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In situ TEMPO surface functionalization of
nanocellulose membranes for enhanced
adsorption of metal ions from aqueous mediumf

Zoheb Karim,®® Minna Hakalahti, Tekla Tammelin© and Aji P. Mathew*??

The current work demonstrates an innovative approach to develop nanocellulose based membranes with
high water permeability, mechanical stability and high functionality via (1) tailoring the composition of the
support layer of sludge microfibers/cellulose nanofibers (CNFs) and (2) in situ TEMPO functionalization
of the thin functional layer of cellulose nanocrystals (CNCgg) to enhance the metal ion adsorption
capacity. SEM studies showed a porous network structure of the cellulose support layer and a denser
functional layer with CNCge embedded within gelatin matrix. AFM studies indicated the presence of
a nanoscaled coating and increased roughness of membranes surface after TEMPO modification
whereas FT-IR and conductometric titration confirmed the introduction of carboxyl groups upon TEMPO
oxidation. The contact angle measurement results showed improved hydrophilic nature of membranes
after in situ TEMPO functionalization. High networking potential of CNFs. made the membrane support
layer tighter with a concomitant decrease in the average pore size from 6.5 to 2.0 um. The coating with
CNCpe further decreased the average pore size to 0.78 and 0.58 um for S/CNCgg and S—CNFs /CNCpgg,
respectively. In parallel, a drastic decrease in water flux (8000 to 90 L MPa™* h™! m~2) after coating with
CNCge was recorded but interestingly in situ functionalization of top CNCge layer did not affect water
flux significantly. The increase in adsorption capacity of =1.3 and =1.2 fold was achieved for Cu(i) and
Fe(n)/Fe(m), respectively after in situ TEMPO functionalization of membranes. Biodegradation study
confirmed the stability of layered membranes in model wastewater and a complete degradation of
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1. Introduction

Cellulose-based nanomaterials are offering important compet-
itive advantages in the field of nanotechnology and functional
materials, not only because of their renewability, biocompati-
bility, sustainability, and carbon-neutral nature, but also
because of their low density, high aspect ratio, high tensile
strength and reactive surfaces."*> Nanocellulose in the fibril or
crystal form has been studied extensively during the past
decade as a reinforcing phase in polymers and is an area of
growing interest.*®

The use of nanocellulose in water purification is a relatively
new research area. Saito et al” reported in 2005 that (2,2,6,6-
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membranes was recorded after 15 days in soil.

tetramethylpiperidin-1-yljoxyl or (2,2,6,6-tetramethylpiperidin-1-
yl)oxidanyl (TEMPO) mediated oxidized cellulose nanofibers
have the capacity to adsorb a variety of heavy metal ions in
aqueous solutions. Micro-nano structure poly(ether sulfones)/
poly(ethyleneimine) nanofibrous membranes were fabricated by
Chu and coworkers from Stony Brook University and have shown
that TEMPO oxidized cellulose nanocrystals with negative func-
tional groups can be used to functionalise electrospun membrane
layer which provides a route to reject bacteria via size exclusion
and reject virus, anionic dyes and heavy metal ions from aqueous
solution via adsorption.>® Our recent study also demonstrated
stand-alone and fully biobased electrospun membranes of cellu-
lose acetate with high flux as well as antifouling performance
obtained via impregnation using chitin nanocrystals.™

We have also shown in the recent years that native nano-
cellulose and modified nanocellulose have capability to adsorb
metal ions from aqueous medium as a function of pH, surface
charge/charge density and chemistry of surface groups. The
adsorption capacity was found to be the highest for nano-
crystals with phosphoryl groups (72.8 mg g~ '), followed by
carboxyl groups (30.15 mg g~ ') and sulphonic acid groups
(25.5 mg g ").*> In spite of the good performance of phos-
phorylated nanocellulose, the processing and the purification of
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the modified nanocellulose is difficult and demands new pro-
cessing and modification routes to achieve optimal adsorption
performance. In this context, the optimal design of nano-
cellulose membranes that allows accessibility of the functional
entities for interaction with contaminants is crucial. We have
attempted to address this issue by developing layered
membranes utilizing cellulose nanocrystals with carboxyl as
functional layer to capture metal ions* which showed good
permeability when used on cellulose microfiber support, but
had relatively moderate mechanical strength in wet conditions
and lower metal adsorption capacity for Cu(u), Fe(ur)/Fe(u) and
Ag(1), ions. Therefore, the current study was an attempt to
increase the adsorption capacity of these membranes without
losing the mechanical strength, porosity, water permeability
and adsorption selectivity towards metal ions.

In situ functionalization of the nanocellulose membrane after
fabrication is a new concept, where direct functionalization of
membrane surface provides higher concentration of the func-
tional entities on the surface and increased accessibility for
interaction with the pollutants. This approach may provide
a possibility to increase or control the charge density of the
membranes without changing the bulk structure of the
membranes. This is extremely relevant for nanocellulose based
membranes where the network formation in the membranes is
crucial in tailoring the mechanical properties and water flux.
Furthermore, modified membranes may be used in static as well
as in cross-flow mode without losing the adsorption performance.

In the current study an attempt was made to increase the
adsorption capacity of layered membranes using in situ function-
alization of top layer made up of cellulose nanocrystals. Bi-layered
membranes with two different base layers (with and without
cellulose nanofibers on structural as well as functional properties
of membranes). The tailoring of flux through the membrane was
also attempted by controlling the grammage (weight in grams per
unit area of the membrane) and also cellulose microfiber to
nanofiber ratio in the support layer. It was expected that the
networking potential of microscale fibers can be combined with
adsorption potential of nanocellulose to tailor efficient water
cleaning membranes. The support layer of cellulose sludge cuts
down the cost of membranes, but provides mechanical as well as
dimensional stability.

A comparative study of morphology, pore structure/
distributions, water flux through the membranes, wettability
and adsorption performance were evaluated to understand the
effect of in situ modification on membrane performance from
structural and functional points of view. The adsorption selec-
tivity and capacity of the membranes (before and after modifi-
cation) towards metal ions in mirror industry effluents were
performed in cross-flow mode and the water samples were
analysed using inductively coupled plasma optical emission
spectrometry (ICP-OES).

2. Experimental
2.1. Materials and methods

TEMPO and all other chemicals were obtained from Sigma-
Aldrich and used as received unless otherwise stated. Sodium
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hydroxide solution (0.1 M) was received from Fluka Analytical.
Water was purified using a Millipore Synergy UV unit (Milli-Q
water) prior to use.

Cellulose sludge, consisting of shorter cellulose microfibers,
a residue from cellulose production process, was supplied by
Domsjé Fabrikerna AB, Ornskoldsvik, Sweden and was used as
the raw material for the preparation of cellulose nanofibers
(CNFg ). The cellulose sludge was reported to be high in cellu-
lose (95%) with some hemicellulose and trace amounts of
lignin.** The cellulose sludge was used without any pre-
treatment for the isolation into nanofibers. Isolation of CNFg;,
was reported in detail in our earlier publication.™

Pure cellulose was extracted from unbarked wood by a dilute
acid hydrolysis in a bioethanol pilot plant followed by solvent
extraction and bleaching and was supplied by SP Processum,
Ornskéldsvik, Sweden as water suspensions of 17 wt%. The
purified cellulose from bioethanol process was made into 2 wt%
suspensions, mixed by shear mixture and passed through the
homogenizer 10 times to obtain a thick gel of nanocrystals
(CNCgg), as reported by Mathew et al. (2014).*

Cellulose nanofibers and crystals were characterized using
Atomic Force Microscopy (AFM). The diameter of CNFg;, is in the
range of 6-9 nm, while the length is estimated to be several
microns, as an accurate measurement using AFM was not
possible. CNCgg shows typical cellulose nanocrystal structure
and the diameter was measured using Nanoscope 5 software to
be in the range of 5-10 nm. The diameters are in similar range
as earlier reports from our laboratory for nanocrystals isolated
from wood resources by sulphuric acid hydrolysis.*®

2.2. Membrane processing

Two types of support layers were prepared by vacuum filtration
of 2 wt% suspensions of sludge and mix with 1 wt% suspension
of CNFg,, in 1 : 0.12 ratio, using a Buchner funnel set up having
an area of 143 cm®. After the draining off of the water, the
functional layer was fabricated (1 wt% of CNCgg and 1 wt% of
gelatin in 3 : 1 ratio) using second filtration as shown in Fig. 1.
Drying of fabricated bi-layer membrane was performed at room
temperature for 4 days. Filter papers were changed every 5-6 h
for fast drying. A low load of 5 kg was used for compacting
during drying to maintain high porosity. Final drying was per-
formed in an oven at 80 °C for 24 h using 5 kg weight. Finally,
two types of membranes (with and without CNFg;, in support
layer) were prepared and stored until further use. The details of
the nomenclature of the support layers, fabricated membranes
and surface modified membranes are summarized in Table 1.

2.3. In situ surface functionalization via TEMPO oxidation

The processed membranes were surface oxidized with the
concept described by Orelma et al. (2012)" using the 2,2,6,6,-
tetramethylpiperidine-1-oxyl radical (TEMPO)-NaBr-NaClO
system.' In brief, 0.0156 g TEMPO and 0.10289 g NaBr were
dissolved in 100 ml of water and 3.722 ml of 10% NaClO was
added to the solution. The pH of the solution was adjusted to 10
using 1 M HCI and the membranes were submerged in the
solution for 3 minutes. The reaction was quenched by
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Fig.1 Schematic representation of the processing of support layers and membranes. Support layer of sludge and CNFg, were fabricated using 1
filtration. Functional layers on support layers were fabricated using 2" filtration. Numbers 1, 2 and 3 indicate the sludge, functional nanocellulose
(CNCagg), and CNFg respectively. Schematic representation of in situ functionalization of top layer (below) is shown. Symbol X represent cellulose

chain.

Table 1 Nomenclature of fabricated support layers, layered membranes and oxidized membranes

Types Compositions Nomenclatures Surface zeta potential (mV)
Supports Sludge S —
Sludge-CNFg;, S-CNFgy, —
Un-oxidized membranes Sludge/CNCgg S/CNCpgg —40.1 (1.5)
Sludge-CNFg; /CNCg; S—-CNFg, /CNCpp —47.9 (0.7)
In situ TEMPO oxidized membranes Sludge/TEMPO-CNCgg S/TEMPO-CNCgg —57.0 (1.4)
Sludge-CNFs; /TEMPO-CNCgg S-CNFs; /TEMPO-CNCgg —65.5 (2.4)

submerging the samples into 25% ethanol-water mixture for 5
minutes and subsequently washed using Milli-Q water. The
samples were dried between blotting boards.

3. Characterization

3.1. Conductometric titration

Conductometric titration was carried out for unoxidized
sludge-CNF/CNCgpr membranes and in situ TEMPO-oxidized
sludge-CNF/CNCgg membranes to determine the effect of the
TEMPO oxidation on the total acidic group content of the
material. The measurements were performed using conducto-
metric titrator 712 Conductometer combined with 765 Dosimat
(Metrohm, Utrecht, The Netherlands). Membranes were soaked
in 0.1 M HCI for 30 minutes and washed with Milli-Q water.
0.25 g of each sample was cut into small pieces and mixed with
100 ml of distilled water. The mixture was sonicated using
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Digital Sonifier (Branson Ultrasonics, Danbury, CO, USA)
(power 40%) for 10 minutes followed by dispersion using CAT
Ultra Turrax (IKA, Staufen, Germany) until complete disinte-
gration of the membranes. The conductometric titration was
carried out by adding 0.1 M NaOH at rate of 0.1 ml min~" using
15 second intervals. The total acidic group content was calcu-
lated as average of two individual measurements as described in
the standard method SCAN-CM 65:02.

3.2. Fourier transform infrared spectroscopy (FT-IR)

A Nicolet iS50 FT-IR spectrometer (ThermoScientific, USA) with
a built-in diamond iS50 ATR was used to characterize the in situ
TEMPO oxidized membranes. Spectra were scanned within the
range of 350 to 4000 cm ™, with a total of 32 scans and reso-
lution of 4 cm™ . At least three areas were scanned and the
presented spectra are average values thereof.

This journal is © The Royal Society of Chemistry 2017
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3.3. Surface zeta potential

Malvern Zetasizer Nanoseries in combination with a surface zeta
potential cell (zen1020) was used to measure the surface charge
on the membranes before and after tempo-modification. 0.05 M
polyacrylic acid (PAA) at pH 7.58 was used as the tracer. The zeta
potential measurements were done in 5 steps with increments of
125 of microns from the sample surface and the tracer zeta
potential was measured at a distance of 1000 microns form the
sample surface. 5 measurements were done at each step and the
correlation co-efficient was >0.98 or above in all cases. The zeta
potential at the surface is calculated by extrapolating the graph to
zero displacement and applying the following formula

Surface zeta potential = —intercept + tracer zeta potential

3.4. Contact angle

Static water contact angles were measured on membranes using
the sessile drop technique. A dynamic Absorption Tester (68-96
DAT) was used to record the contact angle of the water sessile
drops on the membranes (before and after TEMPO functional-
ization) as function of time.

3.5. Microscopy

An atomic force microscope (Nanoscope V, Veeco Instruments,
Santa Barbara, CA, USA) was used to examine the morphologies
of the CNFg;, CNCgg. A drop of diluted suspension of each
nanoparticle was deposited onto freshly cleaved mica and left to
dry at room temperature and was imaged in tapping mode to
collect height, amplitude and phase images. The cantilever
resonance frequency was 350 kHz and the spring constant was
10-200 nm~"'. The diameter measurements were conducted
with the aid of Nanoscope V software. Surface of fabricated
membranes were also characterized to understand the effect of
functionalization on membrane using AFM in tapping mode.

To study nanostructured morphology of membranes, an
extreme high-resolution scanning electron microscope,
MAGELLAN 400, SEM (FEI Company) was used. The
membranes were fractured in liquid N, and sputter coated with
tungsten for 20 s and were observed in the SEM at an acceler-
ation voltage of 5 kV.

3.6. Pore size distribution

Pore size and pore size distribution was measured by capillary
flow porosimeter, CFP-1500-A. The pressure setting was in the
range of 0-90 psi. Pore sizes from minimum up to maximum
were recorded, where the mean flow pore diameter (MFP) was
considered to be the main pore size. The sample was placed in
a holder, with wetting liquid placed on the topside of the
membrane.

3.7. Water permeability and flux

The water permeability of the support layers and membranes
was measured in a dead-end cell (Sterlitech HP4750 Stirred cell,
U.S.A). Prior to the measurements, discs with a diameter of

This journal is © The Royal Society of Chemistry 2017
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approx. 50 mm were cut out from the membranes and soaked in
water for at least 2 h to ensure equilibration of the membrane.
The conditioned membranes were placed in the dead-end cell
on a stainless steel porous support disk and water was passed
through the membranes at room temperature at a pressure of
0.45 MPa maintained using N, gas. The quantity of water that
passed through the membrane for a defined time interval was
measured accurately and the flux was calculated (L h™" m™?) for
the active filtration area (14.6 cm?).

3.8. Adsorption experiments

The contaminated water samples containing Ag(1), Cu(u)/Fe(m)/
Fe(u) ions collected from a mirror making industry in Europe
were used for the adsorption studies in cross-flow mode. All
membranes were placed in dead end cell apparatus to measure
adsorption capacity in continuous mode. 50 ml of polluted
water was allowed to pass through the porous membranes at
a pressure of 0.45 MPa. The concentration of metal ions in the
water collected after passing through the membranes was
determined using ICP-OES. Adsorption capacity of membranes
was calculated with respect to metal ions concentration before
treatment with contaminated water.

Metals ions adsorbed on membranes were studied using
a scanning electron microscope (SEM, JSM-6460 LV, JEOL, USA),
equipped with energy dispersive X-ray elemental spectrometer
(EDS). TEMPO oxidized membranes were selected for the study
and SEM-EDS was performed before and after adsorption.

3.9. Membrane stability/biodegradability

Experiments were carried out to understand the stability and/or
rate of biodegradation of membranes in water and soil. Bi-
layered membranes before and after in situ functionalization
were dipped in model waste water having different pH values
(2.0, 7.0 and 9.0) at 37 °C. In another experiment, all four
membranes were embedded in soil at 37 °C. The membranes
were removed from water or soil and weighed at different time
intervals. The degradation rate was calculated using the weight
of control composite membranes as 100%. The weight loss of
treated membranes was measured after 24 h drying at room
temperature. All samples were imaged using a digital camera to
visually compare the degradation.

4. Results and discussion

4.1. Effect of TEMPO oxidation on membrane functionality

The effect of in situ TEMPO oxidation on the acid group content of
the membranes was investigated using conductometric titration
and FT-IR. Conductometric titration revealed that the total acidic
group content of the membranes increased from ~7 to ~42 mmol
kg~' upon in situ TEMPO oxidation of sludge-CNF/CNCpgg
membranes, corresponding to a significant 6-fold charge
increase. This result was in correlation with FT-IR results (Fig. 2),
which revealed a new band at 1605 cm ™" attributed to -COONa
due to the C=0 stretching of carboxyl groups™ in the spectra of
surface TEMPO oxidized membranes. FT-IR spectra of oxidized
membranes were similar for both support layers. Quantitative

RSC Adv., 2017, 7, 5232-5241 | 5235
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Fig. 2 FT-IR spectra of unmodified S/CNCge (black curve), surface
TEMPO oxidized S/CNCge (red curve) and unmodified sludge (blue
curve) membranes.

analysis using conductometric titration and qualitative analysis by
FT-IR demonstrate the effectiveness of the direct in situ TEMPO
oxidation approach for assembled membrane structures.
Although the gradient of acidic group content across the film
thickness is not evident from the measurements, the primary
hydroxyl groups on the surface of the film can be expected to be
the most readily available for in situ oxidation and therefore most
prone to undergo TEMPO catalysed oxidation reactions. The
similar successful surface oxidation procedure has also been
previously reported by Orelma et al. (2012)" for the assembled
film structures prepared using cellulose nanofibrils. The data
from conductometric titration as well as FTIR spectroscopy
confirms the concept of increase in carboxyl functional groups on
the membranes, schematically shown in Fig. 1.

4.2. Surface characteristics of the membrane

The surface zeta potential of the membranes was studied before
and after in situ TEMPO oxidation and are given in Table 1. The
zeta potential values were more negative for S-CNCgg, (—40 to —48
mV) as well as S-CNFg/CNCgg, (—57 to —65.5 mV) after TEMPO
oxidation. The increase in negative potential of the membranes
gives a direct indication of increased negative surface function-
ality of the membranes after in situ TEMPO modification.
Contact angle measurement is commonly used to assess the
wettability of a surface. Wettability is known to be dependent on
the surface morphology of the substrate and its chemical compo-
sition.”® To understand the effect of in situ TEMPO functionaliza-
tion on the membrane surface, static contact angles of S/CNCgg
membranes before and after functionalization were studied.
Unmodified membranes have higher contact angle (33°)
compared to modified (20°) ones, after 10 s, indicating an
increase in hydrophilicity/wettability after modification which
might be attributed to increase in the functional groups content
(-CO0O™) after modification (as shown in Fig. 2). Our results
were in agreement with the earlier published study, where
contact angle of TEMPO oxidized membranes having different
concentration of carboxylic groups was studied. A decrease in
contact angle was reported with increase in the -COO™ contents
(20-15° at carboxylate contents of 0.7-0.8 mmol g~ ').* In the
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View Article Online

Paper

current work, the measurement of contact angle for support
layers alone was not possible due to the swelling of the samples
and therefore not available for comparison.

4.3. Micro- and nanostructure of the membranes

The thicknesses of the support layers of sludge and S-CNFg,
were 154 and 190 pm, respectively (determined by digital cali-
pers), which increased to 166 and 208 pm after the impregna-
tion with CNCgg functional layer. The thickness of functional
layer determined based on the thickness difference was 12 um
for sludge support and 18 um for S-CNFg;, based membranes.
The thickness difference for the functional layers may be related
to the degree of impregnation of gelatin-CNCgg, suspension into
support layers. The higher thickness of functional layer while
using S-CNFgy, as the support layer might be caused by limited
impregnation of CNCgg, into the tight layer of CNFg;, network.

The morphology of supports and membranes at micro-/
nanometer length scale were observed using SEM and are
shown in Fig. 3. The surface and the cross-section of the sludge
support layer are given in Fig. 3a where microsized fibers were
clearly visible and the fibers are loosely bound together in a 3D
network. In the case of S-CNFg;, surface and cross-section
clearly indicate a mixed 3D network with tightly bound sludge
fibers with CNFg;, (Fig. 3b). The idea to use CNFg;, within the
support layer is drawn from our previous publication where low
metal ion adsorption capacity was recorded for CNFg,.**

SEM images in Fig. 3c and d, show a surface functional layer
(indicated by an arrow) on the support layers. The bi-layered
membrane cross-sections shown are in agreement with our
previous reports of SEM images.”* However, the depth of
impregnation varied based on the pore distribution pattern of
support layers and it was not possible to see any nanocrystals
impregnated into support layer at this magnification.

The high-resolution SEM image of functional layer (Fig. 3e
and f) showed the dense and layered structure of the CNCgg
within the gelatin matrix. The good dispersion of nanocrystals
and absence of agglomerates in gelatin matrix indicates positive
interaction between gelatin matrix and nanocrystals. The micro-
scaled porosity of the support layer and low thickness of the
functional layer confirmed by SEM was expected to provide high
flux during water purification in crossflow mode.

To understand the effect of functionalization on the CNCgg
layer, SEM and AFM were used. SEM studies did not show any
notable difference before and after in situ functionalization
(images not shown). AFM images shown in Fig. 4 however, gave
some insight into the topography changes after in situ TEMPO
functionalization. The network structure formed by CNCgg is
clearly visible in Fig. 4a, ¢ and e. Fig. 4b (overview) after in situ
modification also shows the network structure. The detailed view
of the network after in situ modification of CNCgg layer (Fig. 4d)
has some morphological differences compared to the network
(Fig. 4b). The fibrils in Fig. 4d look coarser after the modification.
The 3D images (Fig. 4e and f) also showed a weakly defined
network structure after the in situ modification, probably due to
the covering of the CNCgg network with a non-fibrous layer. The
roughness of the membrane surface increased slightly after the

This journal is © The Royal Society of Chemistry 2017
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Fig.3 SEM images of sludge (a) sludge—CNFs,_ (b) support layers. Bilayered membranes having S/CNCge (c and €) and S—CNFs; /CNCge (d and f)
compositions with different resolutions were also shown. Layered structure of membranes is clearly visible having upper dense functional layer
(as indicated by arrow) and lower loose network made up of sludge fibers or S—-CNFs_ mixture.

modification (Rpax, 90 nm to 115 nm). Although no clear evidence
of in situ surface functionalization is available from SEM or AFM
study, some changes in morphology and topography are observ-
able after the modification.

4.4. Pore-size distribution of membranes

Bubble point method is a very accurate and effective method for
pore measurement, especially in industries. However, it may be
noted that this test is performed in the dry state, which is
different from the wet state where swelling to some extent can
be expected for cellulose based membranes. Also the pressure
used during testing may lead to compression of the membrane
and change of pore sizes* compared to that measured in the dry
state. The average pore size of sludge support layer was 6.5 pm
and a slight decrease (0.5 um) was recorded after the intro-
duction (1 wt%) of CNFg.. The coating with functional layer
further decreased the average pore size to 0.82 um (S/CNCgg)
and 0.61 pm (S-CNFg; /CNCgg) respectively, and confirmed the
microfiltration range of the membranes. Pore size distribution
graphs in Fig. 5 show that sludge support has a low pore volume

This journal is © The Royal Society of Chemistry 2017

and pores below 12 pm with a large percentage of pores ranging
from 5.5-12 pm. S-CNFg}, support membranes showed smaller
pores with the largest fraction centered at 0.9-2.3 um, although
the relative pore volume of CNFg;, base membrane is very close
to that of sludge support membrane. The driving force that
makes the pore-size distribution narrow is the introduction of
cellulose nanofibers within the support layer. The obtained
results were further supported by SEM images as discussed in
Fig. 3a and b. It is clearly shown that sludge support has more
open voids compared to S-CNFg;, support membrane.
S/CNCgg membrane showed very narrow pore-size distribu-
tion with major faction at 0.76-0.82 pm. The highest pore
volume was recorded for pore having 0.82 pm of diameter. A
pore size distribution in the range of 0.56-0.60 pm was recorded
for S-CNFs;/CNCgg membrane, which confirms smaller pores
compared to S/CNCgg, as expected. This also shows that the
support layer morphology is the dominant factor controlling the
pore-size distribution and pore volumes in the membranes.
Cellulose nanocrystals used in this study, that have a diameter
of 5-10 nms, have more possibilities of infusion within the

RSC Adv., 2017, 7, 5232-5241 | 5237


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra25707k

Open Access Article. Published on 17 janGar 2017. Downloaded on 8.11.2025 04:20:27.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

&

Height 200.0 nm  Height 200.0 nm

Fig.4 AFM images of the top layer of the membranes before and after
in situ modifications. (a and c) Shows the phase images at different
magnifications and (e) shows the 3D height images of CNCge layer. (b,
d and f) Shows the corresponding phase images at different magnifi-
cations and the 3D height images of CNCg¢ layer after in situ TEMPO
modification.

support layers, as shown in SEM images in our previous study."®
The narrow pore distribution of S-CNFg;/CNCgg compare to S/
CNCgg, can be explained by (a) introduction of CNFg, in support

B e
o N B

Pore size distribution

Diameter microns

0 C

Pore size distribution
= N w o w =) ~
o O O O O o

o

52

N ©
~nRo
So

Diameter microns

L] N O <0 HANNMSTNONOANO N
cnngLyY SRR
o (=N =]

0.

View Article Online

Paper

layer and (b) smooth/rough distribution of functional layer
makes dense/loose networking potential of membranes.

The present work aims for water contaminant retention
(metal ions) via adsorption mechanism and narrow pore size
distribution with high pore volume is requirement for effective
adsorption. The large distribution of pore sizes was however
noticed and may require further process optimization to
improve the pore homogeneity.

4.5. Water permeability

Water permeability of the support layers having different
grammages of the support layers was studied in cross-flow
mode.

Sludge support layer showed the highest water permeability
(77 x 10° Lm~> h™* MPa™") followed by S-CNFg, layer of same
grammage. The water permeability decreased with increasing
grammage for both supports (Fig. 6a) as expected, due to
increase in the thickness of the layers. The low water perme-
ability of S-CNFs;, compared to corresponding sludge alone
support layers is attributable to the tight networking potential
of CNFg. SEM images as shown in Fig. 3a and b as well as the
pore size data are in the agreement of our observation that the
presence of CNFg;, decreases the network porosity.

Effect of CNCgg layer. A decrease in water flux was recorded
after coating of CNCgg functional layer on the supports. The
effect of functional layer on water flux was more prominent for
sludge-CNFg;, support (77 x 10° to 550 L m > h™' MPa %)
compared to sludge alone membrane (70 x 10> to 110 L m ™2
h™" MPa™"). Further decrease in water flux (=450 and =90 L
m~> h™" MPa~' for sludge and S-CNFg,, respectively) was
recorded with increase in grammage of functional layer (14 to
24 ¢ m %) and could be explained based on the increase in
thickness of functional layer.*® The results show that the
grammage of the base layer as well as the functional layer can be
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Fig. 5 Pore-size distributions of support layers having sludge (a) and mixture of sludge and CNFs_ (b). Layered membranes fabricated using
second filtration on sludge support layer (c) and hybrid of sludge and CNFs_ (d) showed lower and narrow pore size distribution.
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Fig. 6 Water flux of fabricated support layers with and without CNFs_
(a) with different grammage. Layered fabricated membranes indicate
the decrease in water flux (b) but in situ TEMPO oxidation has no
significant effect on water flux (b).

tuned to achieve optimal water permeability. The effect of in situ
TEMPO surface functionalization was further investigated with
respect to the water flux. No significant change in water flux was
observed due to in situ modification (=552 and 105 L m > h™"
MPa " for S/CNCgg and S—-CNF/CNCgg, respectively). Thus, after
modification, no drastic change in the networking of the
membrane surface was observed. This may be due to the fact
that any possible decrease in pore structure is compensated by
the increase in hydrophilicity.

Ma et al. (2012)** had reported the flux through a micro-
filtration membrane using CNCs as functional entity within
PAN nanofibrous scaffold was 0.59 L m > h~" bar~' and much
higher than commercial membrane, GS0.22 (0.25 L m > h™*
bar™!). Thin-layered composite membranes fabricated in the
current study have significantly higher water flux compared to
the previous reported membranes as well as the commercially
available membranes. Also the flux reported in the current study
is higher than our earlier report where a nanocellulose based
hybrid membrane was fabricated using freeze-drying.>

4.6. Adsorption characterization

To understand the membrane performance towards metal
adsorption, the removal efficiency of Ag(1), Cu(u) and Fe(u)/Fe(i)
ions from industrial effluent were studied in cross-flow mode
(Table 2). Cross-flow mode of operation is known to provide
more surface area for adsorption compared to static mode
operation due to high penetration power of pollutants and bulk
adsorption possibility, and is therefore, considered to be the

This journal is © The Royal Society of Chemistry 2017
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Table 2 Adsorption of metal ions in cross-flow mode

Types of Ag(n)* Cu(n)* Fe(u)/Fe(u)*
membranes (mgg!)  (mgg")  (mgg)
S/CNCgg 0.81 250 348
S-CNFg;/CNCpg 0.83 254 396
S/TEMPO-CNCgg 0.86 339 416
S-CNFg; /TEMPO-CNCgyg 0.87 374 456

¢ Capacity with respect to CNCgg.

efficient mode while using at industrial level in real waste water
purification.”

In the case of Ag(), very low adsorption capacity of
membrane was recorded before and after in situ functionaliza-
tion and could be explained based on the low concentration of
Ag(1) in the industrial effluent (1.48 mg L™'). A maximum of
0.87 mg g ' adsorption capacity was recorded after in situ
functionalization of membranes. It is worth mentioning that
the adsorption capacity was calculated after a single cycle, and
a higher volume of effluent can be cleaned before reaching to
saturation limit of the membrane.

In the case of CNCgg coated membranes, sorption capacity of
Cu(n) and Fe(u)/Fe(ur) was higher for membranes having CNFg;,
in support layer indicating that CNFg, also contributes to the
adsorption capacity. An adsorption of 254 mg g~ ' and 396 mg
g ! was recorded for Cu(u) and Fe(u)/Fe(m), respectively for S-
CNFs;, membranes. The use of CNFg;, as functional entity for the
removal of metal ions was reported in our previous publica-
tion.”® Another accountable reason for the increase in the
adsorption capacity in current study compared to our previous
study*® is the concentration of CNCgg used for the fabrication of
membranes. In our previous study, unmodified functional layer
on sludge support having functional nanocellulose CNCgg in
1 : 1 ratio with gelatin (1 wt% of CNCgg and gelatin) were used
as functional entity for the removal of metal ions.”® In the
current study threefold higher amount (3 : 1 ratio at 1 wt% of
CNCgg and gelatin) of CNCgg was used for fabrication of func-
tional layer ie. 0.125 g and 0.375 g of CNCgr per gram of
membrane compared to our earlier reports.

About 1.4 fold increased in copper adsorption capacity was
recorded for S/CNCgg and S-CNFg; /CNCgg based membranes,
respectively after in situ functionalization of membranes. An
increase in adsorption capacity (=65 mg g ') after TEMPO
oxidation was reported in case of Fe(u)/Fe(u) also. The higher
adsorption capacity of functionalized membranes could be
explained based on increased carboxylic group contents as
shown by analysis using FT-IR and conductometric titration.
Furthermore, our previous study showing the increase in the
adsorption capacity with increase in the charge contents on
CNFg,, after TEMPO oxidation.*?

Membrane samples, before and after incubating with
polluted water, were used for elemental constitution analysis
and the spectrum is shown in ESI (Fig. S11). Only elements of
membranes i.e. Si, S, C and O can be observed on the surface of
membranes before incubation with polluted water. The EDS

RSC Adv., 2017, 7, 5232-5241 | 5239


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra25707k

Open Access Article. Published on 17 janGar 2017. Downloaded on 8.11.2025 04:20:27.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

S-CNF/TEMPO-CNCge

]
:|> Current study

(F/P) = Fibers/particle
Karim et al. (2016) (MC) = Membranes in cross-flow mode
(MS) = Membranes in static mode

S/TEMPO-CNCye

TEMPO-CNF(F/P) Liu et al. (2016)

CNCge (MS) Karim et al. (2016)
CNCye (MC)
CNCqe (F/P) | Liuetal. (2015)

Sludge o Reference

0 50 100 150 200 250 300 350 400
Adsorption capacity (mg/g)

Fig. 7 A comparative study of adsorption capacity of Cu(i) with
different operation parameters with two nanocellulose (CNF and
CNCgg). Sludge was taken as reference in the current study. The
highest adsorption capacity was recorded for in situ functionalized
membranes as discussed in current study.

spectrums of membranes treated with contaminated water
showed the introduction of new peaks from Cu(u) and Fe(u)/
Fe(m), which confirms the presence of the respective metal ions
on the membrane surface.”

A comparative study for copper ion adsorption found in liter-
ature and the current study is given in Fig. 7. Sludge was taken as
reference in the current study, only 2 mg g " of adsorption
capacity was recorded for the adsorption of Cu(u). When TEMPO
oxidized CNFg, were used in the form of nanofibers to capture
Cu(u) (surface charge 1.6 mmol g '), only 72 mg g ' sorption
capacity of fibers was recorded for water containing 250 mg L ™"
initial concentration of Cu(u).® In the current study, 339 and
374 mg g~ of Cu() was captured by nanocellulose fraction in S/
TEMPO-CNCgg and S-CNF/TEMPO-CNCgg, (Table 2). Thus, in situ
functionalization of nanocellulose after membrane fabrication is
more effective for capturing metal ions in term of adsorption
capacity. Another advantage of in situ functionalization is the easy
availability of anchoring sites on the surface of membranes for
binding of metal ions and the limited impact of the operation
mode (static or cross-flow) on the adsorption performance. In
spite of these advantages, the adsorption capacity of modified
membranes in current study is lower than enzymatically modified
cellulose nanocrystals (CNCg;) based membranes reported earlier
by us.®

It may be noted that the pH of effluent containing silver
metal ions was 9.2 and copper/iron metal ions was 2.3, which
confirms the effectiveness and versatility of the membranes in
acidic as well as basic conditions. Furthermore, the membranes
were found to be efficient in different concentration ranges and
for different metal ions, which can be of advantage in real
applications.

4.7. Evaluation of biodegradability

The biodegradation of all membranes was evaluated during 1
month and the results are summarized in Fig. 8. In the case of
model waste water having different pH conditions, no degrada-
tion was observed for unmodified as well as modified membranes
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Fig. 8 Photographs from different stages of degradation in waste
water and soil. Complete degradation was recorded for unmodified
membranes within 15 days.

based on sample weight or visual appearance, up to 30 days. For
the degradation of membranes in soil, a different trend was
observed. The membranes degraded rapidly in soil confirmed by
weight loss as well as via visual appearance. Complete degrada-
tion was recorded for unmodified membranes within 15 days.
92% and 87% degradation was recorded for modified S/CNCgg
and S/CNFs;—~CNCgr membranes, respectively (Fig. 8).

It was observed that temperature variation impacts the
degradation rate.”” The used temperature was suitable for
microbial growth and colonization. Thus, microbial role seems
to be the major mode of degradation of the natural membranes
in soil. In this study, the soil was purchased from local market
and contains living microbes. Our results are also in agreement
with previously published data; in a current study composite
membranes/films were incubated with soil to check the rate of
biodegradation where more than 50% degradation was
observed within 30 days.?®

5. Conclusion

The study demonstrates the potential of fully bio-based micro
filtration membranes for metal ions capture from industrial
effluents. The addition of CNFg; to the sludge resulted in
support layers with a tighter network, which translated into
a decreased average pore diameter, pore volume and a drastic
drop of water permeability. The bilayered structure was
confirmed using SEM for the CNCgg coated membranes which
further decreased the water permeability. I situ TEMPO surface
treatment is employed as an innovative route to increase the
membrane functionality without changing the bulk network
structure. The total acidic group content of the membranes
increased from ~7 to ~42 mmol kg~" upon in situ TEMPO
oxidation. The increased roughness of the network structure of
the CNCgg top layer, increase in wettability recorded using
contact angle measurement and the increase in negative surface
zeta potential was considered as evidence for changes in surface
characteristics of the membranes after in situ TEMPO func-
tionalization. In spite of the changes in surface characteristics
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the in situ functionalization had no significant effect on water
permeability.

Industrial effluent contaminated with Ag(1), Cu(u) and Fe(iu)/
Fe(m) was used to characterize adsorption capacity of fabrica-
tion membranes. A significant increase in adsorption efficiency
was recorded after in situ functionalization of CNCgg layer.
Biodegradation studies in water and soil indicate the potential
of these membranes in real applications where possible
biodegradation at end-of-life are crucial for economical, effi-
cient and environmental friendly membranes.
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