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Rapid biocompatible macrocyclization of peptides
with decafluoro-diphenylsulfonet

S. Kalhor-Monfared,® M. R. Jafari, J. T. Patterson,” P. I. Kitov,? J. J. Dwyer,” J. M. Nuss®
and R. Derda*®

In this manuscript, we describe modification of Cys-residues in peptides and proteins in aqueous solvents
via aromatic nucleophilic substitution (SyAr) with perfluoroarenes (fAr). Biocompatibility of this reaction
makes it attractive for derivatization of proteins and peptide libraries comprised of 20 natural amino
acids. Measurement of the reaction rates for fAr derivatives by °F NMR with a model thiol donor
(B-mercaptoethanol) in agueous buffers identified decafluoro-diphenylsulfone (DFS) as the most reactive
SNAr electrophile. Reaction of DFS with thiol nucleophiles is >100 000 faster than analogous reaction of
perfluorobenzene; this increase in reactivity enables application of DFS at low concentrations in agueous
solutions compatible with biomolecules and protein complexes irreversibly degraded by organic solvents
(e.g., bacteriophages). DFS forms macrocycles when reacted with peptides of the general structure X,,—
Cys—Xn»—Cys—X,, where X is any amino acid and m = 1-15. It formed cyclic peptides with 6 peptide
hormones—oxytocin, urotensin Il, salmon calcitonin, melanin-concentrating hormone, somatostatin-14,
and atrial natriuretic factor (1-28) as well as peptides displayed on M13 phage. Rates up to 180 Mt s7*
make this reaction one of the fastest Cys-modifications to-date. Long-term stability of macrocycles
derived from DFS and their stability toward oxidation further supports DFS as a promising method for
modification of peptide-based ligands, cyclization of genetically-encoded peptide libraries, and discovery
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Introduction

Rapid, site-specific modifications of polypeptides are critical for
chemical modification of proteins, synthesis of antibody-drug
conjugates, and generation of genetically-encoded libraries with
unnatural moieties. Biocompatible site-specific cross-linking of
two side-chain residues in polypeptides is a rapidly growing
field because such modification can increase stability and effi-
cacy of peptide-based therapeutics (for recent reviews see'™®).
While such cross-linking or macrocyclization can be performed
on amino acid side-chains that contain unnatural reactive
groups,”” modification of naturally-occurring residues is
particularly attractive because it can be used for modification of
readily-available peptides/proteins and phage display libraries
comprised of 20 natural amino acids.'**®

In this article, we report rapid, biocompatible modification
of Cys residues via nucleophilic aromatic substitution (SyAr)
reaction with perfluoroarenes (fAr). We overcome the defi-
ciencies of previously known SyAr-reagents, such as 1-chloro-
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2,4-dinitrobenzene (CDNB),"” which are susceptible to back-
ground reactivity with nucleophilic residues in proteins, or
perfluorobenzene' and perfluorobiphenyl'®" which suffer
from low reactivity and poor solubility in water. The latter
reagents are effective in organic solvents, such as DMF, but are
not suitable for modification of biological entities that are
irreversibly deactivated by high concentrations of organic
solvents (e.g., proteins, bacteriophage, etc.). While glutathione
transferase can be used to catalyze SyAr-reactions in water,* the
enzyme acts only on peptides that contain unnatural N-
terminal-o-Glu.>*** Hence, improved fAr cross-linking agents
provide the ability to access diverse chemical modalities
through native polypeptide sequences.

Results and discussion

To identify SyAr derivatives for aqueous bioconjugations, we
explored the rate of the reaction of a model thiol donor,
B-mercaptoethanol (BME), and twelve fAr reagents using "°F
NMR (see ESI Fig. S1-S3,f examples of 'F NMR traces) in
aqueous Tris-buffer pH = 8.5 supplemented with CH;CN as co-
solvent (Fig. 1A-C). Reactivity of most perfluoroarenes was
hampered by both poor solubility and poor reactivity (Fig. 1D);
many reactions required 80% or more CH3;CN as co-solvent.
Similar to studies in organic solvents,* the reactivity in aqueous
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Fig. 1 (A) Design of reagents for perfluoroarene macrocyclization by
cross-linking two Cys-residues in a protein in aqueous conditions. (B)
Mechanism of SyAr reaction. (C) Rate constants (k) of the reaction
between substituted fAr and BME, as measured by °F NMR, increase
with the increasing electronegativity of R group. As a measure of
electronegativity, we used pKj in a series of phenylketones for which
many values are known?® or can be calculated (ESI Fig. S4%). (D) To find
the S\Ar reagents for rapid modification in water, we plotted molar
concentration of fAr necessary to reach 50% conversion in 30 minutes
(calculated as In(2)/(1800 x k), where k is the rate constant) and % of
organic co-solvent necessary to dissolve the fAr at this concentration.
Most fAr are poorly reactive and/or too insoluble in aqueous solvents;
only DFS and perfluoropyridine (fPy) can be used in conditions that
require low amount of organic co-solvent.

conditions correlates with the electronegativity of the substit-
uent on the aromatic ring (Fig. 1C) yielding the fastest reactivity
for perfluoronitrobenzene (R = NO,), decafluorobenzophenone
(R = -COCgFs), or decafluoro-diphenylsulfone (R = -SO,CgFs,
DFS) reagents, or heteroaromatic derivatives such as
perfluoropyridine.

We then validated the reactivity and specificity of the most
reactive substrate (DFS) using model peptides H,N-SWCXC-
CONH,, where X = Asp, Ala, Ser, or Arg that contained two types
of nucleophiles: N-terminal amine and thiol (Fig. 2A). We were
pleased to find that DFS reacted remarkably fast with Cys side-
chains (Fig. 2B and ESI Fig. S5 and S67) in conditions that
required as little as 10% of CH3;CN co-solvent (Fig. 1) or as little
as 5% DMF co-solvent (ESI Fig. S71). As SyAr reaction alters
the aromatic m-system,””* we measured rate constants by
measuring changes in absorption at 300 nm (ESI Fig. S5 and S6,
$8-S117) and validated these rates by "°F NMR (ESI Fig. S10 and
S11}) and LCMS (ESI Fig. S7t). Conveniently, the reaction was
accelerated in solvents with high water content, although the
rate decreased in water without any CH;CN due to limited
solubility of DFS (ESI Fig. S127). At pH 8.5 and water content of
70-80%, the rate constant was 100-180 M~ ' s~ for positively
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Fig.2 (A) SNAr reaction of DFS with peptides is sequence and solvent-
dependent. (B) Rates in all conditions were measured by monitoring
absorbance at 320 nm, and identities of the products were confirmed
by NMR and Liquid Chromatography Mass-Spectrometry (LCMS, ESI
Fig. S7 and S12-S15%). (C) The rate of the reaction correlates with
acidity of the thiol; pK, were estimated by measuring the absorbance
of peptides at 240 nm as described in ESI Fig. S18f and were in
accordance with previously reported values for CXC peptides.®

charged peptide sequence SWCRC and 50-80 M~ "' s™' for
neutral analog SWCAC (Fig. 2B).

The rate of the reaction with DFS was sequence dependent
(Fig. 2B and C and ESI Fig. S57). Positively-charged Arg residue
next to Cys accelerated the reaction, negatively charged Asp
suppressed it. This observation can be explained by higher
basicity of thiol in CRC vs. CDC (Fig. 2C). Additionally, the
positive charge on the Arg side-chain can stabilize the inter-
mediate carbanion (Fig. 1B). We anticipate that analogous
strong dependence of the rate constant on the pkK, of thiol
(Fig. 2C) exist in other SyAr reactions between peptides and
perfluoroarenes'®*® because SyAr reactions with thiols exhibit
large Brgnsted coefficients.® Substrate-dependence was the
most pronounced when solvation was poor (e.g., high CH;CN
content); increased solvation in solutions with high aqueous
content masked the effect (Fig. 2B and ESI Fig. S61). The pH-
dependence of the rate plateaued at pH 8-9 confirming that
thiolate is the nucleophile (ESI Fig. S19 and S207¥). In acidic pH,
the rate dropped exponentially (i.e., decrease of log(k) was linear
with pH). Reaction with perfluoropyridine exhibited similar
solvent-dependent and substrate-dependent profiles (ESI
Fig. S8, S9, and S217), however, the rates were 10-100 times
slower.

LCMS confirmed the identity of the products during the
reaction and 24-48 hours after its completion (ESI Fig. S12-
S157). LCMS confirmed that the reaction was selective for Cys in
the presence of free N-terminus and large excess of DFS.

This journal is © The Royal Society of Chemistry 2016
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Side-reactivity was observed only after prolonged exposure to
DFS. Specifically, peptides SWCAC or SWCRC incubated with
large excess of DFS (10 eq., 2 mM) for 48 hours contained ~20%
of the product with two DFS moieties. Less than 5% of this by-
product was visible after 48 hours in the presence of 0.2 mM
DFS. In contrast, Cys arylation under analogous conditions was
complete in 5-10 minutes (ESI Fig. S61). We observed this by-
product in three different peptide sequences (ESI Fig. S13-S157)
and proposed it to be a product of SyAr reaction between DFS
and N-terminus. While the side-reaction of N-terminal amine is
possible, it is >10* times slower than Cys-arylation. This data
still do not completely rule out the possibility that the cycliza-
tion could also happen between the thiol and the terminal
amine. To show that cyclization occurs exclusively on Cys resi-
dues, we treated peptide with DFS and then with thiol-specific
reagent, biotin-PEG,-iodoacetamide (BIA). While BIA reacted
readily with thiols in starting material, we detected no reaction
between BIA and octafluoro-diphenylsulfone (OFS)-peptide
conjugate (Fig. S177).

To confirm that DFS is useful for modification of complex
peptides, we modified peptide CYIQNCPLG (oxytocin, OT).
Reaction yielded a single product with expected mass and
apparent rate constant of 37.2 M~ ' s™! as measured by LCMS
(Fig. 3, ESI Fig. S167). To stop the reaction before completion,
we quenched it with acid and observed mono-arylated inter-
mediates of oxytocin M1 and M2 in a transient open-chain state
(Fig. 3A and B). Both intermediates disappeared over the course
of the reaction (Fig. 3C). To confirm that DFS can form cyclic
peptides regardless of their ring size, we tested reaction
between DFS and five other peptide hormones of general
structure Xn—-Cys-X,~Cys-Xp, where X is any amino acid other
than Cys and M—the number of amino acids flanked by two
Cys—ranged from 4 to 15. Urotensin II (UT, M = 4), salmon
calcitonin (CT, M = 5), melanin-concentrating hormone (MCH,
M = 8), somatostatin-14 (ST, M = 10), and atrial natriuretic
factor (1-28) (ANF, M = 15) formed cyclic peptides in reaction
with DFS regardless of their ring size. We used HPLC to esti-
mate the rate of cyclization (Fig. 3C, S22-S237) by quenching the
reaction with acid in the presence of 1 mM DFS. After 30
seconds, we detected 10-90% of the final cyclized product and
<5-60% of starting material remaining. After 10 min, only
urotensin II, which displayed the slowest kinetics, contained
~5% of the unreacted starting material. Other peptides were
completely converted to final cyclic products.

We then confirmed reaction of DFS with thiols on intact M13
bacteriophage, which is composed of 5 types of proteins and
a single-stranded DNA genome. The phage virion is an ideal
model for bioconjugation because (i) it can be engineered to
display any peptide sequence, (ii) modification can be detected
in individual phage particles,** (iii) biocompatibility of the
modification can be readily quantified by measuring the frac-
tion of M13 particles that can replicate in bacteria; reagents that
damage the proteins or DNA disrupt this replication'* (ESI
Fig. S247). We validated the modification on M13 phage using
a biotin capture assay developed previously by our group
(Fig. 4).***° Briefly, a phage displaying a disulfide-peptide
ACPARSPLEC was reduced with TCEP and the resulting thiols

This journal is © The Royal Society of Chemistry 2016
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Fig. 3 (A and B) Cyclization of reduced oxytocin (OT) by DFS.
Quenching the reaction by 2% TFA at 30 s revealed ~90% consump-
tion of starting material, 80% of product, and 12% of open-chain
intermediates M1 and M2. (C) Stacked bar representation of the
composition of reaction mixture determined by HPLC shows that both
M1 and M2 of OT were completely converted to product by 5 min.
Analogous studies with five other peptide hormones in the presence of
1 mM DFS. Fraction of the reactant, sum of M1 + M2 intermediates, and
products was determined by integration of the HPLC traces at 215 nm
(see ESI Fig. S16, S22, and S237 for raw traces).

were alkylated using BIA (Fig. 4B and C). The reaction yielded
~95% of the biotinylated phage, as determined by titering the
phage before and after exposure to streptavidin-coated beads
(Fig. 4D). We then used a “pulse-chase” approach®*%* to
quantify reaction of phage with DFS. “Pulsing” the reduced
phage with 0.5 mM DFS in 30% CH;CN-Tris buffer (pH 8.5) for
30 min consumed ~75% phage-displayed thiols. “Chase” of the
reaction with BIA yielded only 20% of biotinylated phage. In
contrast, the phage remained reduced and susceptible to
alkylation by BIA when it was “pulsed” with buffer that con-
tained no DFS. Thus, disappearance of thiol indicates the
reaction with DFS and is not due to side reactions (e.g., oxida-
tion). The same “pulse-chase” quantification confirmed
that peptide ACPARSPLEC displayed on phage reacts with

Chem. Sci,, 2016, 7, 3785-3790 | 3787
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perfluoropyridine at much slower rate than DFS (Fig. S251). We
further validated the “pulse-chase” method on purified peptide
SWCDYRC and confirmed that the peptide “pulsed” by DFS for
30 minutes forms a product that does not react with BIA
(Fig. s177).

While M13 phage is stable in solutions that contain 30%
CH;CN, in many applications such as protein modifications,
such a high amount of acetonitrile might not be tolerated. To
this end, DFS-mediated cyclization can be performed in
aqueous solutions containing only 5% DMF as co-solvent. We
observed that solubility of DFS in Tris buffer (pH 8.5) containing
5% DMTF (v : v) is approximately 500 uM. This concentration is
sufficient to perform rapid modifications of synthetic peptides,
phage-displayed peptides, and phage-displayed libraries of
peptides. For example, reaction between 100 uM DFS and 100
uM peptide SWCDYRC required approximately 100 seconds to
reach 50% conversion and 15 min to reach completion (ESI
Fig. S71). LCMS monitoring of this reaction estimated the 2™
order rate constant to be 100-130 M~" s~ (ESI Fig. S71). We
then used these conditions to modify a phage clone that con-
tained peptide ACPARSPLEC. The modification efficiency by
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Fig. 4 (A) Quantification strategy for the reaction between DFS and
M13 phage displaying a peptide ACPARSPLEC.** (B) Reaction of
reduced phage with biotin-iodoacetamide (BIA) biotinylates the
phage. (C) Capture assay measures the yield of biotinylation. (D)
Capture assay determined that 95% of phage is reduced (reactive with
BIA). Diluting the reducing agent 10-fold does not change the number
of reduced thiols, but exposing the reduced phage to 0.5 mM DFS in
30% MeCN/Tris buffer for 30 min consumes reactive thiols yielding
80% OFS-modified phage. Error bars represent standard deviations
from two experiments. (E) Capture can be summarized as stack bar:
bottom bar shows that ~60% of phage is modified by 0.5 mM solution
of DFS in aqueous Tris buffer containing 5% DMF as co-solvent.

O
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0.5 mM DFS in 5% DMF for 30 minutes was ~60%, (Fig. 4E).
Finally, these conditions can also be used to modify commer-
cially available libraries of peptides displayed on phage with 7
random amino acids in between the cysteine residues (New
England Biolabs (Ph.D.™-C7C, Fig. 5)). A decrease in chemical
modification efficiency of libraries to 40%, when compared to
modification of an individual clone (Fig. 4E), is not surprising
because library contains 10° peptide sequences with diverse
reactivity. This decrease in modification is also consistent with
our previous reports.”>'> DFS thus can conveniently convert
readily available libraries of peptide-disulfides to genetically-
encoded macrocyclic libraries that contain unique per-
fluoroarene cross-linker. We have employed these libraries in
selection of peptide-macrocycle ligands for protein targets but
results of these investigations extend beyond the scope of this
manuscript and will be described in our subsequent report.
Cross-linking of two Cys residues is one of the most common
modifications of synthetic peptides and recombinant proteins.
To demonstrate advantages of DFS over well-established
cysteine cross-linkers, we selected a,o’-dibromo-meta-xylene
(DBMX) reagent as a reference (ESI Fig. S2671). Reagents struc-
turally and electronically similar to DBMX are commonly used
to stabilize secondary structure of peptides and synthesize
genetically-encoded macrocycle libraries.””* The major
advantage of OFS-peptide conjugates (perfluoroaryl thioethers)
is their higher stability to oxidation when compared to conju-
gates made with DBMX (benzyl thioethers). For example, we
routinely use NalO, to convert N-terminal Ser to N-terminal
aldehyde."**" Treatment with NalO, readily converted
SWCDYRC-OFS conjugate to Ald-WCDYRC-OFS, where “Ald-"
denotes aldehyde group (Fig. 6), and we observed no oxidation
of aryl thioethers. As an example of application, we introduced
N-terminal glycosylation™**** in SWCDYRC-OFS conjugate
(Fig. 6). One-pot two-step reaction quantitatively converted
peptide-OFS conjugate to Ald-peptide-OFS and then to
glycopeptide-OFS conjugate. Such transformation would be

1.1 mM TCEP, 30 min

2. dilute 10x

3.0.5mM DFS, 0.5-2h
Tris, pH 8.5, 5% DMF

Ph.D.™-C7C

B — AN
Q

diversity: \J

~10° peptides
B 35-40% 40-45%
30min | thiol 2hour 4oy
reaction reaction

0 20 40 60 80 100 0 20 40 60 80 100

% modification % modification

Fig. 5 (A) An aqueous solution of DFS containing 5% DMF as co-
solvent can conveniently convert commercially available phage dis-
played library of 10° disulfide heptapeptides—Ph.D. C7C from New
England Biolabs—to a library of OFS-macrocyclic peptides. (B) Biotin
capture, analogous to that described in Fig. 4C—E, quantified the
efficiency of this modification. After 30 minutes to 2 hours reaction
with DFS, 35-45% of the library is modified with DFS yielding ~350—
450 million of diverse phage-displayed OFS-macrocycles. Data is
averaged from two independent experiments.

This journal is © The Royal Society of Chemistry 2016
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Fig. 6 Robust oxidation of SWCDYRC-OFS conjugate to peptide-aldehyde and subsequent one-pot conversion to a cyclic glycopeptide.

challenging to achieve in conjugates that contain thioether
bonds derived from benzyl or haloacetyl cross-linkers (ESI
Fig. S277). Treatment of SWCDYRC-DMMX conjugate by NalO,
led to concomitant oxidation of serine and benzyl-thioether
(ESI Fig. S27Dt), whereas treatment of SWCDYRC-OFS in
identical conditions produced no detectable traces of oxidized
product (ESI Fig. S27Cf).

To compare the stability of OFS-thioethers towards oxidation
with stability of other conjugates, we exposed them to condi-
tions recently used to evaluate stability of diverse thioethers
(1 mM H;IO0g at 37 °C).** Consistent with the published results,*
we observed that H5;IO¢ rapidly oxidized benzyl-thioether bonds
and converted SWCDYRC-DMMX conjugate to four oxidized
products in 10 minutes (ESI Fig. S27F%). In contrast, half-life of
oxidation for thioethers in SWCDYRC-OFS by H;IO, was 16
hours (ESI Fig. S27ET). This value exceeds the reported oxida-
tion half-lives for tolyl- or 4-cyanophenyl-thioether (1 and 6 h,
see ESI Fig. S471 in ref. 32). As the rate of oxidation of aryl thi-
oether scales with electronegativity of the aryl substituent,* it is
not surprising that the peptide-OFS macrocycles exhibit high
resistance to oxidation. We believe that fast reactivity of DFS
combined with exceptional oxidative stability of resulting OFS-
thioethers will make it possible to conduct robust multi-step
modification of peptides, which combines Cys cross-linking
and N-terminal ligations to functionalize natural proteins and
diversify genetically-encoded libraries.

Conclusions

The DFS framework combines fast reactivity up to 180 M~"

specificity to Cys-residues, biocompatibility with complex mul-
tiprotein complexes (here, bacteriophage), and maximum
performance at neutral to mildly-basic pH. Its reactivity signif-
icantly exceeds the rates of substitution reactions of Cys with

This journal is © The Royal Society of Chemistry 2016

CDNB (k=1M""s™"),”” haloacetamide cross-linkers (k = 10-20
M~' s7! at pH 8.5),"* bis-bromobenzyl cross-linkers (k =
30 M~' 57" at pH 8.8),** bis-methyl-maleimide cross-linkers
(k =1-3 M ' s71),* and allenamides® (k = 16-30 M ' s~ 1).*¢
Recent summaries from the Bode*” and Prescher®*® groups
highlight that in modern bio-orthogonal reactions, very few
reach rates of >100 M~ " s~ " as exhibited by DFS. To date only two
Cys-reactive reagents, dichlorotetrazene® and maleimide (rates
up to 800 M ' s7%),%” can rival DFS in reactivity, but the products
are susceptible to long-term hydrolytic instability.***** In contrast,
DFS adducts of oxytocin are stable for over 2 weeks at pH = 7.4
(ESI Fig. S287). We note that the size of the DFS is compatible to
the size of many previously reported thiol crosslinkers such as
bisbromoxylene,”>° decafluorobenzene,®® benzophenone,*
bismaleimide, chloroacetamide-azobenzene,'* and others. Intro-
duction of DFS into proteins or peptides will be context depen-
dent: it can provide favourable stabilization of secondary
structure but it can also interfere with biological function. In
contrast to many known Cys cross-linkers, DFS produces conju-
gates that are stable to oxidation; this stability will enable
development of multi-step transformations that convert peptides
made of natural amino acids to functionality-rich macrocyclic
derivatives. We anticipate that this reaction will serve as a plat-
form for development of new bioconjugation and macro-
cyclization strategies as well as post-translational diversification
of genetically-encoded libraries.
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