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Adults are mainly exposed to per- and polyfluoroalkyl substances (PFASs) via ingestion of food, inhalation of

air and ingestion of dust, whereas for children the exposure to PFASs is largely unknown. This study aimed to

reconstruct the serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid

(PFOS) and perfluorohexane sulfonic acid (PFHxS) in children after infancy up to 10.5 years of age and to

test if dietary intake is the major exposure pathway for children to PFOA, PFOS and PFHxS after infancy.

For this work, a dataset from a Finnish child cohort study was available, which comprised serum

concentrations of the studied perfluoroalkyl acids (PFAAs) and PFAS concentration measurements in dust

and air samples from the children's bedrooms. The calculated PFAA intakes were used in

a pharmacokinetic model to reconstruct the PFAA serum concentrations from 1 to 10.5 years of age. The

calculated PFOA and PFOS intakes were close to current regulatory intake thresholds and diet was the

major exposure medium for the 10.5 year-olds. The one-compartment PK model reconstructed median

PFOA and PFOS serum concentrations well compared to corresponding measured median serum

concentrations, while the modelled PFHxS serum concentrations showed a constant underestimation.

The results imply that children's exposure to PFOA and PFOS after breastfeeding and with increasing age

resembles the exposure of adults. Further, the children in the Finnish cohort experienced a rather

constant exposure to PFOA and PFOS between 1 and 10.5 years of age. The PFHxS exposure sources

and respective pharmacokinetic parameter estimations need further investigation.
Environmental signicance

The exposure of adults to PFASs has been well studied, while children's exposure to PFASs is poorly understood, especially in the period aer cessation of
breastfeeding. Nevertheless, understanding childhood exposure is of high importance given that exposure to PFASs is hypothesized to have the most
pronounced negative effects during this period. Mechanistic mass balance models are key to determine which exposure pathways to PFASs are relevant and
where knowledge gaps on exposure to PFAS exist. With the present modelling approach, it was possible to reconstruct the historic exposure to PFASs of a child
cohort. The results imply that individuals have highest PFAS intakes during infancy and that PFAS serum concentrations decrease thereaer on average due to
lower PFAS intakes.
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1. Introduction

Long-chained per- and polyuoroalkyl substances (PFASs) are
detected worldwide in human blood among which per-
uorooctanoic acid (PFOA), peruorooctane sulfonic acid
(PFOS) and peruorohexane sulfonic acid (PFHxS) are the most
abundant.1,2 In general, adults are directly exposed to PFOA,
PFOS and PFHxS (termed PFAAs hereaer) through the inges-
tion of dust3,4 and food,5 the inhalation of air4 and the intake of
drinking water.6 Besides the direct exposure to PFAAs, indirect
exposure to PFAAs can also occur in the body following uptake
and biotransformation of PFAA-precursors, such as per-
uorooctane sulfonamide derivates7 and uorotelomer alcohols
(FTOHs,8). In background exposed adult populations, dietary
uptake has been concluded to be the main exposure pathway of
PFOA, PFOS and PFHxS (e.g. ref. 1 and 5).
Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886 | 1875
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The exposure assessment of young children to PFAAs is
challenging due to rapid physiological changes, based on which
the most prominent phenomenon to consider is growth dilu-
tion, i.e. the dilution of a pollutant's concentration in an
organism as a result of an increase in body weight. Besides the
exposure pathways that adults experience, children are addi-
tionally exposed to PFAAs during the prenatal period via
transplacental transfer and during infancy via breastfeeding
(e.g. ref. 9). For infants (from birth to 1 year of age) and children
(<11 years of age), dust is hypothesized to be of greater impor-
tance for the exposure to PFAS than for adults.10 The greater
exposure to dust is argued to be caused by children's different
behaviour, specically, a higher hand-to-mouth contact and
object-to-mouth frequency compared to adults.10 Furthermore,
the exposure to PFAAs via food is unclear for children in later
life stages. Their diet consists of different types of products and
quantities compared to adults' diet. While infant food has been
studied frequently, only one study considered the diet during
later life stages of childhood.11 As a result, current exposure and
monitoring studies give an incomplete picture of children's
exposure to PFAAs,12 which hampers the estimation of their
external and internal exposure (e.g. serum concentrations) to
PFAAs.13 An exposure assessment of PFAAs for children
becomes even more relevant in the light of recently published
guidelines on tolerable weekly intakes (TWIs) for PFOA and
PFOS by European authorities.14 A rst approximation of the
tolerable daily intake (TDI) from the TWI for PFOS and PFOA
revealed a drastic decrease of the previous threshold values. For
PFOS, the reason to lower the TDI from 150 ng per kg bw per
d down to 1.86 ng per kg bw per d (ref. 14) was the associated
decrease in antibody response to vaccination in children with
PFOS exposure.14,15 For PFOA, the TDI was lowered from 1500 ng
per kg bw per d to 0.86 ng per kg bw per d, while for PFHxS
currently no TDIs are available.14

To date, only a few studies exist that focused on the predic-
tion of PFAA serum trends in infants and children.16,17 The rst
applied a physiologically based pharmacokinetic (PBPK) model
to describe the complex interactions between the mother and
the foetus during prenatal stages and the subsequent breast-
feeding period.16 It revealed that the transplacental and the
milk-to-serum transfers are the key factors for infants' exposure
to PFOA and PFOS.16 Thereaer, two more recent studies
successfully applied one-compartment PK models to predict
PFOA and PFOS concentrations in serum based on the trans-
placental and milk-to-serum transfers in addition to the other
exposure pathways such as dietary intake.17,18 Verner et al.
(2016) focused on the exposure to PFAAs during foetal devel-
opment, until early childhood and could explain 52–62% of the
measured variability in PFAA serum concentrations of 0.5 and 3
year-old children.17 However, a detailed exposure assessment of
later childhood stages (>3 years of age) is missing so far.

The aim of this project was (1) to reconstruct the serum
concentrations of PFOA, PFOS and PFHxS in children aer
infancy up to 10.5 years of age, (2) to test whether dietary intake
is the major exposure pathway for children to PFOA, PFOS and
PFHxS aer infancy and (3) to compare the modelled intake of
PFOA and PFOS to the updated regulatory TDIs and other intake
1876 | Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886
estimates from literature. To test these objectives, a compre-
hensive biomonitoring dataset on PFAA serum concentrations
in children from a Finnish child cohort was used.19 PFAA serum
concentrations of 44 children sampled at 1 year, 6 and 10.5
years of age20 along with dust and air PFAA concentrations, from
the same children's sleeping rooms21,22 were combined in this
current work. The children's exposure to PFOA, PFOS and
PFHxS was assessed by linking respective concentrations in
several external exposure media to the children's internal
exposure, i.e. the respective PFAA's serum concentration, using
a simple one-compartment pharmacokinetic (PK) model.
2. Methods
2.1. The child cohort and data

For the current modelling approach, serum,20 indoor air,21

dust22 and tap water concentrations (unpublished data) of
PFASs from a child cohort study were used. The serum
concentrations of PFOA, PFOS and PFHxS were analysed for
each of the 44 children at the age of 1 year (2005/6), 6 years
(2010/11) and 10.5 years (2014/15).20 The children were
a subgroup of a longitudinal child study (LUKAS 2) from the
Kuopio area in Finland.19 Within LUKAS 2, the individuals' body
weights were documented as well. The LUKAS 2 study was
approved by the Research Ethics Committee, Hospital District
of Northern Savo, Kuopio, Finland (case number 48/2004). The
serum samples were obtained from the National Institute for
Health and Welfare, Environmental Health Unit, Kuopio,
Finland.

In addition to the PFAA concentrations, PFAA-precursor
concentrations from air and dust samples from the children's
bedrooms were included in the model to estimate the impor-
tance of indirect exposure to PFAAs.21,22 The air, dust and tap
water samples were taken when the children were 10.5 years old.
For more information, consult the studies by Winkens et al.21,22

and Winkens.12 For the present exposure assessment, if avail-
able, only the linear isomers, or the sum of isomers of the
studied PFAAs and their precursors were used for intake
calculations and the subsequent modelling.
2.2. Intake calculations

The estimated daily intake (EDI) represents the bodyweight
normalized daily intake (ng per kg bw per d) of one studied
PFAA via the respective direct and indirect exposure pathways.
Due to the available dataset, it was only possible to calculate
a detailed PFAA intake for the children when they were 10.5
years old. The considered PFAA precursors and their corre-
sponding PFAAs are shown in Table 1. In general, the calcula-
tion of the total EDIs of PFAAs for each 10.5 year-old is based on
dust and air concentrations from the child's bedroom and
dietary concentrations from literature. Except for the tap water
samples, there was no data available for the dietary PFAA intake
of the Finnish child cohort. Therefore, the dietary PFAA intake
was estimated from the literature (see Section 2.2.1). Dermal23

and consumer product10 exposure has been estimated to be of
minor relative importance for human exposure assessments for
This journal is © The Royal Society of Chemistry 2019
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Table 1 Occurrence of PFOA and PFOS precursors in external
exposure media available for the present exposure assessment21,22,25

Exposure
medium

PFAAa

PFOA PFOS

Indoor
air

8:2 FTOH MeFOSE,
EtFOSE

Diet N/Ab PFOSA
House
dust

6:2/8:2 diPAP, 8:2/8:2 diPAP,
8:2/10:2 diPAP, 8:2/12:2 diPAP,
8:2 FTOH

EtFOSAA,
EtFOSE

a No PFHxS precursors were available from the experimental studies. x:y
refers to a specic FTOH, where x is the number of uorinated carbon
atoms in the chain and y is the number of non-uorinated carbon
atoms, i.e. the ethyl moiety. For further acronyms see ESI. b N/A ¼ not
available.
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PFAAs.24 These exposure pathways were therefore not consid-
ered in the model.

Eqn (1) shows the calculations for the dust intake. Dietary
ingestion and air inhalation were estimated in a similar way by
using the corresponding exposure media's concentrations and
consumption or inhalation rates (see ESI Section 1.1‡).
EDIdust

h
ng ðkg bwÞ�1 d�1

i
¼ dust concentration ½ng g�1� � ingested dust amount ½g d�1�

body weight ½kg� (1)
2.2.1. Derivation of dietary PFAA intakes. It was of
importance to consider dietary PFAS concentrations of high
quality with regard to the analytical procedures, as well as
covering the same time period during which the monitoring
study was conducted (2005 to 2015). Some earlier studies are
suspected to have had intermittent blank problems during
the analytical procedure, which potentially led to over-
estimated PFAA intakes.26 Furthermore, earlier studies may
have reported higher levels than more current studies due to
changes in production,27 legislation,28 food processing and
packaging.25,29,30 The dataset on dietary PFAA concentrations
by Papadopoulou et al. (2017) fullled the set criteria of
having recent and reliable analytical data from a nearby
region, and served to derive PFOA, PFOS and PFHxS concen-
trations of different classes of foods (Table S1‡).
Table 2 Parameters for EDI derivation in the different exposure scenario
scenario. The absorption efficiency from air was assumed to be 1, i.e. 10

Substance
Ingested dust
amountb, mg d�1

Air inhalation
volumeb, m3 d�1

Absorption e
from airc

8:2 FTOH 60; 60; 100 12.4; 12.4; 18.7 1
Other PFASsa 60; 60; 100 12.4; 12.4; 18.7 1

a See Table 1. b Scenario dependent values recommended by the US-E
biotransformation factors were applied to PFOA and PFOS precursors, wh

This journal is © The Royal Society of Chemistry 2019
The PFAA concentrations of the tap water samples from the
child cohort are included in the dietary intake. In detail, the
dietary concentrations of the different foods were grouped and
multiplied with the respective bodyweight normalized daily
consumption rate of that specic food group (gfood per kg bw
per day). The applied consumption rate was specic to that of
Finnish 3 to <10 year-olds.31 In the last step, the intakes of the
different food groups were summed up to receive one value for
the dietary intake of each child.

2.3. Scenario based exposure assessment and parameters

A scenario-based exposure assessment was applied with a low,
intermediate and high exposure scenario, of which the inter-
mediate exposure scenario was considered closest to a realistic
exposure scenario.5,10,24 The PK parameters used for the EDI
calculations comprised the tissue specic absorption efficien-
cies and biotransformation factors.

The biotransformation factor describes the fraction of
a PFAA precursor that is biotransformed into the respective
PFAA in the human body (e.g. 8:2/8:2 diPAP results in two PFOA
molecules). For 8:2 FTOH (a PFOA precursor), different PK
values for the EDI calculation could be applied, since it is better
studied. Based on estimates made by Trudel et al. (2008),
absorption efficiencies in humans used in this study for the low,
intermediate and high exposure scenarios were 0.66, 0.8 and
0.91, respectively. Next to the scenario dependent variation of
the parameters in Table 2, the dietary PFAA concentration was
varied based on the two sets of dietary concentrations of a lower
and upper bound approach (Table S1‡).
2.4. The PK model parameters

A one-compartment PK model was applied to simulate the
serum concentrations of PFOA, PFOS and PFHxS.17 The applied
parameters in the PK model are the elimination half-live (t1/2,
d), the volume of distribution (mL kg�1) and the children's body
weights. The volume of distribution represents a proportion-
ality factor between the chemical's concentration in blood
relative to its concentration in body tissue. For PFOS and PFOA,
the volume of distribution was set to 235 mL kg�1 and 200 mL
s. Values are ordered according to low, intermediate and high exposure
0% in all exposure scenarios

fficiency Gastrointestinal absorption
efficiency from diet & dustd

Biotransformation
factore

0.27; 0.38; 0.56 0.0006; 0.003; 0.01
0.66; 0.8; 0.91 0.095; 0.2; 0.32

PA.32 c Ref. 33. d Ref. 5. e For 8:2 FTOH34 and for remaining PFASs5

ich are biotransformed to PFOA and PFOS aer uptake, respectively.

Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886 | 1877
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kg�1, respectively, which were averaged from animal and human
studies.35No volume of distributionwas available for PFHxS, thus
the one of PFOS was applied, because the volume of distribution
for PFOS and peruorobutane sulfonic acid were similar (PFSA
homologue with 4-carbon chain length).35,36 The elimination half-
life represents the time needed in days (d) to eliminate half the
chemical's amount from the body. The elimination half-lives (t1/2,
d) were intrinsic elimination half-lives as dened by Russell et al.
(2015) (PFOA 2.2 years, PFOS 4.35 years35). As opposed to merely
monitoring the pollutant's elimination from the body (i.e. the
apparent elimination half-life), the intrinsic half-life accounts for
the ongoing exposure while the pollutant is eliminated at the
same time.37 For PFHxS, no intrinsic half-life was available in
literature, thus the commonly applied apparent half-life of PFHxS
was used (ref. 38: 8.5 years). The body weight proles of the
children are based on the sex-specic median growth curves
obtained from the Center for Disease Control and Prevention.39

The growth curves were adjusted for each individual by a body
weight adjustment factor, which was dened as the ratio of the
body weight of each 10.5 year-old over the correspondingmedian
value from the growth curve.
2.5. Model calculations

The PFAA EDIs and the model parameters were used to
simulate the PFAA serum concentrations in the 44 Finnish
children in the three exposure scenarios. The key equation of
the model is:

dcs

dt

�
ng mL�1d�1� ¼ I

Vd

�
ng mL�1d�1�� cs

�
ng mL�1�� kelim

�
d�1�
(2)

where
dcs
dt

is the change in PFAA serum concentration over time

(ng mL�1 d�1), I the body weight normalized daily PFAA intake
(ng (kg bw)�1 d�1) from all considered exposure pathways (see
Section 2.1), Vd the volume of distribution (mL kg�1) and kelim
the elimination constant (d�1) derived from the ratio of ln 2
over the respective half-life (t1/2, d).

First, the model was used to calculate the top-down estimate,
which is dened as the theoretical PFAA intake (I) that is needed
Table 3 EDIs derived from diet (incl. drinking water), dust and air exposu
high exposure scenario

PFAA (ng (kg bw)�1 d�1) Exposure

Exposure scen

Low

PFOA Direct 0.16
Indirect 0.00064
Total 0.16

PFOS Direct 0.15
Indirect 0.0050
Total 0.16

PFHxSb Direct 0.0026
Indirect —
Total 0.0026

a Top-down EDIs were derived from serum measurements of the studied c
assessed.

1878 | Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886
to result in the measured PFAA serum concentration. It is
calculated by rearrangement of eqn (2) and the use of the
measured PFAA serum concentrations as cs. A limitation of the
top-down estimate is that it only gives the total intake from all
possible exposure sources without the possibility to distinguish
among their contributions to the total intake. The top-down
estimate served for comparison to the derived PFAA EDIs in
Table 3. The comparison indicated how close the EDIs were to
the theoretical intake (i.e. top-down estimate).

Secondly, the model was used to simulate the PFAA serum
concentrations of each child from 1 year to 10.5 years of age by
using the derived EDIs of the 10.5 year-olds (see Section 2.2).
The EDI was kept constant over the modelled period from 1 year
to 10.5 years of age, which was justied by the observed
constant body burdens in the studied child cohort20 and the
lack of PFAA concentrations from earlier years (<10.5 years of
age) in the relevant exposure media.40

The serum concentrations at 1 year of age served as the
initial PFAA serum concentration, from which the model set off
to simulate serum concentrations in the growing children. The
model was run for each child individually and incorporated
individual intakes of dust and air, a generalized dietary intake
(Section 2.2 and 2.2.1) and the child's weight at 10.5 years of age
(i.e. body weight adjustment factor, Section 2.4). Simulated
PFAA serum concentrations of each child were correlated with
the corresponding measured PFAA serum concentrations of
each child at the age of 6 and 10.5 years (Fig. S4‡). Further, the
median PFAA serum concentrations of the child cohort were
calculated from the simulations of each child and compared to
measured median serum concentrations (Fig. 2). The simulated
median serum concentrations of two groups, females and
males, were calculated in a similar way and compared to the
corresponding measured median PFAA concentrations, to gain
information about sex-specic trends in the PFAA serum
concentrations. However, only the weight could be used to
distinguish between the individuals and the sexes. No further
physiological input parameters, which could have served for the
modelling were available.

The model's performance was assessed by several statistical
metrics, which comprised the coefficient of determination (R2),
re for Finnish children at 10.5 years of age for the low, intermediate and

ario

Top-down estimateaIntermediate High

0.19 0.53 —
0.0038 0.015 —
0.19 0.55 0.26
0.19 0.53 —
0.011 0.015 —
0.20 0.55 0.16
0.0032 0.19 —
— — —
0.0032 0.19 0.011

hildren at 10.5 years of age. b For PFHxS, only direct exposure could be

This journal is © The Royal Society of Chemistry 2019
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the Student's t-test for signicant deviations of the slopes of
linear regressions (Tables 4 and S7, Fig. S4‡) and the root mean
square deviation (RMSD).
2.6. Model sensitivity and uncertainty analysis

A sensitivity and uncertainty analysis in the form of a rst order
error propagation was conducted to explore the model's limi-
tations and determine the most inuencing model input
parameters.41 First, the sensitivity S of each model input
parameter was assessed (Fig. S1–S3‡). The model input
parameters I are dened as all variables applied in the EDI
derivations and the parameters used in the PK model (Table
S2‡). The model's sensitivity to each input parameter I was

calculated as the ratio of the change in themodel output
DO
O

(i.e.

PFAA serum concentration) aer increasing each I by a xed

amount DI, set to 0.1%
�
DI
I

�
:

S ¼ DO

O

�
DI

I
(3)

The sensitivity and uncertainty analyses were conducted at
different child ages (2, 6 and 10.5 years of age) to assess the
impact of model input parameters and the EDIs on the model
results. Since the serum concentrations of the 1 year-olds
were used as a model input (i.e. initial serum concentra-
tion), the sensitivity and uncertainty analysis was conducted
at 2 years of age instead. This enabled the observation of
changes in the impact of input parameters on early childhood
(2 years of age) relative to later childhood (6 and 10.5 years of
age).

Putative variance distributions for each input parameter,
termed condence factors CfI,j, were assigned dependent on
available data and expert judgement (Table S2‡) to obtain
a measurable impact of each input parameter's variation on the
modelled serum concentrations. CfI,j is a measure of variance
and uncertainty, which states that 95% of the values X lie within
the margins around the median m.41 The relation between CfI,j
and X is expressed as:
Table 4 Statistical metrics for model evaluation of the intermediate
scenario at 6 and 10.5 years of age. R2 ¼ coefficient of determination,
RMSD ¼ root mean square deviation, statistical significance was esti-
mated based on the linear regression's slope and Student's t-test at the
95% confidence interval (a ¼ 0.05). The t-statistic and corresponding
probability estimates presented in Table S7

PFAA Age (years) R2
RMSD (�ng
mL�1)

Slope signicantly
different from 1:1 line

PFOA 6 0.21 0.99 No
10.5 0.08 0.55 No

PFOS 6 0.57 1.6 Yes
10.5 0.24 0.68 Yes

PFHxS 6 0.49 0.26 No
10.5 0.15 0.15 No

This journal is © The Royal Society of Chemistry 2019
Probability

(
m

CfI;j
\X\CfI;j � m

)
¼ 0:95 (4)

For instance, a CfI,j of 3 means that the variance of input
parameter j is 1/3 and 3 times the median m. The contribution of
each input parameter to the variance in model output
(expressed as percentage) was calculated as:�

ln CfI;j
�2
SI;j

2

X1

j¼1

�
ln CfI;j

�2
SI;j

2

(5)

The results of eqn (5) are presented in Fig. 3 and are dis-
cussed, since they were considered to be most explanative
compared to the calculated sensitivities that do not incorporate
the parameters' putative variances (CfI,j). The model's sensitiv-
ities SI,n and the assigned condence factors CfI,j were used to
derive the variance of the model output represented as margin
of error of CfO (Table S3‡). The margin of error is directly
comparable to the measured variances in the serum samples
and is based on the relation expressed in eqn (4), where CfI,j is
substituted with CfO. CfO of the modelled PFAA serum
concentrations was calculated as follows:

CfO ¼ exp[(ln CfI,1)
2SI,1

2 +.+ (ln CfI,n)
2SI,n

2]1/2 (6)
3. Results
3.1. Calculated PFOA, PFOS and PFHxS intakes

The calculated EDIs of PFOA, PFOS and PFHxS for the Finnish
10.5 year-olds are shown in Table 3 for the low, intermediate
and high exposure scenarios. The indirect exposure through
the intake and biotransformation of precursors contributed
between 0.4% and 3% to the total PFOA exposure and between
3% and 6% to the total PFOS exposure. The contribution of
indirect PFHxS exposure could not be assessed due to the lack
of precursor data. The total EDI of PFOA and PFOS in the high
exposure scenario (both 0.55 ng per kg bw per d) was approx-
imately three-fold greater than the EDI in the low or inter-
mediate exposure scenario (PFOA: 0.16–0.19 ng per kg bw per
d, PFOS: 0.16–0.20 ng per kg bw per d). The total EDI of PFHxS
in the high exposure scenario was 61- and 73-times greater
than in the intermediate and low exposure scenario, respec-
tively. The top-down estimates of the PFOA and PFOS intake
were 1.3-times higher and 0.8-times lower compared to the
EDIs of the intermediate exposure scenario, respectively. In
contrast, the top-down estimate of PFHxS was 3.4-times
higher, compared to the EDI in the intermediate exposure
scenario.

Overall, the dietary intake was the major exposure pathway
of the studied PFAAs in all exposure scenarios (Fig. 1). The air
and dust exposure contributed up to 5% to the total EDI of
Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886 | 1879
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Fig. 1 Contribution of direct and indirect diet, dust and air EDIs to total
EDIs of 10.5 year-olds at different exposure scenarios. Int. ¼ inter-
mediate; direct¼ intake of the respective PFAA, Indirect¼ intake of the
respective PFAA intake through precursor biotransformation and the
direct intake, for PFHxS, no precursor data were available.21,22,25
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PFOA and PFOS. For PFHxS, the dust exposure contributed 38%
to the total EDI in the low and intermediate scenario.
3.2. Dynamic modelling

The model's results of the median serum concentrations of the
Finnish child cohort are presented in Fig. 2. The curves of
modelled PFOA and PFOS concentrations in the low and
intermediate exposure scenario were within the range of
measured concentrations (box plots, Fig. 2). At 6 and 10.5 years
in the intermediate exposure scenario, the simulations were 0.8-
fold lower each for PFOA and 1.3- and 1.4-fold higher for PFOS
compared to measured serum concentrations. In contrast, the
serum concentrations in the low and intermediate scenarios of
PFHxS were 0.5- and 0.6-times lower compared to the measured
serum concentrations at 6 and 10.5 years of age. Increasing the
PFHxS intake by a factor of 5, the model showed a better
agreement with the measured PFHxS serum levels. In contrast,
changing the volume of distribution or the half-life barely
affected the model output (Fig. S5‡).
Fig. 2 Modelled serum concentrations compared to serum measurem
represent serum measurements with the boxes marking the first, the sec
1.5-times the interquartile range; one PFOS measurement of the childre
obvious outlier.

1880 | Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886
The serum concentrations of all PFAAs in the high exposure
scenario exceeded the measured serum concentrations, which
was caused by the high dietary concentrations applied in that
scenario (see Section 2.3, Table S1‡). The curve shape of the
modelled serum concentrations of PFAAs was owed to both the
constant elimination and growth dilution. At 1 and 10.5 years of
age, growth dilution contributed from 63 to 77% and 24 to 55%,
respectively, to the total loss of PFOA, PFOS and PFHxS. Elimi-
nation caused the remaining losses. It was not possible to
reconstruct the observed sex-specic trends in PFOA and PFOS
serum concentrations that were found among the children of the
cohort.20 The median body burden (i.e. the total amount of
a pollutant in an organism) of PFOA decreased with age in the
females, whereas it increased with age in the males.20

It can be seen that the model is in better agreement with the
measured serum concentrations when the median serum
concentrations at 6 and 10.5 years of age were reconstructed in
comparison to the modelled serum concentrations of each
individual (Table 4 and Fig. S4‡). RMSDs were higher for 6 year-
olds than for 10.5 year-olds, which also applied to R2. Between
21 and 57% of the variability in PFAA serummeasurements in 6
year-olds could be explained by the model, while for the 10.5
year-olds, only between 8 and 24% of the variability could be
explained. For PFOS, tted linear regressions of the interme-
diate exposure scenario signicantly deviated from the 1:1 line
as a result of the spread in the data (blue and red lines, Fig. S4‡).

Unexpectedly the model explained 49% of the observed
variability in the individual's PFHxS serum concentrations at 6
years of age (Table 4). This was likely owed to the larger vari-
ability in measured PFHxS serum concentrations at this age
(Fig. 2).
3.3. Sensitivity and uncertainty analysis

For PFOA and PFOS, the contribution to the variance in model
output (eqn (5)) at two years of age was mainly caused by the
serum concentration, while the contribution to the variance in
model output at later childhood (6 and 10.5 years of age) was
mainly caused by the dietary consumption rate (Fig. 3). In the
ents in Finnish children at 1 year, 6 and 10.5 years of age. Box plots
ond (median) and the third quantile and the whiskers marking maximal
n aged 1 year (40 ng mL�1) was excluded from the figure as it was an

This journal is © The Royal Society of Chemistry 2019
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case of PFHxS, the serum concentration was by far the biggest
contributor to the variance in the model output ($92%)
throughout childhood. The range in modelled serum concen-
trations, represented as the margin of error, was in good
agreement with the observed variability in measured PFAA
serum concentrations (Table S3‡).
4. Discussion
4.1. Results summary

Except for the high exposure scenarios, the model accurately
reconstructed the median PFOA and PFOS serum concentra-
tions of the Finnish child cohort. For PFHxS, the modelled
serum concentrations in the intermediate and low exposure
scenario were consistently underestimated compared to the
measured serum concentrations. The potential reasons for the
model's underestimation of median PFHxS serum concentra-
tions are discussed separately (see Section 4.5).

In contrast to the simulation of median serum concentra-
tions, the model showed less accurate results when PFOA and
PFOS serum concentrations were reconstructed for each
individual (Fig. S4‡), as indicated by the root-mean-square
deviation of the model's predictions (RMSD) and R2. The
RMSDs ranged between 35 and 75% compared to measured
median PFAA serum concentrations (Table 4). R2 values were
higher for 6 year-olds than for the 10.5 year-olds, which means
that the model could explain less of the observed variability in
PFOA, PFOS or PFHxS serum concentrations for older chil-
dren (Table 4).

The model inputs with the highest contribution to the vari-
ance of the modelled serum concentrations were the initial
PFOA, PFOS or PFHxS serum concentration and the respective
dietary consumption rate, while the margin of error inmodelled
PFAA serum concentrations was comparable to the variance of
the measured concentrations (Table S3‡).
Fig. 3 Contribution tomodelled PFOA, PFOS and PFHxS serum concentr
at different child ages. Note that the most important input parameters f
parameters were calculated as described in Section 2.6, eqn (5).

This journal is © The Royal Society of Chemistry 2019
4.2. EDI study comparison

Although dietary intakes of the child cohort were unknown, the
present model approach successfully reconstructed the median
PFOA and PFOS serum concentrations of the Finnish child
cohort. A comparison of the derived EDIs of PFOA and PFOS to
the EDIs derived in other studies (Fig. 4) revealed that the EDI
ranges were relatively small. All EDIs of the studies' interme-
diate exposure scenarios ranged from 0.19 to 0.29 ng per kg bw
per d for PFOA and from 0.19 to 0.63 ng per kg bw per d for PFOS
(dots, Fig. 4). In fact, the EDIs of these different studies were
within a much lower range compared to EDIs of studies from
before 2011. For example, among these studies is one highly
cited work that derived EDIs ranging from 1.8 to 72.2 ng per kg
bw per d for PFOA and 7.4 to 148 ng per kg bw per d for PFOS in
the low and high exposure scenario, respectively.10 These
elevated intake estimations were potentially caused by prob-
lems during the analytical procedure.26 In order to avoid an
overestimation of intakes and to enable a meaningful compar-
ison, the studies displayed in Fig. 4 were chosen due to their
applied improved analytical methods for quantication of
PFAAs in external exposure media.5,42–44

The most sensitive age class in this study is the one-year-
olds, due to the various developmental processes that are
taking place around this age. The one-year-olds had intakes of
0.70 ng per kg bw per d of PFOA and 0.74 ng per kg bw per d of
PFOS in the intermediate exposure scenario (Table S6‡), which
is lower than the approximated TDIs derived from the TWIs that
were recently set by the EFSA (PFOS: 1.86 ng per kg bw per d;
PFOA: 0.86 ng per kg bw per d (ref. 14)). Still, the proximity of
the PFOA EDI of one-year-olds (0.70 ng per kg bw per d, inter-
mediate exposure Table S6‡) to the corresponding TDI raises
concern about an increased risk for health impacts, since chil-
dren receive higher body weight dependent doses if they expe-
rience the same exposure as adults. Moreover, some individuals
in a population will naturally experience a higher exposure to
PFAAs than the intermediate case and therefore will be at
ation uncertainties of the threemost importantmodel input parameters
or PFHxS differ to those from PFOA and PFOS. Contributions of input

Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886 | 1881
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Fig. 4 Estimated daily intakes (EDIs) of PFOA and PFOS from different studies.5,42–44 Red¼ present study, dots¼ EDI of the intermediate scenario.
Bars ¼ EDIs of the low to high exposure scenario. Note that small ranges can be covered by dots. For detailed description of scenarios and
ranges, see ESI Table S4.‡
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a higher risk for health impacts caused by the exposure to PFOA.
This is the case due to the probability distribution and the case
for e.g. occupationally exposed workers in the PFAS industry
and potentially their families.

4.3. Dynamic exposure modelling

In contrast to the accurate reconstruction of median PFOA and
PFOS serum concentrations, the individual's PFOA and PFOS
serum concentrations at 6 and 10.5 years of age could not be
predicted satisfactory. The individual variabilities in PFAA
serum concentrations could not be accounted for, since dietary
intakes and other exposure pathways in this child cohort were
not monitored. Such longitudinal studies are oen time- and
resource-demanding. Furthermore, compared to infancy, where
the major exposure to PFAAs is usually limited to prenatal
exposure and breastfeeding,9,16 older children experience an
increasingly complex and variable exposure to PFAAs.

The results of the uncertainty analysis support this by (a) that
the inuence of PFAA serum concentrations at two years of age
was the single most important contributor to the uncertainty in
model output (PFOA: 92%, PFOS: 95%, PFHxS: 100%, Fig. 3)
and (b) that the dietary consumption rate in later childhood (6
and 10.5 years of age) replaced the PFOA and PFOS serum
concentration as the most important contributor to variance in
the model output. Furthermore, the strong inuence of PFAA
serum concentrations in early childhood (2 years of age) indi-
cates that the prenatal exposure and the breastfeeding are at
least partially responsible for the PFAA body burden in later life
stages.

4.4. Model limitations

Despite the accurate simulation of median PFOA and PFOS
serum concentrations relative to measured serum concentra-
tions, the presented model approach comprises several limi-
tations. In this study, the PFAA intake was assumed to be
constant over time, despite documented declining trends of
1882 | Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886
PFAA concentrations in selected food items44,45 (see Section
2.4). Several authors concluded that the historical exposure to
PFOA, PFOS and respective precursors via exposure media was
likely higher.2,7,46 Still, the assumption of a constant intake in
the present study is plausible considering that 1 and 6 year-olds
eat a 2- to 3-times lower absolute amount of food compared to
10 year-olds. This would correct for 2- to 3-times higher PFAA
concentrations in foodstuffs at the time the children were
younger (1 and 6 years old). Furthermore, the successful
reconstruction of median PFOA and PFOS serum concentra-
tions support one of this study's main assumptions i.e. that the
respective absolute PFAA intakes (in ng d�1) of the Finnish
children were fairly constant between 1 and 10.5 years of age.

Although diet was found to be the main exposure medium to
PFAAs, the true historic contribution of each exposure pathway
remains unclear, since the individuals' dietary habits were
unknown and since the measured PFAA concentrations in the
dust, air and water samples only represent a snapshot of the
exposure when the children were 10.5 years old. A confounding
factor, which complicates the exposure assessment of each
individual, is the breastfeeding duration, which differed
considerably in the child cohort. In some cases, infants were not
breastfed or only partially breastfed for a short period (2
months). According to questionnaires, 50% of the children were
breastfed up to 3 or 6 months aer birth. Eight out of the 44
children were partially or fully breastfed up to 1 year of age and
in two cases partial breastfeeding continued up 14 and 24
months. Thus, for some children breastfeeding continued to be
an important exposure pathway to PFAAs past 1 year of age.
However, the narrow EDI ranges of PFOA and PFOS across
several studies (Fig. 4) and the common nding that diet is the
most important exposure medium to PFAAs, support that die-
tary intake may also be the major exposure route of PFOA and
PFOS of the Finnish children, which was the result of their
intake calculations.
This journal is © The Royal Society of Chemistry 2019
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The indirect exposure via precursors contributed only with
3% to both the total PFOA and PFOS exposure in the high
exposure scenario (Fig. 1). Another modelling study by Gebbink
et al. (2015) with comparable scenarios for adults found indirect
exposure to be of greater relevance (11 to 33% for PFOS and 13
to 64% for PFOA, low and high exposure scenario, respectively).5

The different ndings in the two studies reect the difference in
the data (i.e. concentrations in the exposure media) that were
applied for the EDI derivation (Table S4‡), as the applied
pharmacokinetic parameters were mostly similar.

An accurate assessment of the indirect exposure to PFCAs
and PFSAs is currently unfeasible due to largely unknown values
for the absorption efficiencies and PK parameters of most PFCA
and PFSA precursors.8,46 Estimations for biotransformation
factors of PFAA precursors and absorption efficiencies are
usually determined in rodent experiments,47–49 which can
hamper extrapolation to human metabolism.7,48,50 Trudel et al.
(2008) proposed absorption efficiencies for PFOA and PFOS in
humans being 0.66, 0.8 and 0.91, which were estimated from
a study in rodents.10,48 These values have been continuously
used in later modelling studies on direct as well as indirect
exposure to PFOS and PFOA precursors.5,24 The biotransforma-
tion factors for PFOS precursors were suggested to lie between 9
and >32%.7 However, the authors themselves suspected these
values to be underestimated.

Current estimations for the half-life and volume of distri-
bution used in several model approaches seem to be accurate,
as indicated by successful model results in other studies.18,34 In
the presented model, the values of the serum elimination half-
life and of the volume of distribution of PFOA, PFOS and PFHxS
were taken from a study that successfully estimated serum
concentration trends of PFOA and PFOS in adults.35 Verner et al.
(2016) used slightly different values for the half-life and volume
of distribution of PFOA and PFOS compared to the present
work. Despite the application of different values, the resulting
modelled serum concentrations in both studies showed a good
agreement with the respective measured data.

The sex-specic trends in body burdens in the child
cohort20 could not be explained by the model, as the sex-
dependent differences in exposure to PFAAs in humans are
currently not known. The only considered individual specic
exposure parameters in the model were the individual PFAS
exposure concentrations to dust and air and the children's
body weight at 10.5 years of age. Harada et al. (2005) found that
menstruation is an elimination pathway of PFOA and PFOS
specically for adolescent women, however, not for prepu-
bescent age classes.53 Another possible explanation could be
the differing behaviour of boys and girls.12 Previous investi-
gations refer to differences in sex-hormone regulation that
could be responsible for sex-specic PFAA serum trends.18,35 A
sex-dependent renal elimination of PFOA and other PFCAs was
observed in rats, which was concluded to be regulated by
hormones that inuence the expression of renal organic anion
transporters (OATs).51,52 Another study explored the role of
OATs in the renal reabsorption of PFOA using a rat pharma-
cokinetic model.54 The model results strongly suggest that
observed sex-specic serum half-lives of PFOA in rats are
This journal is © The Royal Society of Chemistry 2019
determined by the expression of OATs in the kidney cells. If
such renal transporter specic ux rates of PFOA would
become available for human kidney cells, Worley and Fisher's
model approach could be used to explain and model the
observed sex-specic serum trends of PFOA in the Finnish
child cohort.54 However, there are still large knowledge gaps in
sex-specic characteristics of human PFAA metabolism and
the toxicokinetics of PFAAs in young children are generally
unknown.

The model's limitations emphasise the importance to
further investigate the role of indirect exposure via precursors,
which warrants a meaningful input for future PFOA and PFOS
exposure assessments. Specically, more accurate estimations
on absorption efficiencies and biotransformation factors as well
as a rigorous inclusion of PFOA and PFOS precursor measure-
ments in food items are needed.
4.5. PFHxS exposure modelling

Although the results of simulated PFHxS serum concentrations
for each child were comparable or even better than of PFOA and
PFOS for each child, the median PFHxS serum concentration
was underestimated in the low and intermediate exposure
scenario.

The PFHxS EDIs from this study were 10- to 17-times smaller
compared to available EDIs from two other studies. In this
current work, the PFHxS intermediate exposure scenario EDI
was 0.003 ng per kg bw per d for 10.5 year-olds, while the dietary
PFHxS intakes in previous studies were estimated to be 0.05 ng
per kg bw per d (median of European adults55) and 0.031 ng per
kg bw per d (general Swedish population44). Also, the top-down
estimate of the PFHxS intake of 0.011 ng per kg bw per d was
higher compared to the EDI of the intermediate exposure
scenario of 0.003 ng per kg bw per d (Table 3).

Multiple studies indicate an underestimated PFHxS intake,
which are summarized in the following paragraph. An under-
estimation of PFHxS exposure to humans was also found in
a study that reconstructed half-lives of PFOA, PFOS and PFHxS
from American and Australian cohorts in a population based
PK model.35 Verner et al. (2016) underestimated PFHxS expo-
sure to children aer the breastfeeding period and they
proposed additional, currently unknown exposure sources as
the cause of underestimation.17 Other authors found indica-
tions of an ongoing PFHxS exposure caused by an unknown
pathway via PFHxS containing products or contaminated house
dust.35,56

Due to the large contribution of dust intake to the total EDIs
in the low and intermediate scenario (Fig. 1), the uncertainty of
ingested dust amount adds to the variability in PFHxS exposure.
A Norwegian study considered the ingested dust amount as the
main uncertainty in their model input based on the hypothesis
that dust intake plays a major role in children's exposure to
PFAAs.42 Current estimates for dust ingestion are imprecise as
reected by the recommendations in the Exposure Factors
Handbook of the US-Environmental Protection Agency.32 There,
the amount of dust ingested by 1 to 21 year-olds was estimated
to be 60 to 100 mg of dust per day, which is potentially
Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886 | 1883
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inadequate to accurately represent the dust intake of the
specic age classes.32 The studies used to derive the US EPA's
recommended dust intakes, are based on estimations from
trace elements (such as lead) in fecal, urine, blood and dust
samples, which might cause positive or negative discrepancies
in the dust intake estimations.32 Another uncertainty was the
fact that exposure to dust is location-dependent, which intro-
duces a bias if dust sampling took place in one location only
(e.g. children's homes) and other places of potential exposure,
such as the child's visited nursery or school, were excluded.32

The inclusion of PFHxS precursors would clearly benet the
exposure assessment to PFHxS. PFHxS precursor measurements
are lacking in the used datasets (Table 1) and neither
biotransformation factors nor absorption efficiencies of these
compounds have been estimated so far. The input parameters
used to calculate the PFHxS exposure may be responsible for the
underestimated PFHxS serum concentrations, as they are ex-
pected to be inaccurate (use of apparent half-life) or unknown
(volume of distribution).

Another possibility can be that the measured PFHxS
concentrations in serum samples could have been elevated due
to interferences in the chemical analysis, thus masking the true
PFHxS concentrations in the samples. Endogenous steroid
sulfates in human blood samples are known to interfere with
PFHxS signals if a non-isomer separation method was applied.57

However, this problem was addressed by analysing the chil-
dren's serum samples at a slightly different transition mass.58

In summary, to assess the exposure to PFHxS accurately,
future research efforts should focus on potentially missing
exposure pathways to PFHxS and its precursors and the deri-
vation of pharmacokinetic parameters specically for this
compound, as they are currently not documented.

5. Conclusions

To our knowledge the present work is the only one to thor-
oughly assess children's exposure to PFOA, PFOS and PFHxS
aer infancy up to an age, at which the children's exposure to
PFAAs is considerably more complex. The results show that
children's exposure to PFOA and PFOS becomes more similar
to that of adult's with increasing age. This is indicated by the
dominance of the dietary exposure pathway in the intake
calculations for the 10.5 year-olds and the uncertainty anal-
ysis of the dynamic model. However, to elucidate which
exposure sources (i.e. diet, dust or air) are crucial aer infancy
and before entering adolescence, future or ongoing bio-
monitoring studies should monitor the corresponding expo-
sure media at appropriate time intervals. The ndings
demonstrate that the exposure of human populations to
a phased out chemical such as PFOA or PFOS can continue for
a prolonged period aer the phase out to an extent that the
potential intake still raises concern for health impacts. This
work indicates that the exposure to PFHxS is not completely
understood and further investigation is needed for (1)
potentially missing exposure pathways, (2) the role of indirect
exposure via PFHxS precursors and (3) to rene PFHxS phar-
macokinetic parameters.
1884 | Environ. Sci.: Processes Impacts, 2019, 21, 1875–1886
Conflicts of interest

There are no conicts to declare.

Acknowledgements

The authors thank Robin Vestergren and the authors of the
LUKAS2 study and the CEEP study for data sharing, in particular
Jani Koponen (THL, National Institute for Health and Welfare,
Finland). Further, we thank Jonathan Benskin, Paul Glantz and
the anonymous reviewers for valuable comments and the
Department of Environmental Science and Analytical Chemistry
at Stockholm University for nancial support.

References

1 H. Fromme, S. A. Tittlemier, W. Völkel, M. Wilhelm and
D. Twardella, Peruorinated compounds – Exposure
assessment for the general population in western
countries, Int. J. Hyg. Environ. Health, 2009, 212(3), 239–270.

2 R. Vestergren and I. T. Cousins, Tracking the Pathways of
Human Exposure to Peruorocarboxylates, Environ. Sci.
Technol., 2009, 43(15), 5565–5575.

3 A. O. De Silva, C. N. Allard, C. Spencer, G. M. Webster and
M. Shoeib, Phosphorus-Containing Fluorinated Organics:
Polyuoroalkyl Phosphoric Acid Diesters (diPAPs),
Peruorophosphonates (PFPAs), and
Peruorophosphinates (PFPIAs) in Residential Indoor
Dust, Environ. Sci. Technol., 2012, 46(22), 12575–12582.

4 M. Shoeib, T. Harner, G. M. Webster and S. C. Lee, Indoor
Sources of Poly- and Peruorinated Compounds (PFCS) in
Vancouver, Canada: Implications for Human Exposure,
Environ. Sci. Technol., 2011, 45(19), 7999–8005.

5 W. A. Gebbink, U. Berger and I. T. Cousins, Estimating
human exposure to PFOS isomers and PFCA homologues:
The relative importance of direct and indirect (precursor)
exposure, Environ. Int., 2015, 74, 160–169.

6 M. Filipovic and U. Berger, Are peruoroalkyl acids in waste
water treatment plant effluents the result of primary
emissions from the technosphere or of environmental
recirculation?, Chemosphere, 2015, 129, 74–80.

7 J. W. Martin, B. J. Asher, S. Beesoon, J. P. Benskin and
M. S. Ross, PFOS or PreFOS? Are peruorooctane sulfonate
precursors (PreFOS) important determinants of human and
environmental peruorooctane sulfonate (PFOS) exposure?,
J. Environ. Monit., 2010, 12(11), 1979–2004.

8 A. A. Rand and S. A. Mabury, Is there a human health risk
associated with indirect exposure to peruoroalkyl
carboxylates (PFCAs)?, Toxicology, 2017, 375, 28–36.

9 E. Papadopoulou, A. Sabaredzovic, E. Namork,
U. C. Nygaard, B. Granum and L. S. Haug, Exposure of
Norwegian toddlers to peruoroalkyl substances (PFAS):
The association with breastfeeding and maternal PFAS
concentrations, Environ. Int., 2016, 94, 687–694.

10 D. Trudel, L. Horowitz, M. Wormuth, M. Scheringer,
I. T. Cousins and K. Hungerbühler, Estimating Consumer
Exposure to PFOS and PFOA, Risk Anal., 2008, 28(2), 251–269.
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9em00323a


Paper Environmental Science: Processes & Impacts

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
ág

ús
t 2

01
9.

 D
ow

nl
oa

de
d 

on
 1

1.
9.

20
24

 1
7:

03
:4

9.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
11 E. Dellatte, G. Brambilla, S. P. De Filippis, A. di Domenico,
J. Pulkrabova, C. Eschauzier, S. Klenow, G. Heinemeyer
and P. de Voogt, Occurrence of selected peruorinated
alkyl acids in lunch meals served at school canteens in
Italy and their relevance for children's intake, Food Addit.
Contam., Part A, 2013, 30(9), 1590–1597.

12 K. Winkens. Estimating children's exposure to per- and
polyuoroalkyl substances. Stockholm University. 2018.

13 K. Winkens, R. Vestergren, U. Berger and I. T. Cousins, Early
life exposure to per- and polyuoroalkyl substances (PFASs):
A critical review, Emerging Contam., 2017, 3(2), 55–68.

14 EFSA, Risk to human health related to the presence of
peruorooctane sulfonic acid and peruorooctanoic acid
in food, EFSA J., 2018, 16(12), e05194.

15 P. Grandjean, C. Heilmann, P. Weihe, F. Nielsen,
U. B. Mogensen, A. Timmermann and E. Budtz-
Jørgensenet, Estimated exposures to peruorinated
compounds in infancy predict attenuated vaccine antibody
concentrations at age 5-years, J. Immunotoxicol., 2017,
14(1), 188–195.

16 A. E. Loccisano, M. P. Longnecker, J. L. Campbell,
M. E. Andersen and H. J. Clewell, Development of Pbpk
Models for Pfoa and Pfos for Human Pregnancy and
Lactation Life Stages, J. Toxicol. Environ. Health, Part A,
2013, 76(1), 25–57.

17 M. A. Verner, G. Ngueta, E. T. Jensen, H. Fromme, W. Volkel,
U. C. Nygaard, B. Granum and M. P. Longnecker, A Simple
Pharmacokinetic Model of Prenatal and Postnatal
Exposure to Peruoroalkyl Substances (PFASs), Environ. Sci.
Technol., 2016, 50(2), 978–986.

18 F. Wong, M. MacLeod, J. F. Mueller and I. T. Cousins,
Enhanced Elimination of Peruorooctane Sulfonic Acid by
Menstruating Women: Evidence from Population-Based
Pharmacokinetic Modeling, Environ. Sci. Technol., 2014,
48(15), 8807–8814.

19 A. M. Karvonen, A. Hyvärinen, M. Roponen, M. Hoffmann,
M. Korppi, S. Remes, E. von Mutius, A. Nevalainen and
J. Pekkanen, Conrmed Moisture Damage at Home,
Respiratory Symptoms and Atopy in Early Life: A Birth-
Cohort Study, Pediatrics, 2009, 124(2), e329–e338.

20 J. Koponen, K. Winkens, R. Airaksinen, U. Berger,
R. Vestergren, I. T. Cousins, A. M. Karvonen, J. Pekkanen
and H. Kiviranta, Longitudinal trends of per- and
polyuoroalkyl substances in children's serum, Environ.
Int., 2018, 121, 591–599.

21 K. Winkens, J. Koponen, J. Schuster, M. Shoeib,
R. Vestergren, U. Berger, A. M. Karvonen, J. Pekkanen,
H. Kiviranta and I. T. Cousins, Peruoroalkyl acids and
their precursors in indoor air sampled in children's
bedrooms, Environ. Pollut., 2017, 222, 423–432.

22 K. Winkens, G. Giovanoulis, J. Koponen, R. Vestergren,
U. Berger, A. M. Karvonen, J. Pekkanen, H. Kiviranta and
I. T. Cousins, Peruoroalkyl acids and their precursors in
oor dust of children's bedrooms – Implications for indoor
exposure, Environ. Int., 2018, 119, 493–502.

23 M. Lorber and P. P. Egeghy, Simple Intake and
Pharmacokinetic Modeling to Characterize Exposure of
This journal is © The Royal Society of Chemistry 2019
Americans to Peruoroctanoic Acid, PFOA, Environ. Sci.
Technol., 2011, 45(19), 8006–8014.

24 R. Vestergren, I. T. Cousins, D. Trudel, M. Wormuth and
M. Scheringer, Estimating the contribution of precursor
compounds in consumer exposure to PFOS and PFOA,
Chemosphere, 2008, 73(10), 1617–1624.

25 E. Papadopoulou, S. Poothong, J. Koekkoek, L. Lucattini,
J. A. Padilla-Sánchez, M. Haugen, D. Herzke, S. Valdersnes,
A. Maage, I. T. Cousins, P. E. G. Leonards and
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