthalpic driving forces largely cancel
with those of other chemically similar chains, the value of A will
be largely determined by entropic factors. Long chains lose
Fig. 8 Surface coverage (eqn (8)) for varying surface segregation
parameter A, for the initial distribution shown in Fig. 2. Red denotes
a long-chain favored surface; blue denotes a short-chain favored
surface. The bulk mass fraction for all cases is equal to the surface
coverage for the non-interacting surface (black).

This journal is © The Royal Society of Chemistry 2022
more conformational entropy upon adsorption to a at surface
than short chains, so catalysts that present a at interface to the
melt may lead to the situation with A > 0.42–45,83 It may be
possible to tune the value of A (and the product distribution) by
altering the chemistry of the chain ends to disfavor the surface
or to design special pore geometries that favor adsorption of
long chains as done by Tennakoon et al. and Wu et al.13,25

Note that the surface segregation model of van der Gucht et al.
breaks down for very large polymers in highly polydisperse melts.
For positive A, i.e. a surface that preferentially adsorbs smaller
polymers, there may even be chains for which 1 + A(1 − n/MW) is
negative. According to this linear relationship, these extremely
long chains are entirely unreactive, kept away from the surface by
the abundance of shorter chains. These chains will not become
reactive with the passage of time, as depolymerization can only
decrease the average chain length. The possibility of a nonreactive
set of very large chains must be considered when using these
Fig. 10 Dispersity for melt-surface random scission. Dashed black line
denotes the homogeneous case (A = 0, Fig. 3). Red denotes a long
chain favoring surface (A < 0), blue denotes a short chain favoring
surface (A > 0), per Fig. 8. Lines are evenly spaced in A, with DA = 0.2.

J. Mater. Chem. A, 2022, 10, 24084–24095 | 24089
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equations with very large maximum chain lengths nmax, or very
small average chain lengths MW. When generating Fig. 9 and 10,
we replaced any negative values of q(n,t) < 0 with q(n,t)= 0. Further
development of preferential adsorption models would be a useful
direction. Note that the ideal and excess coverages in eqn (6) are
additive, in contrast to activity models where non-ideality is
included via amultiplicative activity coefficient. It would be useful
in future work to develop models which automatically satisfy the
proper asymptotes in the long chain and dilute limits, like regular
solution models84 and Margules models.85
4.2. Solute-surface random scission

Now we consider heterogeneous catalytic cleavage of polymers
that are dissolved in solution. In this case, the surface is no
longer guaranteed contact with polymers, and this necessitates
a more complicated handling of the surface-polymer interac-
tions and adsorption.86–89 We assume that polymer chains
adsorb to a reactive surface from solution and proceed to either
desorb back to the bulk or react, as shown in Fig. 11. As an
examples of this type of system, Ellis et al. considered a SnPt/g-
Al2O3 and Re2O7/g-Al2O3 system with n-pentane solvent.45

Again, we assume well-mixed conditions where coverages are
quasi-equilibrated with the bulk polymer concentrations. Note
that this assumption may be lied using standard techniques
for treating exterior transport limitations. Namely, one would
replace the bulk populations in the models below with
unknown populations near the catalyst surface and equate the
resulting rates to the rate of chain transport from the bulk
through a boundary layer to the surface. External mass trans-
port models are currently under development.

To build the PBE, we again consider the fractional surface
coverage q(n) representing the fraction of sites in contact with
segments from an n-mer. The bulk MWD evolves as in the melt-
surface case, by the same PBE as that in eqn (9). The difference
Fig. 11 Illustration of solute-surface random scission. (a) Long chains
adsorb to the surface from the bulk. (b) The adsorbed chain is irre-
versibly cut into two or more smaller fragments. (c) Smaller fragments
desorb back to the bulk or remain on the surface for further scission.
Adsorption and desorption steps (a) and (c) are assumed to be
reversible and quasi-equilibrated.
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lies in the isotherms for the bulk-surface coverage relationship.
To determine q(n) in this case, we invoke a common multi-site
generalization of the Langmuir isotherm:90

snKnr(n,t) = q(n,t)/q0(t)
sn (10)

Here sn is the average number of catalytic sites occupied by an n-
mer, Kn is a length dependent equilibrium constant, and q0(t) is
the fraction of unoccupied sites, i.e. q0(t) = 1 − Ð

q(n,t)dn where
the integration bounds are from n = 1 to N. We split the free
energy within the equilibrium constant into an entropic
component (assumed constant) and a per-adsorbed site
enthalpic component

Kn = ke exp[−DHadssn + TDSads] (11)

where ke is a constant prefactor with units of inverse concen-
tration, like a standard reference volume. We assume here that
the entropic and enthalpic terms are independent of the
changing composition of the solution. Given another layer of
theory that connects the composition to the adsorption ener-
gies, a time- or composition-dependent Kn may be incorporated
into the model. We leave this development for future work.

Multiplying both sides of eqn (11) by q0(t)s
n, and integrating

both sides from n = 1 to N yields a single equation for the
fraction of empty sites:

q0ðtÞ ¼ 1�
ðN
1

snKnrðn; tÞq0ðtÞsn dn (12)

At the initial time step, the fraction of empty sites may be
solved to a tight error tolerance for the initial coverages of
adsorbed polymers, and then included in the system of differ-
ential equations to compute changes in coverage over the
integration period. Differentiation of eqn (12) and rearrange-
ment yields

dq0

dt
¼

ÐN
1

snKnq0ðtÞ�sndr
dt

dn

1� ÐN
1

sn2Knq0ðtÞsn�1
rðn; tÞdn (13)

Unlike previous models discussed in this work, eqn (10)–(13)
depend on the total concentration N0. As the total concentration
of chains rises, the surface becomes more occupied. While this
effect does impact the evolving MWD, the contribution is minor
relative to that of the adsorption energetics. We focus here on
the convenient case where keN0 = 1.

When integrating forward in time, only one nonlinear solu-
tion needs to be computed at the rst step. From the computed
fraction of empty sites, the individual species coverages may be
estimated and interpolated by eqn (10). The change in the
population for the current timestep follows from eqn (9), and
(13) then also predicts the revised fraction of empty sites.

Solute-surface adsorption behavior can cause drastic depar-
tures from the prior cases. The form of eqn (10) reveals that the
primary factor controlling a species surface coverage is the
number of sites it demands. Polymer adsorption theories
This journal is © The Royal Society of Chemistry 2022
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Fig. 12 Relative preferential adsorption for quasi-equilibrated bulk
polymer r (log normal MWD with MN(0) = 3.0 kDa and MW(0) = 3.3
kDa, keN0= 1) and surface q. Positive numbers (red) denote long chains
are preferred for adsorption. Negative numbers (blue) denote short
chains are preferred for adsorption.

Fig. 13 Time evolution of the mass-weighted MWD by solute-surface
random cleavage for varying per-site enthalpy of adsorption. DH and
TDS in kbT units, keN0 = 1. Lines are evenly spaced in s, with Ds = 0.3.
Arrows denote the length of the product species with the greatest
mass fraction at Ds = 3.
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suggest that the preferred number of contacts between a poly-
mer and a surface scales roughly as n1/2.91–94 Based on this, and
the fact that an adsorbed monomer should have one contact
with the surface, (s1 = 1) we perform calculations for such that
a monomer occupies one site. Then, the adsorption energetics
may be varied. We initially consider the surface coverage in
quasi-equilibrium with the initial polymer population, relative
to the bulk population, by analogy to Fig. 8, in Fig. 12.

sn ¼
ffiffiffi
n

p
(14)

Fig. 12 reveals that this model, like the melt-surface case,
may prefer either long or short chains depending on the ener-
getics of adsorption. This preference is primarily driven by the
constant entropic penalty for adsorption. When this penalty is
strong, large chains are preferred, as they adsorb to multiple
sites and thus have a greater enthalpy of adsorption. When this
penalty is weak, small chains are preferred, as they demand
fewer sites each to adsorb and do not require a large enthalpy to
offset the entropic penalty.

Preferential adsorption strongly impacts the evolving MWD
as cleavage proceeds. Minor differences in the behavior of the
initial distribution may be magnied as polymers are cleaved
and the MWD evolves. We demonstrate this in Fig. 13, as small
adjustments to the adsorption enthalpy drive signicant
changes in the product distribution. According to the model,
solute-surface random scission creates signicant amounts of
small products (n = 1–100). Therefore, we show the mass-
weighted MWD, nr(n,t), to highlight the differences between
distributions.

As the system evolves, it develops a new peak in the mass-
weighted MWD that represents the primary product size by
mass. The size of the primary product is associated with both
the site-dependent DH and site-independent TDS parameters.
At xed conversion, smaller values of DH and/or TDS cause the
primary product size to decrease, approximately correlated with
This journal is © The Royal Society of Chemistry 2022
the initial preference shown in Fig. 12. Increased conversion
will also decrease the primary product size.

When adsorption strongly favors small species a bimodal
distribution may arise, with the primary product coexisting with
the initial distribution, even at high conversion (Fig. 13,
bottom). Aer the rst few catalytic turnovers, the products of
cleaving the initial, large polymers preferentially adsorb. The
products of their cleavage in turn are preferentially adsorbed,
and so on, creating an abundance of small molecular weight
products.
J. Mater. Chem. A, 2022, 10, 24084–24095 | 24091

https://doi.org/10.1039/d2ta04628h


Journal of Materials Chemistry A Paper

Pu
bl

is
he

d 
on

 0
3 

nó
ve

m
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
2.

7.
20

24
 0

3:
10

:2
8.

 
View Article Online
5. Conclusions

Population balance models have long been a powerful tool to
predict product distributions for both polymerization and
depolymerization processes, but most research has focused on
the simplest of problems for which analytical solutions exist.
Here we have demonstrated the beginnings of a framework to
translate specic mechanistic proposals into population
balance models. The population balance models then yield
specic predictions about the molecular weight evolution. We
have developed models for a variety of processes and mecha-
nisms. Each mechanism and its corresponding population
balance model predicts “ngerprints” in the molecular weight
evolution by which an observed behavior may be matched to an
appropriate underlying mechanism. Efforts are underway to t
these models to experimental data as a quantitative way of
mechanism identication.
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chromatography of polymers degrading randomly in the
column Theoretical treatment and practical aspects, J.
Chromatogr. A, 1997, 786, 209–218.
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