Issue 34, 2014

Biodiesel production, characterization, engine performance, and emission characteristics of Malaysian Alexandrian laurel oil

Abstract

Biodiesel is a green fuel produced from renewable resources. It is a clean-burning alternative fuel, which has drawn the attention of energy researchers for the last two decades. This paper presents an experimental investigation on Alexandrian laurel oil as a potential feedstock for biodiesel development. Biodiesel was produced using a two-step esterification–transesterification process. Analysis of the physicochemical properties of diesel–biodiesel blends precedes the performance and emission study using 10% and 20% blends (ALB10 and ALB20). A 55 kW, 2.5 L, four-cylinder indirect injection diesel engine was used to carry out tests under conditions of constant load and varying speed. Brake power decreased 0.36–0.76%, and brake-specific fuel consumption (BSFC) increased 2.42–3.20% for these blends. In general, the exhaust emission profile was much better compared to diesel except for NOx emission, which increased by 2.12–8.32% compared to diesel. Thus, from overall performance and emission characteristics, both the blends are prospective fuels for diesel engines.

Graphical abstract: Biodiesel production, characterization, engine performance, and emission characteristics of Malaysian Alexandrian laurel oil

Article information

Article type
Paper
Submitted
24 des. 2013
Accepted
19 mar. 2014
First published
24 mar. 2014

RSC Adv., 2014,4, 17787-17796

Author version available

Biodiesel production, characterization, engine performance, and emission characteristics of Malaysian Alexandrian laurel oil

I. M. Rizwanul Fattah, M. A. Kalam, H. H. Masjuki and M. A. Wakil, RSC Adv., 2014, 4, 17787 DOI: 10.1039/C3RA47954D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements