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The Internet of Things (loT) has limitless possibilities for applications in the entire spectrum of our daily lives,
from healthcare to automobiles to public safety. The loT is expected to grow into a trillion dollar industry
worldwide over the next decade. The components of the |oT will be integrated with cloud computing,
which will facilitate easy access and analysis of big data stored in cloud systems across the globe. Radio
frequency identification (RFID) technology is based on wireless communication systems and offers easy
integration into the Internet cloud system. The potential of RFID tag sensor technologies has been
studied in different industrial sectors including healthcare, food safety, environmental pollution, anti-
counterfeiting of bank-notes and fake medicines, factories, customer shopping behavior, logistics, public
transport, and safety. In this review article, the role of inkjet-printed RFID tag sensors is described in the
emerging fields of loT and the Internet of Nano Things (IoNT). This review is concerned with the use of
inkjet-printed nanomaterials to fabricate RFID-enabled devices as a component of loT technology.
Inkjet-printed flexible RFID tag sensors based on nanomaterials including multilayer graphene, carbon
nanotubes, gold, silver and copper nanoparticles, conductive polymers and their based composites used
for detecting toxic gases and chemicals are discussed. Inkjet-printed nanomaterial-based RFID tag
sensors that can be easily printed on flexible paper, plastic, textile, glass, and metallic surfaces, show
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Introduction

Inkjet-printing is one of the low-cost techniques for directly
printing electronic and optoelectronic materials on large-area
surfaces for applications in flexible printed electronics.
Different types of conductive materials including silver, copper,
conducting polymers, carbon nanotubes, and graphene oxide
have been used in developing nanoparticle and organometallic
inks for fabricating thin-film transistors (TFTs), solar cells,
light-emitting devices (LEDs), display devices, tissue engi-
neering materials, sensors, and radio frequency identification
(RFID) tags.? Reviews describing the applications of RFID
technologies, the properties of different inkjet inks, and RFID-
enabled communication systems are available in the litera-
ture.* Inkjet-printed RFID tags have also attracted much
attention from the scientific community for developing wireless
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issues for RFID tag sensors are analyzed.

sensors as a component of the Internet of Things (IoT)
technology.

The Internet has changed human life and social interactions
by connecting each other by sharing information through
a complex communication network. Mobile phones and their
easy connectivity to the Internet have become a major force not
only in social media but also in developing new technologies.
The Internet of Things (IoT) refers to a worldwide inter-
connected network of functional machines and electronic
devices which can interact with each other as well as with
human beings.* The Internet, smartphones, and their connec-
tions to billions of things has created the Internet of Things
(IoT), which has no limits in connecting objects and exploiting
their applications for the social benefits of the worldwide pop-
ulation. The number of connected objects is estimated to grow
to 50 billion, while equivalently growing to 1.8 trillion things by
2020 via the Internet according to a reported published by
Cisco.” This growth is a small fraction of connectivity, which
means that there are tremendous opportunities of business
growth in this area. The McKinsey Global Institute forecasted
that the IoT will grow to 11 trillion dollars economy by 2025,
including the areas of semiconductor industries, healthcare,
supply chains, public transport, and safety.® The Internet of
Things has also created great demand for new technologies
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such as big data, cloud computing and wireless sensing for
future economic growth.

Over the past two decades, tremendous progress for the
applications of nanotechnology in electronics, medicine,
energy, communication, transportation, agriculture, and food
has occurred based on newly developed nanoscale materials
and devices.”™ A significant impact has been seen in the field of
nanoelectronics, where faster nanotransistors have been
developed for communication technologies.” In the medical
sector, nanomedicine has been used in a range of healthcare
industries, including biological imaging, diagnosis tools, and
pharmaceutical therapeutic agents for disease prevention and
treatments including cancer.” Furthermore, nanoparticles
(NPs) have also played an important role in stem cell research
for differentiating stem cells, contrast agent for stem cell
imaging, tissue engineering, regenerative medicine, and treat-
ment of various diseases.'” Dressler and Fischer* described
nano-communication as connecting in-body nanoscale
communication system with body area networks. Internet-
connected devices and communication network will play
a major role in the IoT sector in order to access and analyze big
data related to a range of nano things. Nanotechnology-based
IoT has created a new domain: the Internet of nano things
(IoNT).?° The emerging applications of mobile phones via IoT in
servicing consumers from healthcare to public transport and
the use of nanomaterials-based sensor in flexible wearable
electronics will impact both the current semiconductor industry
and all other peripheral industrial sectors that are involved in
our daily lives; therefore, the integration of nanoscale devices
with emerging IoT is imminent.

In this review article, IoT and nanotechnology are briefly
introduced in terms of their impact on future technologies.
IoNT will be gaining attention in all areas of nanotechnology
such as electronics, nanomedicine, energy, agriculture, and
health industries. The role of radio-frequency identification
(RFID) systems in emerging IoT and IoNT technologies is dis-
cussed. The aim of this review is the use of nanomaterial-based
ink for developing RFID tag sensors. The inkjet-printed RFID
tag sensors based on polypyrrole, graphene, silver, copper and
gold NPs, carbon nanotubes (CNTs), and other nanomaterials,
which can be easily printed on flexible plastic, textile, paper,
glass, and metallic surfaces are summarized. Additionally, the
potential of RFID tag sensors in flexible and wearable elec-
tronics technologies as well as their challenges, such as health
hazard, energy requirements and safety issues, are described.

Radio-frequency identification (RFID)
tag sensors

Radio frequency (RF) electronics that uses a passive electro-
magnetic device and an active electronic transistor to trigger,
receive, and process information play an important role in
wireless communication systems.***® The location markers
generally use radio frequency identification (RFID) tag-based
sensors. It is the networks of high-performance sensors and
actuators connected to the computing systems and the Internet
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that would facilitate the future developments in the field of IoT
and IoNT technologies. RFID technology is a wireless commu-
nication method where objects wearing RFID tags (microchips)
are identified and tracked utilizing RF waves. RFID system has
two basic components: a memory microchip (tag) that store
electronic information and an antenna-connected reader
network to receive and analyze signals. A wireless sensor is used
as well. There are two types of RFID tags: an active RFID tag that
requires power to operate and a passive RFID tag that does not
requires any power (battery-free) yielding to a longer lifespan.
The electromagnetic waves (RF signal) emitted by the RFID
reader activate the RFID tag. Joint Information Systems
Committee (JISC) Technology and Standards Watch* classified
RFID operating frequencies into 5 different range; low
frequency (30-300 kHz), high frequency (3-30 MHz), ultra-high
frequency (UHF) (300 MHz to 3 GHz) and microwave frequency
(2-30 GHz) corresponding to an approximate reading range of
less than 0.5 meter, up to 1.5 meters, up to 100 meters at 433
MHz, and 0.5 to 5 meters between 865-956 MHz, and finally up
to 10 meters, respectively. This covers an entire range of elec-
tromagnetic spectrum. However, a passive UHF-RFID tag using
electric dipole antennas having a 17.5 m tag read range at the
902-928 MHz frequency band has been demonstrated.*® The
RFID tags can be attached to objects such as animals or elec-
tronic devices for identification and traceability purpose, which
give RFID tagging a broad range of applications, including
identification of animals and human, passports, use in hospi-
tals, sports, academic and research institutes, tracking items in
grocery stores and supermarkets, public transportation and
logistics, and other commercial purposes. RFID technology is
also a complementary tool to barcodes. However, with a fore-
seen fast growth in the IoT area, RFID microchip technology is
expected to succeed barcode industry in the near future. RFID
technology offers several advantages: a passive RFID tag sensor
requires no battery, the reading range is up to 10 meters, and
the sensors can be manufactured at a low cost.

RFID technology will become an integral part of IoT in many
industrial sectors, where applications of RFID include health-
care, energy, public transportation and safety, retailing, agri-
culture, food packaging, construction, and resource
management in factories.**> RFID tagging is also playing an
important role in the supply chain from manufacturers to
retailers to consumers to provide real-time information on
identification and traceability of different types of products,
which improves efficiency and helps increase revenue with
[0T.>**” RFID tags help analyze inventory levels, logistics, and
increase product orders in e-grocery supply chain by the IoT
applications.**** RFID tracks the level of inventory items in real
time, enabling flexible warehousing.**** Applications of RFID
tagging systems have been reported in the fields of railway
transport,*® bank note anti-counterfeiting,”” fake medicines,*®
food products safety,*>* customer shopping behavior,*"**
subscriber identity module (SIM) cards,* counterfeit wines and
wine fraud,* cultural heritage protection,® tracking the
behavior and habitat of fish in deep waters,*® gesture detec-
tion,*” agriculture,*® and hospitals for healthcare.>** The use of
RFID technology in the healthcare industry is rapidly growing
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and is being used for real-time tracking of patients, improving
their safety, and in management and medical supplies in
hospitals.®*”® RFID tag-based food poisoning prevention
sensors could save human life and reduce medical costs
worldwide that occur due to food poisoning borne human
fatalities and related diseases.” The RFID tagging is also
a powerful tool in the field of combinatorial chemistry. Vastl
et al.”® used a new approach for chemical library synthesis and
screening using silicon micro-transponders (p-chips) to
alibrary of variants of the hemagglutinin (HA) peptide sequence
in order to bind with an anti-HA antibody (Fig. 1). A library of
108 hemagglutinin (HA) peptide variants was prepared using
a split-and-pool approach, and ECses for each variant was
recorded on p-chips where 80% correlation was observed.
Therefore RFID technology can be used in combinatorial
synthesis for screening and reading chemical IDs.

Chipless RFID tags are becoming more popular because they
can be inexpensively manufactured due to the elimination of
the IC chip component compared with traditional chip-
equipped RFID tags. The chipless passive RFID tags can be
easily inkjet-printed on a variety of flexible substrates including
paper, plastic, metal, and textile surfaces and show stability
against oxidative environmental conditions.”**® The applica-
tions of chipless RFID tag have been demonstrated for item
tracking,® humidity sensing,*>* temperature,® light,* pipeline
for corrosion,® and evacuation procedures.”” The battery-free
(passive) chipless RFID tag is an ideal candidate for wireless
communication technology for commercial applications in
emerging IoT industries.>* The use of RFID and wireless sensor
networks (WSN) in IoT ecosystems enables a wide range of
smartphone applications, from farming to delivery of food
products to grocery stores, and inventory maintenance to food
safety.®*** RFID tagging is gaining more attention due to the
Internet, availability of abundant data worldwide, and the low
manufacturing cost of RF chips. RFID technology is gaining
further momentum with the emergence of IoT and will create
tremendous demand of low-cost tags and sensors for wearable
electronics. The IoT has been integrated with cloud computing,
which will play a major role in analyzing big data stored in cloud
systems.®*%> The schematic of an RFID tag sensor is illustrated
in Fig. 2, where the resonant antenna is coated with a thin layer
of chemically sensitive thin film and has an IC memory
microchip.”® RFID tag sensors will be the integral part of
emerging IoT and will have a broad range of applications.

Combinatorial synthesis and screening on encoded silicon chips

oo
—_— ¢ %0 %
] 0% ®
RFID Tracking %o e %
o~ ] ® ‘i [
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®
®e

Fig. 1 RFID tracking in the synthesis, screening, and reading of
chemical IDs for the combinatorial chemistry. [Reprinted with
permission from ref. 75 Copyright © American Chemical Society.]
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Fig. 2 Schematic illustration of a RFID tag sensor. The resonant
antenna is coated with a chemically sensitive thin film and has an IC
memory chip. [Reprinted with permission from ref. 50 Copyright ©
Elsevier.]

In reference to IoT applications, Kassal et al.'® demonstrated
a low-power RFID tag sensor for potentiometric sensitivity. The
memory chip in the RFID tag has the capability to measure and
eventually store the electrode potential, which is thereafter
wirelessly transferred to a smartphone by near field communi-
cation (NFC). Fig. 3 shows the RFID/NFC-based chemical tag
sensor platform and its operating principle. The RFID/NFC tag
chemical sensor is suitable for detecting pH or ion-selective
electrodes as part of a chemical sensor networks for IoT. The
practical application of RFID/NFC tag sensor was verified for
milk spoilage by monitoring the pH value of souring milk over
a period of 6 days. The pH of the souring milk decreased to 2.4
for first 2 days due to lactic acid formation. Thereafter the pH
value stabilized at 4.3, which was in a good agreement with the
4.28 pH value measured by a laboratory meter. Furthermore,
a buffer solution of pH 6.00 was monitored for 5 days where
RFID tag recorded data at an interval of every 10 min and
transferred the data to the PC. The measurements showed the
fluctuation of pH value between 5.89 and 6.10 over the 5 days,
averaged to a pH of 6.03. Therefore, RFID/NFC tag sensors show
potential for IoT applications.

Inkjet-printed nanomaterials for
flexible electronics

Wearable technologies have created a great demand for the
inkjet printing process to fabricate flexible electronic devices
such as organic thin film transistors, light-emitting diodes
(LEDs), displays, solar cells, supercapacitors, photodetectors,
sensors, and RFID tags on a large scale at low cost.>'* The inkjet
printing process is simple, and it is cost-effective to print large-
area electronic and optoelectronic devices on a variety of rigid
and flexible substrates including metals, ceramics, semi-
conductor wafers, glasses, polymers, paper, cotton, and
synthetic textiles."*'** The flexible plastic substrates of poly(-
ethylene terephthalate) (PET), poly(dimethylsiloxane) (PDMS),
poly(methylmethacrylate) (PMMA), and polyimide (PI) have
been widely used for developing flexible and stretchable elec-
tronic devices. The well-defined, high-resolution and conduc-
tive patterns can easily be fabricated with inkjet printing on
different flexible and stretchable substrates for wearable
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Fig.3 Schematicillustration of an RFID-based tag chemical sensor platform and its operating principle. [Reprinted with permission from ref. 103.

Copyright © Elsevier.]

electronics. Selective examples of inkjet printing technology are
provided here. A typical inkjet printing process on a substrate is
shown in Fig. 4(a) where photonic crystal patterned lines were
inkjet printed in a very well-defined closed-packed assembly of
NPs.'”* Metal-based inkjet printing can provide high-quality
conductive patterning on a variety of substrates usable for
electronic applications such as RFID antennas, thin film

transistors (TFTs), LEDs, display devices and solar cells. Dzik
et al.** used inkjet printing of titania-silica hybrid coatings to
develop patterns onto glass and flexible PET substrates. The
well-defined patterns having a thickness between 40 nm and
400 nm were fabricated by inkjet printing 1 to 10 layers of
titania-silica hybrid. The printed patterns showed excellent
optical,

mechanical, and photocatalytic activities. The

(@)
Inkjet printing

Fig. 4 (a) Illustration of inkjet printing on a substrate where the ink droplets’ coalescence was controlled. Three red, green, and blue straight
photonic crystal (PC) lines indicate good optical properties. Optical microscope images of the inkjet-printed PC patterned lines showing
a closed-packed assembly of well-ordered nanoparticles (NPs). The inks contained either poly(styrene-methyl methacrylate-acrylic acid) NPs or
silicon dioxide or silver NPs for inkjet printing. [Reprinted with permission from ref. 105 Copyright © American Chemical Society.] The inter-
digitated electrode (IDE) devices fabricated by inkjet printing on different substrates. (b) Titania electrode inkjet printed over interdigitated ITO
layer from sol-gel calcination at 450 °C, (c) titania—silica hybrid sol inkjet printed on Pt electrodes, and (d) 10 x 10 cm prototype IDE device
fabricated on a flexible PET substrate using inkjet printing with silver NP-based ink. [Reprinted with permission from ref. 106 Copyright ©
American Chemical Society.]
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interdigitated photoelectrochemical cells were inkjet printed on
flexible PET substrates utilizing the titania-silica hybrid pho-
tocatalyst. Fig. 4(b)-(d) shows application aspects of inkjet
printing for electronics where interdigitated electrode (IDE)
devices were inkjet printed using titania, titania-silica hybrid,
and silver NP-based inks. Dzik et al.' also developed inter-
digitated photoelectrochemical cells by inkjet printing using
a titanium propoxide sol-gel, which was transformed into
TiO, after annealing. The flexible and transparent micro-
supercapacitors were developed using graphene-flake ink for
printing interdigitated electrodes that exhibited the capaci-
tances of 16 pF cm ™2 and 99 pF cm ™2 at 90% and 71% trans-
mittance, respectively.’® The graphene-ink-based IDE devices
were flexible and showed negligible degradation during
mechanical bending. Different types of photonic crystals have
been used for inkjet printing to create structural color patterns
for applications in security and anticounterfeiting.****

The inkjet printing of silver NP ink on flexible substrates has
shown great potential for printing conductive patterns for
wearable electronic devices. Jiang et al.'*® reported printing of
silver nanoparticle (AgNP) ink on top of the patterned polymer
nanostructures where the polymer nanostructures molded the
printed silver and yielding into structural colors. Fig. 5 shows
the structural coloration process using molded ink on nano-
structured surface (MIONS) technique. The AgNP ink is molded
by the underlying prefabricated nanocone arrays on poly-
ethylene terephthalate (PET) substrate.

The silver nanostructure shows different surface profiles;
a silver nanocone arrays (NCA) when viewing from the top and
a silver nanowell array (NWA) when viewing from the bottom,

(@) inkjet head

—%

silver

polymer
nanostructures T~
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but both function as 2D gratings in order to diffract light of
a particular spectral band. Photographs show the inkjet-printed
color bars of red, green, blue, cyan, magenta, and yellow with
different brightness, and the SEM image of AgNPs printed onto
the PET nanocone arrays. The different colors were tunable by
modifying the nanostructured geometries and shapes where
a very wide range of colors can be obtained by mixing the red
(R), green (G), and blue (B) colors originated from silver dots
printed on different geometrical nanostructures. The trans-
parent polyethylene terephthalate (PET) substrate patterned
with diffractive geometrical nanostructures was used for
printing full color images. The final mixed color is determined
by the number of silver dots printed on the each subpixel which
is “dots per subpixel” (DPSP). Each subpixel accommodates
a maximum of 20 silver dots so the DPSP is 20. This indicates
that 21 different brightness levels of colors are controlled using
different density of printed silver dots, and therefore 9261
different colors (21 x 21 x 21) can be digitally printed with
silver dots on each effective pixel. The MIONS printing allows
cost-effective printing of a full-color spectrum of different
images. The MIONS can be effectively used for generating
plasmonic pixels for security and anticounterfeiting purposes.

The fabrication of electronic devices by the inkjet printing
technique is inexpensive compared with existing chemical
vapor deposition (CVD), physical vapor deposition (PVD),
atomic layer deposition (ALD), lithography, etc. Inkjet inks for
conductive metal printing patterns are also obtained from the
metal complexes precursor inks after decomposing precursor
molecules and undesirable byproducts by sintering at elevated
temperatures.'™ Sintering plays the most important role for

index-matching film

Fig. 5

(a) Structural coloration process using molded ink on nanostructured surfaces (MIONS) technique. Inkjet-printed silver nanoparticle

(AgNP) ink is molded by the underlying polymeric nanostructures of polyethylene terephthalate (PET) substrate. An index-matching lamination
process deactivates the unprinted polymeric PET nanostructures exhibiting a transparent background. (b) Schematic illustration of the structural
colors observed from the back side of the inkjet-printed silver dot. (c) Color mixing of red, green, and blue pixels. Photographs show printed color
bars of red, green, blue, cyan, magenta, and yellow colors with gradient brightness. (d) Cross-sectional SEM image of AgNPs printed onto the PET
nanocones. [Reprinted with permission from ref. 113 Copyright © American Chemical Society.]
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preparing conductive metal printed patterns on different
substrates in order to remove unwanted voids, organic solvents,
protective surfactants and non-conductive materials without
damaging flexible substrates. Kamyshny et al'® wrote an
excellent review on the metal-based inkjet inks applicable for
printed electronics and explained inks based on metal nano-
particles (MNPs) and metallo-organic complexes (MC) as well
as compared sintering methods such as thermal annealing,
photonic sintering under intense light irradiation, plasma sin-
tering, microwave radiation, electrical voltage, and chemical
agents triggered sintering in view of their applicability for MNPs
and MC-based inks.

Silver conductive inks provide wide examples of both inkjet
printed inks based on nanoparticles and molecular precursors
which have been widely used in printed electronic circuits for
developing different flexible devices including RFID tags.
Table 1 lists the electrical resistivities and sintering conditions
of silver conductive patterns inkjet printed on different
substrates using AgNPs and metal-organic-decomposition
(MOD) based inks."***** The resistivity remains scattered
between 5.8 pQ2 cm to 30 pQ cm between AgNPs and MOD inks
which is higher compared with resistivity of bulk silver. Dong
et al."** prepared metal-organic-decomposition (MOD) colorless
silver ink by dissolving silver oxalate powder in a mixture of
ethyl alcohol, ethylamine, and ethylene glycol after continu-
ously stirring for 30 min at 0 °C. The MOD ink having 27.6%
silver contents was used for inkjet printing of silver conductive
patterns on flexible PI substrate which showed high reflection
with resistivity of 8.6 pQ cm after curing at 150 °C for 30 min.
Shen et al.*** prepared conductive silver paste from silver neo-
decanoate precursor which was soluble in organic solvents and
produced metallic silver after sintering at <200 °C. The paste
had 25 wt% silver content and produced silver lines on
a substrate by micro-pen direct-writing process. The silver lines
showed resistivity of 9 x 107° Q cm and 5.8 x 107° Q cm after
sintering at 115 °C and 150 °C each for 60 min, respectively. The
resistivity of 3 x 107° Q em was obtained after sintering 300 °C
which was comparable with bulk silver. Sintering of metallic
and MOD inkjet inks directly affects their electrical resistivity
which has been discussed throughout this article.
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Inkjet-printed flexible electronic devices have been used in
supercapacitors,*®® thin-film transistors (TFTs) and inverters,'*’
differentiation of mesenchymal stem cells,"” mammalian cell
structures,'* memory,**” and sensors.**" Inkjet printing will be
a low-cost tool for rapid manufacturing of flexible electronic
devices."®>'** Various types of conducting inks have been used
for the inkjet printing process, including photonic crystals,***
metal NPs,"**'** graphene,"*™*° and polymers."”***" Li et al.**’
fabricated metal oxide thin-film transistors (MO-TFTs) by the
inkjet printing method without using photolithography. The
ITO ink-based TFTs had the shortest channel length of 3.5 um
and showed the mobility of 4.9 cm® V™' s~! and on/off current
ratio over 10° indicating inkjet printing will be a cost-effective
approach to fabricate short-channel TFTs. Among metal NPs,
silver NP ink is more suitable due to its high electrical
conductivity than those of copper and aluminum NP inks,
because the latter ones, though electrically conductive, tend to
easily oxidize. The use of graphene inks has become more
popular because of their cost-effective easy processing and
coating on large-area flexible devices in addition to their high
thermal, chemical, and mechanical stability. RFID-based tag
shows promise in flexible electronics from smart-skin to food
packaging.>>*>*

Polypyrrole nanoparticle-based RFID
tag sensors

The conjugated polymers such as polythiophene, polypyrrole,
polyaniline, poly(p-phenylene vinylene), poly(p-phenylene
sulfide), polycarbazole, polyacetylene, polydiacetylene, and
their based derivatives show high electrical conductivity upon
chemical doping. They have been investigated for many appli-
cations including thin-film transistors, solar cells, electrolumi-
nescent devices, light-emitting diodes (LEDs), flat-panel
displays, photodetectors, and sensors.'” Verma et al.'* fabri-
cated six GHz microstrip patch RFID antennas using two con-
ducting polymers: poly(3,4-ethylenedioxythiophene) PEDOT
having a conductivity of 10 000 S m~" and polypyrrole (PPy)
having a conductivity of 2000 S m™". Their performance was
compared with that of copper patch antenna. The RFID patch

Table 1 Resistivity of inkjet printed conductive silver patterns using metal—-organic-decomposition (MOD) and silver nanoparticles on different

substrates after sintering at elevated temperatures

Silver ink Substrate Sintering conditions Resistivity (nQ cm) Ref.
Bulk Ag — — 1.50-1.60

Ag nanoplates (119.6 nm) PI 100 °C for 15 min 26.3 116
Ag nanoparticles (10-50 nm) Glass 260 °C for 3 min 16 117
Ag nanoparticles (21 nm) PI 140 °C for 30 min 30 118
Silver hexafluoro-acetylacetonate cyclooctadiene Glass 120 °C 16.8 119
Silver citrate PET 150 °C for 50 min 17 120
Silver oxalate PI 150 °C for 30 min 8.6 121
Silver neodecanoate Glass 115 °C for 150 min 5.8 122
Ag0,C(CH,OCH,);H PET 130 °C for 30 min 9.1 123
Ag,O/diethanolamine PET 75 °C for 20 min 6.0 124
AgNO;/1-dimethylamino-2-propanol PET 100 °C for 60 min 13.7 125
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antennas showed a maximum gain of 2.2 dB for PEDOT, 3.8 dB
for PPy, and 6.0 dB for copper. Verma et al.*** also demonstrated
the effect of PPy film thickness on the performance of the
microwave antenna. Microstrip antennas were developed on
a 3.2 mm thick FR-4 substrate with conducting PPy patches
having a conductivity of 2000 S m™~" for operation at 4.5 GHz.
The thickness of the PPy antenna patches was less than 168 pm
(one skin depth). The 40 pm thick films showed the lowest gain of
2.42 dB and a 38% radiation efficiency while 140 um thick film
exhibited the highest gain of 4.63 dB and a radiation efficiency of
65%. This study supported the fact that the patch thickness
influences antenna performance. A microstrip patch antenna
was also fabricated using 120 pm-thick PPy film on 3 mm-thick
Plexiglas™ substrate, which showed a gain of 5.01 dB at
2.18 GHz compared with a gain of 6.26 dB at 2.2 GHz for a Cu
patch antenna under similar conditions.'® Furthermore radia-
tion efficiency of PPy-patch antenna was 60% compared with
80% for Cu-patch antenna. The study indicates the potential of
conducting polymer for passive microwave antennas and
microwave circuit applications. Chavali et al'®® constructed
a wireless UHF-RF-powered sensor operating at 433 MHz for
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sensing gases and volatile organic vapors. The sensor chip was
made of a gas-sensitive composite thin film consisting of PPy and
modified multi-walled carbon nanotubes (m-MWCNTSs) which
were coated on interdigitated gold electrodes. The wireless sensor
chip based on PPy/m-MWCNTs composite thin film and RF
components detected anesthetic agent, fluoromethyl 2,2,2,-
trifluoro-1-(trifluoromethyl) ethyl ether (sevoflurane).

Jun et al.*** developed RFID-based wireless sensor systems
using carboxyl (-COOH) group functionalized polypyrrole
(C-PPy) spherical NPs having an average diameter of 60 nm. The
carboxylated polypyrrole NPs (C-PPy NPs) having different
weight ratio of pyrrole monomer (Py) to pyrrole-3-carboxylic
acid monomer (C-Py) of 45 : 1 (C-PPy_1), 30 : 1 (C-PPy_2), and
15:1 (C-PPy_3) were prepared. The chemical oxidation copo-
lymerization process was used to prepare C-PPy NPs. The C-PPy
NPs were characterized by the field-effect scanning electron
microscopy (FE-SEM), Fourier-transform infrared (FT-IR) and X-
ray photoelectron spectroscopy (XPS). The carboxyl functional
groups in the C-PPy NPs provide both stability as well as flexi-
bility after forming a covalent bond on the surface of aluminum
(Al) pattern of the RFID antenna. Fig. 6 shows the fabrication

Coating layer

Plastic layer coated-RFID tag

1. O, Plasma
2. APS /H,0

 sensing area

(a) Schematic illustration of the fabrication of UHF-RFID sensor tag using carboxyl group functionalized polypyrrole nanoparticles (C-PPy

NPs) where carboxyl functional groups are covalently bonded to the surface of the aluminum tag. (b) Photograph of an UHF RFID-based gas
sensor tag. (c) Field-effect scanning electron microscopy (FESEM) image of the C-PPy-NP-immobilized sensing area. [Reprinted with permission

from ref. 164 Copyright © American Chemical Society.]

This journal is © The Royal Society of Chemistry 2017

RSC Aadv., 2017, 7, 48597-48630 | 48603


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra07191d

Open Access Article. Published on 16 oktéber 2017. Downloaded on 10.7.2024 13:27:01.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances Review
@ s (b)
. ——C-PPy_1 8{ —c-PPy_1—C-PPy_2 —25 PPy_3
< —o—C-PPy_2 < 61 Ammonia 10ppm 'ipm
£ <. Sppm |
- é - l —
So0.0 - 24
= (14
3 < 04
o dVs/dlso = 0.2564 t t
dVa/dlss = 0.3125 21 teem gl F
05 dVsdlo = 0.4167 -4] Acetic acid " 2spom 1
j 0.0 0.1 0 200 400 600 800
Voltage (V) Time (s)
(o d 6
© 8{ —C-PPy_1—C-PPy_2 C-PPy 3 (@) A}\gnonia
6 7 °ff Ammonia 25 ppm _ 41o-CPPy1 %
S M A 2 fe-cPpy2 /
e 4 < afacppy3
-~ 24 E o/"’,a
g o 4 o g—o—o—
-4 ] Acetic acid 100 ppm Acetic acid
T - T -4 T T T
0 200 400 600 800 0.1 1 10 100
Time (s) Concentration (ppm)

Fig. 7 (a) Current—voltage (/-V) curves for the coated interdigitated array electrode with C-PPy_1 NPs (blue), C-PPy_2 NPs (red), and C-PPy_3
NPs (green), which have different ratios of the carboxyl (COOH) functional groups. The change in the normalized resistance after (b) sequential
exposure to varying concentrations of ammonia (0.1 ppm to 25 ppm) and acetic acid (1 ppm to 100 ppm) and (c) periodic exposure to 25 ppm of
ammonia gas and 100 ppm acetic acid vapors, and with (d) change in the normalized resistance with a varying range of ammonia and acetic acid
concentrations. [Reprinted with permission from ref. 164 Copyright © American Chemical Society.]

process of UHF-RFID sensor tag using C-PPy NPs, photograph coated with C-PPy NPs. A sensor was formed after C-PPy NPs
and FE-SEM image of the sensing area. The sensor system was covalently bonded to the passive UHF-RFID tag. Fig. 7 shows the
fabricated using an RFID reader antenna and a RFID sensor tag  current-voltage (I-V) curves for C-PPy_1 NPs, C-PPy_2 NPs, and
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Fig. 8 Photographs of the C-PPy nanoparticle-based UHF-RFID tag sensor under different deformation conditions: (a) flat, (b) twisting, and (c)
rolling. (d) Normalized reflectance change under flat, twisting, and rolling conditions. [Reprinted with permission from ref. 164 Copyright ©
American Chemical Society.]
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C-PPy_3 NPs and the change in the normalized resistance after
exposing to different concentrations of ammonia (0.1 ppm to
25 ppm) and acetic acid (1 ppm to 100 ppm) at room temper-
ature. The sensor exhibited a linear behavior between 1 to
100 ppm concentrations of ammonia and acetic acid while
a nonlinear sensitivity for less than 0.1 ppm concentrations.
The variation in the reflectance properties of C-PPy NPs-based
wireless chemical sensors as a function of the concentration
of ammonia and acetic acid was also studied. The C-PPY_3-
based sensor was able to detect ammonia gas up to a lowest
concentration of 0.1 ppm at 900 MHz and acetic acid concen-
tration of 1 ppm at room temperature.

The sensitivity of the RFID tag sensor increased from
0.1 ppm for C-PPy_3 NPs to 1 ppm for C-PPy_2 NPs to 5 ppm for
C-PPy_1 NPs as the ratio of carboxylic functional group
increased. The C-PPy_3 NPs based sensor was exposed to vapors
of 14 different volatile organic compounds (VOCs) at 10 ppm
fixed concentration. Among acetaldehyde, acetone, butane,
benzene, chloroform, methanol, ethanol, hexane, toluene,
naphthalene, dimethylamine, trimethylamine and acetic acid,
ammonia gas showed the highest sensitivity among all VOCs.
The electrical conductivity of the C-PPy NPs was also found to be
influenced by the relative humidity (RH) at room temperature
when RH increased over 55%. The C-PPy NPs showed a response
time of 2 s and recovery time of 55 s. Fig. 8 shows the photo-
graphs and reflectance change of the UHF-RFID tag sensor
under flat, twisting, and rolling conditions. The sensors
retained their flexibility due to the formation of covalent
bonding between the carboxyl functional groups of C-PPy NPs
and the RFID tag. This was an interesting study because the C-
PPy NP-based RFID tag sensors exhibited a wireless operation
up to 50 cm and retained sensitivity after repeated bending and
twisting, indicating their potential use as flexible gas sensors in
wearable electronics.

Graphene-based RFID tag sensors

With the discovery of graphene, two-dimensional materials
such as transition metal dichalcogenides (TMDs) have attracted
the attention of the scientific community.'®**** Graphene
exhibits unique properties including a high carrier mobility,**
optical transparency,"”® mechanical strength,’” and thermal
stability,””> which are useful for many different applications
including solar cells,"”*'* flexible and multifunctional
sensors,"”>'”® and RF electronics."””** Huang et al.*®** developed
an RFID antenna using binder-free graphene laminate. The
binder-free graphene ink containing graphene nanoflakes was
transformed into a graphene laminate, which showed an elec-
trical conductivity of 4.3 x 10* S m ™" and a sheet resistance of
3.8 Q sq~'. The conducting graphene laminate was patterned
and printed on paper to fabricate a dipole antenna. The gra-
phene laminate antenna exhibited a reflection coefficient (S;)
of —11.6 dB at 960 MHz. The reflection measured as a function
of frequency showed a —10 dB bandwidth from 0.89 GHz to 1.02
GHz, indicating 90% power was transmitted to the RFID
antenna. The graphene laminate antenna showed the realized
gain of —0.6 dBi at 962 MHz and over —1 dBi between 930 to

This journal is © The Royal Society of Chemistry 2017
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990 MHz. The realized gain is an indicator of the antenna
performance, which shows the effectiveness of transmitted
power. Lamminen et al'®® designed a graphene-flake-based
screen-printed dipole antenna operating between 2 and 5
GHz. The graphene-flake-based antenna showed 60% efficiency,
a maximum gain of 2.3 dBi at 4.8 GHz and degradation after
repeated bending. The graphene-flake-based wideband ellip-
tical dipole antenna can be used for flexible and wearable
wireless communication devices. Leng et al.'®*® used graphene
nanoflake ink to screen print an RFID antenna on a paper
substrate. The RFID antenna showed a maximum gain of —4
dBi, and —10 dB bandwidth ranges between 984 and 1052 MHz
and 32% radiation efficiency.

Lee et al.*¥ developed an RFID tag sensor using platinum
nanoparticle (PtNP)-decorated reduced graphene oxide (rGO)
for H, gas sensing. The wireless sensor consisted of two
components, PtNP/rGO hybrid based ultrahigh frequency (UHF)
sensor tag and RFID reader antenna connected to a network for
analyzing RFID feedback. Fig. 9 shows the schematic diagram of
the UHF-RFID-based wireless sensor system having a RFID
sensor tag that transfers a signal to the RFID reader antenna
(signal receiver) connected to a network analyzer. A schematic
illustration of the fabrication process of the PtNP/rGO hybrid-
based RFID tag sensor for detecting hydrogen gas, field-effect
scanning electron microscopy (FE-SEM) images, and the flexi-
bility of the RFID tag sensor for wearable electronics purposes is
shown in Fig. 10. The PtNPs/rGO nanocomposites were spin-
coated on the RFID antenna pattern of the UHF (900 MHz)
passive RFID tag. The RFID sensor tag can detect H, gas up to
1 ppm at room temperature. The PtNPs/rGO sensor exhibited
a linear range of 1-100 ppm and 15 seconds response time. The
PtNPs/rGO sensors showed a nonlinear change in sensitivity at
less than 1 ppm concentrations of hydrogen gas. The interdig-
itated microelectrode array (IDA) based sensors displayed
reversible and reproducible sensitivity responses to different
concentrations of hydrogen gas. The sensitivity of the RFID-

RFID reader
( antenna

~

Network analyzer

RFID
sensor tag

H, outlet

Fig. 9 Schematic diagram of the UHF-RFID-based wireless sensor
system showing transmission between the RFID sensor tag and RFID
reader antenna connected to a network analyzer. [Reprinted with
permission from ref. 187 Copyright © American Chemical Society.]
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(a) Fabricating process of PtNPs/rGO hybrid-based flexible RFID sensor tag. Field-effect scanning electron microscopy (FE-SEM) images

of the PtNPs/rGO hybrid sensing area at (b) low-, (c) middle-, and (d) high-resolution. (e) Photographs showing flexibility of RFID sensor tag under
bending and twisting conditions. [Reprinted with permission from ref. 187 Copyright © American Chemical Society.]

based wireless hydrogen gas sensor increased as the concen-
tration of PtNPs on the rGO surface increased. The interactions
between hydrogen molecules and PtNPs dispersed on the rGO
surface caused a change in electrical resistivity of the RFID
antenna, resulting in a shift in the reflectance of the RFID
sensor tag showing detection in the hydrogen gas. The wireless
sensor tag also exhibited flexibility and mechanical stability
under mechanical bending and twisting deformations.

A graphene-based dipole antenna was fabricated on card-
board, usable for the flexible wireless electronics.'®® The gra-
phene antenna showed a sheet resistance of 1.9 Q sq " and
achieved a length of 143 mm with 40% efficiency and the gain of
—2.18 dBi at a frequency of 889 MHz. The graphene dipole
antenna-based passive UHF-RFID tag showed a reading range
over 5 m at 950 MHz. An RFID tag using a graphene-based
dipole antenna and a chip operating in the UHF band was
also designed.”® Akbari et al'® fabricated graphene-
nanoplatelet-ink-based passive UHF-RFID tags on a cotton
fabric substrate. The performance of the tag was measured after
mounting the chips using wireless RFID tag measurements

48606 | RSC Adv., 2017, 7, 48597-48630

under high-humidity conditions, mechanical bending, and
stretching. The tag showed a reading range of 1.6 m that was
increased to 3.2 m in 100% humidity, which reversed to normal
after drying. The reading range of a bent RFID tag decreased
below 1 m while for a flat tag decreased to 1.1 m after 100
bending cycles. The RFID tags were damaged so stretching was
not feasible. The low-cost graphene RFID tag can be used as
wearable sensors. A wearable RFID device was developed using
a flexible antenna by integrating into a facemask and GO-based
sensors.””* The GO-based wearable wireless sensor demon-
strated the capability of detecting the inhalation/exhalation
cycles as well as abnormal patterns of respiration in sleep
apnea corresponding to the changes in GO resistance.

Arapov et al' developed graphene-based RFID devices
operating at a frequency of 867 MHz on flexible substrates
including polyethylene terephthalate (PET), polyimide (PI), and
LumiForte paper. The RFID antenna was screen printed from
graphene inks followed by photonic annealing and subse-
quently compressed rolling to decrease the sheet resistance (5 Q
sq " or lower) of graphene without any damage to the flexible

This journal is © The Royal Society of Chemistry 2017
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Fig. 11 Screen-printing and post-processing of graphene RFID
antennas on flexible substrates including (left bottom) polyethylene
terephthalate (PET), (right bottom) polyimide (Pl). [Reprinted with
permission from ref. 192 Copyright © Wiley.]
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substrates. Fig. 11 shows screen-printing and post-processing of
graphene RFID antennas on two different flexible substrates.
Fig. 12 shows the bending performance of graphene-based
RFID devices at a 5 mm bending radius, change of resistance
up to 1500 bending cycles on PET, PI, and Lumi paper
substrates, RFID tag measurements and frequency dependent
reading range and printed RFID devices. 