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In this study, we make a general comparison of the accuracy and robustness of five multivariate

calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial

partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel

techniques based on support vector machines (SVMs) for multivariate data analysis: support vector

regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on

fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional

composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one

set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data

(weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins

content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and

quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four

systems presented here range greatly in composition, properties, strength of intermolecular interactions

(e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity

of chemical systems studied, general conclusions about SVM regression methods can be made. We try

to answer the following question: to what extent can SVM-based techniques replace ANN-based

approaches in real-world (industrial/scientific) applications? The results show that both SVR and

LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the

former, the SVM-based approaches are recommended for practical (industrial) application. This has

been shown to be especially true for complicated, highly nonlinear objects.
1. Introduction

Modern quality control of industrial products, such as food

products, pharmaceuticals, and petroleum products, is in need of

rapid, robust, and cheap analytical methods to continuously

monitor product quality parameters.1–9 Ideally, product quality

parameters would be measured in real time, online, which would

reduce the amount of waste or production of defective goods,

minimize the amount of raw materials and energy consumption

required, optimize product quality (e.g., maximizes gasoline

octane number during fraction mixing and compounding), and

minimize environmental impact.1–11 These factors are especially

important when dealing with the multi-trillion (US) dollar,

environmentally unfriendly petroleum industry.12,13 For

example, the ability to increase the gasoline octane number by
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one–two units or the yield of diesel fuel from crude oil by 1%

could lead to enormous financial and environmental benefits.

To control the quality of industrial products in an online

regime, spectroscopic methods are often used.1–9 Vibrational

spectroscopy14–17 (mid-infrared (MIR), Raman, and near infrared

(NIR)) is one of the best ways to obtain information about

chemical structure and quality coefficients of different mixtures,

even multicomponent mixtures. Alternative analytical methods

include ultraviolet-visible (UV-Vis) absorption spectroscopy,18

nuclear magnetic resonance (NMR) spectroscopy,19 gas or high

pressure liquid chromatography (GC/HPLC),20,21 and mass

spectrometry.22 The latter is frequently combined with a soft

ionization technique, such as matrix-assisted laser desorption/

ionization (MALDI) or electrospray ionization (ESI).23

The relatively low cost of modern MIR/NIR/Raman spec-

trometers compared to mass spectrometers or NMR spectrom-

eters makes vibrational spectroscopy the technique of choice for

real-world applications. The possibility of remote quality control

via fiber optics, which is easily achievable in the NIR spectrum,

makes NIR spectroscopy one of the most promising analytical

techniques for industrial applications.10,11,24,25
Analyst, 2011, 136, 1703–1712 | 1703
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The combination of an information-rich analytical technique,

such as NIR spectroscopy, with efficient regression tools,

provided by modern mathematics, makes the creation of

accurate and robust methods for prediction of object properties

possible.26–28 The analysis of such sophisticated, multicomponent,

and ‘‘dirty’’ samples as petroleum (whose composition, proper-

ties, and even structure29,30 can vary greatly over time or by oil

source) is almost impossible without multivariate data analysis

(MDA) techniques. The progress in chemometrics has a direct

influence on the field of analytical chemistry.4–7 The modern

petroleum industry is in need of accurate and reliable calibration

methods.4–7 The same can be said about the modern and rapidly

growing biofuel industry.31 Note that Geladi32 has provided

a general overview of the subject, including a description of how

chemometrics can be used for data analysis, classification, curve

resolution, and multivariate calibration with spectroscopic data.

The partial least squares (PLS) or projection to latent struc-

tures regression method appeared many years ago and has

become extremely popular.33 Together with its variants and

modifications, the PLS calibration model is the most widely used

regression technique for spectroscopic data analysis.33 The

greatest problem in PLS methodology is that the spectrum–

property relationship is assumed to be linear. This assumption is

not always valid for industrial samples, and it is completely

unacceptable for systems with strong intermolecular or intra-

molecular interactions, including p-stacking29,34,35 and hydrogen

bonding.35–38 The shifts in positions of vibrational bands15–17,35–38

and non-fulfillment of the Beer–Lambert–Bouguer law35 lead to

intrinsic nonlinearity of the spectrum–property relationship in

these systems. Examples of such systems include crude oil, black

oil, ethanol–gasoline fuel mixtures, and solutions of petroleum

macromolecules.4–7,13,29,34 Even relatively weak van der Waals

intermolecular forces35,39–41 in chemical systems like gasoline,

biodiesel, paraffin wax, or aromatic hydrocarbons can influence

the accuracy of the PLS model. Note that nonlinear relations can

only be modeled by PLS in a limited way by considering more

latent variables.26,27,42 Exactly the same can be said about the

principal component regression (PCR) technique.4,26,27

It should be stated separately that the degree of nonlinearity

can be rather different for different properties of the same

chemical system. However, one can sometimes make general

conclusions about object nonlinearity, or system nonlinearity,4

based on a number of system properties or rather general char-

acteristic behavior.

One should note that a number of nonlinear PLS-based

approaches exist, such as Poly-PLS43,44 and Spline-PLS.45 The

only difference between these two algorithms and (linear) PLS is

one step in which the linear function is changed into a poly-

nomial function (for Poly-PLS) or a piecewise polynomial

function called a spline function (for Spline-PLS). These two

techniques are referred to as ‘‘quasi-nonlinear’’ calibration

methods.4,43–45

Although partial least squares regression has been a corner-

stone of MDA of chemical data for many years, it is neither

perfect nor complete.4,6,19,20,26–28,33 Since the assumption about

the linearity of the input–output dependence is a rough

approximation for most chemical systems, usually only valid

within a small interval of input/output values, alternative

regression tools are needed.4,6,43–45
1704 | Analyst, 2011, 136, 1703–1712
Modern applied mathematics offers a wide variety of

nonlinear methods, and artificial neural networks, or ANNs, are

among the most effective and popular methods.46 Based on

Kolmogorov’s theorem,46–48 one can claim that the standard

multilayer feed-forward neural network with a single hidden

layer that contains a finite number of neurons (see Fig. 1 in ref.

28) can be regarded as a universal approximator; that is, ANN

can approximate any linear or nonlinear dependence between the

input and output values with an appropriate choice of free

parameters or weights.28,46 This background makes ANN one of

the most pervasive nonlinear data analysis techniques in almost

all fields of chemistry, from quantitative structure–property

relationship studies (QSPR/QSAR)49 to quantum chemistry

(QC)28,50,51 to petroleum studies.4–7

The disadvantages of the ANN approach to spectroscopic

data analysis are1–9,46 as follows:

(i) the stochastic nature of the ANN training (model building)

process;

(ii) the dependence of the final result on the initial parameters;

(iii) the need to repeat network training many (hundreds of)

times;

(iv) the non-uniqueness of the final solution, or ANN weights,

that produces the best result, given that many networks with

completely different sets of free parameters can produce very

similar results;

(v) the available sample set should be relatively large for

effective ANN training;

(vi) the tendency to overfitting; and

(vii) the training time and computational resources: ANN

training can take many hours, and even days, of CPU time even

with modern computers (as of mid-2010).

Note that techniques such as clamping and analysis of weights

can provide detailed insights into how an ANN functions.

Does any alternative to these ANN-based methods exist?

Support vector machines (SVMs) might be regarded as the

perfect candidate for spectral regression purposes.1–3,52 SVM-

based techniques are very interesting methods, simple in their

theoretical background and very powerful in model and real-

world applications. A large advantage of SVM-based techniques

is their ability to model nonlinear relationships.24,52–54 Compared

to neural networks, SVM has the advantage of leading to

a global model that is capable of efficiently dealing with high

dimensional input vectors.1–3 SVMs have the additional advan-

tage of being able to handle ill-posed problems and lead to global

models that are often unique.3 Furthermore, due to their specific

formulation, sparse solutions can be found in many cases.

However, finding the final SVM model can be very difficult

computationally because it requires quadratic programming and

the solution to a set of nonlinear equations.3

First used as a classification methodology,55 SVM has been

extended to regression tasks via two approaches: support vector

regression (SVR)1 and least-squares support vector machines

(LS-SVMs).3 Both will be discussed in our current study. See

Section 3 for the basic theoretical concepts of the both methods.

It should be noted that support vector machines, unlike PLS and

ANN regression methods, are still relatively unknown to scien-

tists in the field of chemometrics.1–3

A number of studies dealing with SVM-based approaches for

solving chemically or industrially important problems have been
This journal is ª The Royal Society of Chemistry 2011
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published in recent years.1–3,8,9,56–63 Unfortunately, none of them

are sufficiently general; only a few sets of spectra (at most) are

usually used in each case. So, it is currently difficult to draw any

definite conclusions about the efficiency of SVR or LS-SVM and

the potential for the application of these approaches in spectro-

scopic data analyses. Different studies report different accuracies

for SVM- and ANN-based approaches that cannot be compared

because of differences in experimental or computational meth-

odologies.1–3,8,9,56–63 The role of SVM-based regression in the area

of chemometrics and multivariate data analysis is still unclear.

In the current study, we try to make a rather general

comparison of SVM-based regression models, SVR and LS-

SVM, with linear (PLS), ‘‘quasi-nonlinear’’ (Poly-PLS), and

nonlinear (ANN) regression methods. Due to our previous

experiences4–7,53,54 and the great importance of this particular

field, petroleum systems were chosen as a representative example

of real-world samples. Five very different chemical systems were

studied, differing in complexity, composition, structure, and

properties; these systems are gasoline, ethanol–gasoline biofuel,

diesel fuel, aromatic solutions of petroleum macromolecules, and

petroleum resins in benzene. Fourteen different sample sets

(‘‘NIR spectrum—sample property’’, see below) were used in

total. We try to rule out factors that influence SVR/LS-SVM

behavior (relative to PLS, Poly-PLS, and ANN) when dealing

with spectroscopic data. General conclusions are made about the

applicability of SVM-based regression tools in the modern

analytical chemistry of petroleum and its products.
2. Experimental

2.1. Sample sets

Fourteen different sample sets were used in this study (Table 1).

These sets include seven sets of gasoline data (density, benzene

content, and fractional composition/boiling points),4,6 two sets of

ethanol–gasoline fuel data (density and ethanol content),6 one set

of diesel fuel data (total sulfur content), three sets of petroleum

macromolecules data (weight percentage of asphaltenes, resins,

and paraffins in toluene),5 and one set of petroleum resins data
Table 1 General description of all fourteen (14) NIR datasets: systems, pro

Petroleum system Property Unit

Gasolinea Density at 20 �C kg m�

Initial boiling point (IB) �C
End boiling point 10% v/v (T10) �C
End boiling point 50% v/v (T50) �C
End boiling point 90% v/v (T90) �C
Final boiling point (FB) �C
Benzene contentb % w/w

Biofuel: ethanol–gasolineb Density at 20 �C kg m�

Ethanol contentb % w/w
Diesel fuel Total sulfur content ppm
Petroleum macromoleculesc Asphaltene content % w/w

Resin content % w/w
Paraffin content % w/w

Petroleum resins in benzened Resin content mg L�

a Ref. 4. b Ref. 6. c Ref. 5. d Ref. 7. e Ref. 74. f The range of [14 000; 8000] c

This journal is ª The Royal Society of Chemistry 2011
(resins content in benzene).7 In all cases, NIR spectra (Table 1)

were used to build calibration models to predict the desired

system property. See ref. 4–7 for a detailed description of the

datasets used. Table 1 summarizes the main parameters of

interest for all 14 datasets. See ref. 4–7 for a discussion of the

reference data collection for each particular case.
2.2. NIR apparatus and experimental parameters

All NIR spectra (except those for diesel) were acquired with an

NIR FT Spectrometer InfraLUM FT-10 (LUMEX, Russia)

fitted with a special sampler for liquids. See Table 2 in the

previous publication by Balabin et al.4 for detailed spectrometer

parameters. The spectra were acquired at room temperature (20–

23 �C). Background spectra were recorded before and after each

measurement to compensate for the absence of thermostating.

The averaged background spectrum was subtracted from the

sample spectrum before all pre-processing procedures. This

resulted in an analytical signal with satisfactory accuracy and

precision. The instrument calibration for wavelength and trans-

mittance was performed using four pure hydrocarbons: toluene

(C7H8), n-hexane (C6H14), benzene (C6H6), and isooctane (iso-

C8H18). This calibration was repeated at least once per day to

ensure stability of the experimental setup and data accuracy and

reproducibility.

NIR spectra of diesel fuel were collected using a MPA Multi

Purpose FT-NIR Analyzer (Bruker) at room temperature. The

MPA NIR spectrometer was calibrated with benzene and

cyclohexane (c-C6H12) at least twice per day to minimize the

influence of variable laboratory conditions. The spectral range

between 11 000 and 4000 cm�1 (909–2500 nm) was scanned with

an 8 cm�1 resolution. Sixty-four scans were averaged for each

spectrum. A background spectrum was measured every 45 min.

A cylindrical glass cell with an 8 mm optical path was used

throughout this study. Approximately 1 mL of diesel sample was

required for each NIR measurement, much less than the 200 mL

needed for distillation analysis to determine the fractional

composition.64 The NIR spectrum collection was repeated five
perties, and spectral ranges

Number
of samples

Property range Reference
method
accuracye

Spectral
rangef/cm�1

Min. Max. Max. Min.

3 95 640 800 0.5 14 000 8000
95 35 59 1–5 14 000 8000
95 58 117 1–5 14 000 8000
95 93 128 1–5 14 000 8000
95 121 175 1–5 14 000 8000
95 178 205 1–5 14 000 8000
57 0 10 0.10–0.25 13 500 8500

3 117 672 785 0.5 13 500 8500
75 0 15 0.05b 13 500 8500
125 303 5100 2–20 11 000 4000
120 (80) 0 10 0.01c 14 000 8000
120 (80) 0 30 0.01c 14 000 8000
120 (80) 0 10 0.01c 14 000 8000

1 105 (54) 0 6000 1.1d 13 000 9000

m�1 refers to [714; 1250] nm.

Analyst, 2011, 136, 1703–1712 | 1705
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Table 2 The results of linear (PLS) and quasi-nonlinear (Poly-PLS) methods application to near infrared spectroscopy and reference data of petroleum
systems: partial least squares (PLS) and polynomial partial least squares (Poly-PLS) regression models

Petroleum system Property Unit

PLS Poly-PLS

LVg RMSEP LVg ne,g RMSEP

Gasolinea Density at 20 �C kg m�3 10 2.8 9 3 2.4
Initial boiling point (IB) �C 10 2.0 15 5 1.6
End boiling point 10% v/v (T10) �C 9 2.2 9 4 1.8
End boiling point 50% v/v (T50) �C 12 2.4 14 3 1.9
End boiling point 90% v/v (T90) �C 18 2.8 14 5 2.2
Final boiling point (FB) �C 19 2.8 18 3 2.1
Benzene contentb % w/w 5 0.87 5 2 0.85

Biofuel: ethanol–gasolineb Density at 20 �C kg m�3 11 2.70 9 3 2.40
Ethanol contentb % w/w 5 0.22 3 2 0.22

Diesel fuel Total sulfur content ppm 6 344 6 3 341
Petroleum macromoleculesc Asphaltene content % w/w 5 0.41 (0.43)f 5 2 0.25

Resin content % w/w 3 0.79 (0.79)f 5 2 0.71
Paraffin content % w/w 6 0.35 (0.39)f 6 2 0.35

Petroleum resins in benzened Resin content mg L�1 3 2.1 (2.1)f 2 2 2.1

a Ref. 4. b Ref. 6. c Ref. 5. d Ref. 7. e Also known as ‘D’ in Ref. 4. f The second number (in parentheses) refers to smaller sample set, see Table 1. g The
optimal values were determined by the RMSECV minimization.
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times with cell rotation inside the spectrometer between repeti-

tions to minimize the interference from the cell or glass defects.

Measurement of one sample took less than five minutes. The

averaged and background-corrected spectra were used for

subsequent data pre-processing.

See ref. 4–7 for experimental spectra examples and their

discussion.

2.3. Model efficiency estimation

To characterize the prediction ability and efficiency of the

created regression model, the root mean squared error of

prediction (RMSEP) was calculated for each case. Validation set

was constructed as one fifth of all samples from every sample set

(19 out of 95 gasoline samples; 24 out of 120 diesel fuels; etc.). It

was checked that the validation set consisted of samples from the

entire property range.

The mean average percentage error (MAPE) was also calcu-

lated to estimate the relative accuracy of each calibration model.

This is especially important for properties with a large range,

such as sulfur in diesel fuel. See ref. 4–6 for the exact formulas

and extra discussion.

Five-fold or ten-fold cross-validation was used to optimize the

model’s parameters based on the root mean squared error of

cross-validation (RMSECV). It was checked that the cross-

validation set consisted of samples from the entire property

range. Other variants of the cross-validation procedure, e.g.,

7-fold version, leave-one-out cross-validation (LOOCV), were

checked and found to produce almost identical results.

In all cases a negligible difference between RMSECV and

RMSEP of PLS, Poly-PLS, and ANN methods was found as

discussed in ref. 4–7. The use of either of them does not change

the conclusions drawn here. This conclusion is not general—

there are many cases, even among petroleum systems, where the

RMSECV and RMSEP results can be quite different. For SVM-

based methods prediction error was calculated.

Note that one needs to use the same dataset division for

unbiased comparison with previously published results.4–7
1706 | Analyst, 2011, 136, 1703–1712
There, of course, are some reservations about using cross-

validation methods for optimizing regression models based on

support vector machines. It is arguable that SV-type models

cannot be compared directly as PLS-type models. There are

a number of reasons for this. First of all, some samples (not SVs)

do not contribute to the models, so removing them will make no

difference for the final prediction of, e.g., SVR. This is

a complicated issue: removing too many samples may mean that

there are different SVs, but removing a single non-SV sample

usually means no change in the final model. Second, some

parameters such as the error penalty term (C or g) have

a ‘‘quantized’’ effect on the model, that is a range of C values will

result in an identical model. Neither of these issues are problems

encountered when optimizing the PLS model.

2.4. NIR spectra pre-processing and outlier detection

Different types of spectra pre-processing (pre-treatment)

methods were used, including normalization, magnitude

normalization, multiplicative scatter correction (MSC), lineari-

zation, differentiation, double differentiation, autoscaling, and

range scaling in different intervals. The best pre-processing

technique was found for each calibration method and each

petroleum system property. See ref. 4–7 for a detailed discussion

of each particular system.

See ref. 4–7 for a detailed discussion of the outlier detection

scheme for each particular petroleum system. In general, all

results are reported for outlier-free sample sets. Note that for

traditional statistical methods (such as PLS), it is sometimes

indeed important to perform outlier detection prior to modeling,

as outliers can have a huge influence on least squares approaches.

However, for SVR this is not always necessary, because its

behavior with respect to outliers can be controlled by the error

penalty term. So, SVR can actually handle datasets with extreme

outliers whereas some other approaches will fall down. Here we

do not discuss the robustness of the techniques with respect to

outliers; that is why the errors are reported for outlier-free

sample sets.
This journal is ª The Royal Society of Chemistry 2011
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2.5. Spectra reduction and feature selection

In order to create an effective and robust regression model, the

spectral data, which have up to 104 independent variables, should be

reduced.65 Two common data reduction techniques, spectra aver-

aging and principal component analysis (PCA), were used to achieve

this goal for LS-SVM, SVR, and ANN methods.1–9,26,27,52,65 Note

that PLS-based techniques have an intrinsic data reduction ability

(the latent variables). The PCA results are reported because this

technique was found to produce the best resultsand the lowesterrors

in all cases. Other methods of feature selection (wavelets, UVE-PLS,

etc.66) are out of the scope of current study. Of course, the optimal

feature selection methodology leads to an increase in the prediction

ability and a decrease in the error of any model discussed.66

2.6. Methods optimization

To compare the different classification models, the best results

from each model need to be obtained; otherwise, the comparison

is useless. The results from each model depend on the model

parameters. We have used a wide range of model parameters to

achieve the best results. RMSECV minimization was used for

optimization in all cases and for all models.

These parameters and the corresponding model are as follows:

PLS: number of latent variables (LV);

Poly-PLS: LV and degree of polynomial (n);

ANN/MLP: number of input neurons (IN; equal to number of

principal components, PC), number of hidden neurons (HN),

and transfer function of hidden layer: f(x) ¼ {logsig}; {tansig/

tanh}. Detailed procedures for ANN training can be found in ref.

4. See for example, Table 4 in ref. 4 for the ANN training

procedure for gasoline data.

SVR: the error weight (C), maximal error value (3), and kernel-

related parameters. The same set of kernels (linear, polynomial,

and radial basis function (RBF)) was used for SVR and LS-SVM

model building. See Table 4 in ref. 24 for a detailed list of

parameters. See Section 3 for the parameter definitions and other

clarifications.

LS-SVM: the regularization parameter (g), determining the

trade-off between the fitting error minimization and the

smoothness of the estimated function, and the kernel-related

parameters (e.g., s or s2 for the RBF kernel, Table 2). See Section

3 for the parameter definitions and other clarifications.

RBF kernels (default) were found to produce the lowest

prediction errors in all cases studied. But the SVM-based

methods were found not to be very sensitive to kernel choice; in

many cases, polynomial kernels were able to produce very close

results to RBF ones (compare with ref. 1–3).

Note that Spline-PLS, being a very time consuming technique,

has not shown any considerable superiority over the Poly-PLS

method for petroleum system analysis.4 This is why it was not

used in the current study.

So, the regression methods were optimized based on cross-

validation procedure and tested using fully independent test

(validation) sets (see also above).

2.7. Software and computing

MATLAB 2008b was used as the standard software for multi-

variate methods realization. The following toolboxes were used:
This journal is ª The Royal Society of Chemistry 2011
MATLAB Statistics Toolbox, MATLAB Support Vector

Machine Toolbox, MATLAB Neural Network Toolbox, N-way

Toolbox for MATLAB, and PLS_Toolbox Version 4.0. For the

SVR calculations, a MATLAB toolbox developed and described

by Gunn was used.67 The LS-SVM regression model was built

using the LS-SVMlab1.5 MATLAB toolbox.68 Ref. 67 and 68

contain a detailed description of the algorithms and procedures.

The standard programs of these toolboxes were modified and

extended by BRM (see also ref. 4 and 6).
2.8. Sample sets: their quality and representativeness

The current study deals with five chemical systems of petroleum

origin. They are: gasoline, a classical sample for analytical

chemistry in general and chemometrics in particular;4,6 ethanol–

gasoline biofuel, an increasingly popular type of motor fuel,

partly produced from renewable sources that may have a colloid

(dispersed) structure;69,70 diesel fuel, a product of petroleum

refining with a higher boiling range than gasoline due to a more

complicated mixture of hydrocarbons and heteroatomic

compounds;13 a solution of all three classes of petroleum

macromolecules (asphaltenes, the molecules responsible for the

colloid structure formation in crude oil;71 resins; and paraffins) in

an aromatic solvent (toluene; each macromolecule class is an

extremely complicated mixture); and a petroleum resins solution

in benzene, a sample set used to calibrate NIR setup for

adsorption studies.7 Details about some of these systems have

been published during the last 4 years by Balabin and

co-workers.4–7,53,54

The four systems presented here greatly range in composition,

properties, and behavior. While low molecular weight substances

having 6–12 carbon atoms with low intermolecular forces (n-

hexane, heptane isomers, isooctane, etc.) form gasoline,13 heavy

(above 500 Da) molecules with high tendency to aggregation and

phase separation, like resins and asphaltenes, are found in the

last two systems.71 The number of effective components ranges

from one in petroleum resins to millions. Therefore, rather

general conclusions about algorithm behavior can be made based

on the system studied.

The fourteen properties of the four petroleum systems

described above form fourteen sample sets that are very different

in nature (Table 1). For gasoline, these are the density at 20 �C,

fractional composition (including initial boiling point (IB), end

boiling points 10%, 50%, and 90% v/v (T10, T50, and T90,

respectively), and final boiling point (FB)) and finally benzene

content. For ethanol–gasoline fuel, these sample sets are based

on density at 20 �C and ethanol content—[EtOH]. For diesel fuel,

the sample set is based on the total sulfur content ([Sulfur]). For

petroleum macromolecules, the sets are asphaltene content ([A]),

resins content ([R]), and paraffins content ([P]). Finally, for

petroleum resins the relevant sample set is the resin concentration

in benzene ([R]).

Note that the quality (accuracy, repeatability, and reproduc-

ibility) of reference data ranges greatly from one property to

another (Table 1). It is important to estimate the effect of initial

data quality on final prediction results. The same can be said

about property ranges; some are rather limited (e.g., T50), some

are very broad (e.g., [Sulfur] or [R]). In industrial applications it

is usually impossible to model the quality (in either accuracy or
Analyst, 2011, 136, 1703–1712 | 1707
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range) of datasets. Therefore, the machine learning algorithms

that show very good, even brilliant, results on model systems do

not always show the same results when applied to real-world

problems.46,52 In this work we have tried to use wide ranges of

reference data quality to help make our conclusions as general as

possible.

The spectroscopic information for most sample sets (Table 1)

was recorded in the short-wave part of the NIR region (above

8000 cm�1). This is the region with the second to fifth overtones

of characteristic molecular vibrations observed by standard IR

and Raman techniques.14,26,51 The only exclusion is the diesel fuel

sample set, whose spectrum lies in the 4000–11 000 cm�1 region.

In this particular case, it was important to get information from

the long-wave part of the NIR spectrum due to the necessity of

predicting the sulfur concentration in diesel samples.14

The number of samples in the sample sets ranged from 57 to

125 (Table 1). Since the number of samples can influence the

quality of the multivariate model prediction, we tried to ensure

that sample set saturation was observed at least in the case of the

simplest (PLS) method, similar to the basis set limit (BSL) or

complete basis set (CBS) methods in quantum chemistry.50,72,73

Table 2 shows some representative examples of varying the

number of training examples.

3. A short description of SVM regression methods:
SVR vs. LS-SVM

Support vector machines were initially been developed by

Vapnik52,55 as a binary classification tool. SVMs are based on

some ‘‘beautifully simple ideas’’56 and provide a clear intuition of

what learning from examples is all about. Intuitively, an SVM

model is a representation of the training sample set as vectors in

space mapped so that the samples from the separate categories

are divided by a clear gap that is as wide as possible. New samples

from cross-validation or a test set are then mapped into that

same space. Based on which side of the gap between classes they

fall, they are predicted to belong to one category or another.

SVMs show high performance in practical applications when

solving sophisticated classification problems.24,55,56

The principles of SVM can easily be extended to regression

tasks. For detailed in-depth theoretical background on SVMs for

both classification and regression, the reader is referred to the ref.

1–3, 52 and 55. No equations will be used in the following text;

see ref. 1–3 for all necessary equations and formalism.

Similar to the approach of ordinary least squares (OLS) and

PLS, SVR also finds a linear relation between the regressors

(input variables, X) and the dependent variables (y).1 The cost

function (the function that is minimized to obtain the best

regression model) consists of a two-norm penalty on the regres-

sion coefficients, an error term multiplied by the error weight, C,

and a set of constraints. Using this cost function, the goal is to

simultaneously minimize both the coefficients’ size and the

prediction errors (function smoothness and accuracy). The first

point is important because large coefficients might hamper

generalization due to their tendency to cause excessive variance.1

In SVR, the prediction errors are penalized linearly with the

exception of a deviation of below a certain value, 3, according to

Vapnik’s 3-insensitive loss function. Only predictions deviating

more than 3 (|y � ypred| > 3, where ypred is the SVR model
1708 | Analyst, 2011, 136, 1703–1712
prediction) are taken into account. The objects with prediction

errors larger than 3 are called ‘‘support vectors’’ and only these

vectors determine the final prediction of the SVR model. Due to

the fact that only the inner product is used in all calculations, it is

possible to use kernel functions, or kernels, that enable nonlinear

regression in a very efficient way. The values of 3 and the

parameter C have to be defined by the user; both are problem-

and data-dependent.1,55

The ideology of the LS-SVM method is very close to that of

SVR, but in this case the more usual sum of the squares of the

errors is minimized, and no 3-based selection is made between

samples. This is a general feature of least-squares (LS) methods.3

This can make the final model more accurate and less compu-

tationally expensive; see ref. 3 for extra details. Parameter g, the

analog of parameter C in the SVR model, controls the smooth-

ness of the fit.

So, if one forgets about kernel-specific parameters, the error

weight (C) plus maximal error value (3) and regularization

parameter (g) were optimized for SVR and LS-SVM methods,

respectively.

As described above, SVM-based regression techniques solve

many of the intrinsic ANN problems, such as its stochastic

nature, the necessity to repeat network training many times, and

the non-uniqueness of the final ANN solution. This makes SVR

and LS-SVM interesting and promising alternatives to ANN.

Note that the most important advantage, namely the possibility

of building a nonlinear model, is still valid in the SVM regression

case. Here we will try to understand the extent to which SVM-

based techniques can substitute ANN-based approached tech-

niques in real-world (industrial) applications. Are SVR and

LS-SVM models accurate enough to really be regarded as

alternatives to neural networks?
4. Results and discussion

4.1. PLS-based techniques: linear PLS and Poly-PLS

Table 2 shows the results of application of PLS-based techniques

to NIR spectra of different petroleum systems.4 Comparison of

the property range and the reference method accuracy shows that

very different results were obtained. In some cases, such as

density and fractional composition of gasoline and ethanol–

gasoline fuel, or resins in benzene, rather good accuracy of the

PLS/Poly-PLS prediction was achieved. In other cases, such as

petroleum macromolecules and total sulfur content in diesel fuel,

only mediocre results were observed. It seems to be that the

model quality is greatly dependent on the structure of the object

under study. Compare: in the resins content in two different

systems (Table 2), one is much more complicated than other

(Table 1).

The structure of PLS-based models, namely the number of

latent variables and the degree on polynomial, is inline with

previous results for petroleum systems. The general trend is that

the more complicated the quality (that is, the greater the

nonlinearity), the greater the number of latent variables needed

to extract all necessary information and to take into account the

deviation from linear spectrum–property dependence (Table 2).

Note that in all cases, the Poly-PLS approach shows a RMSEP

that is not worse than that of the linear PLS analog.4,6,45 In other
This journal is ª The Royal Society of Chemistry 2011
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words, for all petroleum systems under study, some kind of

nonlinearity was observed and modeled with differing success by

the Poly-PLS model.4 The only property for which the Poly-PLS

approach was really effective was the asphaltene content, in

which the RMSEP was decreased by almost 40%. Almost no

effect was observed for benzene, ethanol, and sulfur contents,

where the RMSEP was decreased by only 2 � 1%. Therefore,

Poly-PLS approach is not the best model for increasing the

accuracy of the calibration model, even though some effect

(�10%) can be observed in a number of cases.43,44
4.2. ANN approach

The results of the ANN approach to the petroleum NIR data are

summarized in Table 3. The accuracy of the ANN method is

always much better than other methods, with the exception of

resins concentration determination in benzene solution.

An average prediction error decrease relative to PLS of 41 �
15% (�s) was observed. The largest error decrease was observed

for the asphaltene concentration (�63%), with resins and

paraffin contents also showing large, and almost identical,

decreases. This fact can be explained by the extremely high

tendency of petroleum macromolecules to form dimers, oligo-

mers, clusters, and aggregates.12,29,71 Even phase separation, or

asphaltene onset, can easily be observed in many petroleum

systems. This is the process that is responsible for many troubles

in the petroleum industry, from crude oil production to refining

and transportation.7,12,13,29 Since all of the described processes are

concentration-dependent, a high degree of nonlinearity in spec-

trum–concentration dependence is expected. This leads to the

need of nonlinear treatment of systems containing petroleum

macromolecules (especially asphaltenes). ANN is the technique

of choice in this case.

The absence of such a pronounced effect of ANN application

for pure resins solution in benzene (�10% only) can be explained

as follows. First, the system is simple and ANN is just not

needed. Second, the PLS approach is itself highly accurate, close
Table 3 The results of artificial neural networks (ANNs) application to near i
perceptron—MLP or ANN-MLP

Petroleum system Property

Gasolinea Density at 20 �C
Initial boiling point (IB)
End boiling point 10% v/v (T10)
End boiling point 50% v/v (T50)
End boiling point 90% v/v (T90)
Final boiling point (FB)
Benzene contentb

Biofuel: ethanol–gasolineb Density at 20 �C
Ethanol contentb

Diesel fuel Total sulfur content
Petroleum macromoleculesc Asphaltene content

Resin content
Paraffin content

Petroleum resins in benzened Resin content

a Ref. 4. b Ref. 6. c Ref. 5. d Ref. 7. e ANN architecture is the following: IN�
number of input neurons (IN) is equal to the (optimal) number of principal
infrared spectra.4 Compare with LV in Table 2. g The optimal values were de

This journal is ª The Royal Society of Chemistry 2011
to the accuracy of the reference method (Table 1), and neither

ANN nor other multivariate method can do better than the

reference data allow (see below).26,27

In general, one can state that the ANN approach is extremely

efficient for analysis of NIR spectra of petroleum systems,

regardless of boiling range or composition. Very different

properties and quality coefficients of industrially important

products can be accurately predicted by neural networks.4,46
4.3. SVM-based techniques: SVR and LS-SVM

Table 4 summarizes the results of SVM-based approaches to

petroleum data in all 14 datasets. The results of SVR and LS-

SVM methods are presented for comparison.

One can see that, in general, both SVR and LS-SVM models

show results not worse than those of ANN models. In cases of

[Sulfur] prediction and petroleum macromolecules analysis, the

SVM-based regression models have lower prediction error

(�15 � 1%) than ANN models. Good results are also shown by

the SVR model for benzene concentration prediction (�9%). For

T90, [EtOH] and petroleum resins in benzene, SVM regression

models have higher RMSEP than ANN models (by 7%, 11%,

and 7%, respectively). Note that in the last case all the methods

show approximately the same results (�8%), so these data are

not that representative (Table 4). The cause for this could be the

relative system simplicity. In the five other cases, the results of the

SVM approach are very close to those of neural networks (�2%).

The difference between SVR and LS-SVM results is small: �3

� 7% with an advantage of LS-SVM regression model. A rela-

tively significant difference (>10%) is observed for [Benzene], [A],

[R] in toluene, and [R] in benzene. In the last three cases, the

RMSEP of LS-SVM model is lower.

Based on data from Table 4, one can claim that both SVM-

based methods are very effective for building calibration models

(compare with Table 2). Both methods are recommended for

analysis of petroleum products and biofuels (compare with Fig. 2

in ref. 3). Mostly due to computational aspects, the LS-SVM
nfrared spectroscopy and reference data of petroleum systems: multi-layer

Unit

ANN (MLP)e

IN (PC)f,g HNg RMSEP

kg m�3 10 7 2.0
�C 16 8 1.3
�C 19 6 1.4
�C 15 9 1.6
�C 14 9 1.7
�C 18 7 1.7
% w/w 12 5 0.58
kg m�3 9 7 1.90
% w/w 8 5 0.13
ppm 7 5 155
% w/w 5 3 0.15
% w/w 5 4 0.30
% w/w 5 3 0.13
mg L�1 3 2 1.9

NH� 1; so, in the case of diesel fuel it will be ‘‘7� 5� 1’’. f The (optimal)
components (PC) used for principal component analysis (PCA) of near
termined by the RMSECV minimization.

Analyst, 2011, 136, 1703–1712 | 1709
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Table 4 The results of support vector machine regression (SVR and LS-SVM) application to near infrared spectroscopy and reference data of
petroleum systems: support vector regression (SVR) and least-squares support vector machines (LS-SVMs)

Petroleum system Property Unit

SVR LS-SVM

PCe RMSEP PCe RMSEP

Gasolinea Density at 20 �C kg m�3 5 2.0 6 2.0
Initial boiling point (IB) �C 8 1.4 8 1.3
End boiling point 10% v/v (T10) �C 8 1.4 8 1.4
End boiling point 50% v/v (T50) �C 7 1.5 7 1.6
End boiling point 90% v/v (T90) �C 10 1.8 9 1.8
Final boiling point (FB) �C 10 1.8 10 1.7
Benzene contentb % w/w 5 0.53 6 0.58

Biofuel: ethanol–gasolineb Density at 20 �C kg m�3 7 1.91 6 1.92
Ethanol contentb % w/w 5 0.14 6 0.16

Diesel fuel Total sulfur content ppm 7 136 7 131
Petroleum macromoleculesc Asphaltene content % w/w 4 0.15 4 0.13

Resin content % w/w 6 0.29 4 0.26
Paraffin content % w/w 5 0.12 5 0.12

Petroleum resins in benzened Resin content mg L�1 3 2.3 3 2.0

a Ref. 4. b Ref. 6. c Ref. 5. d Ref. 7. e The optimal values were determined by the RMSECV minimization.
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regression model is preferred. This conclusion supports the early

analysis of Buydens and co-workers3 based on NIR spectra that

were affected by temperature-induced spectral variation. Addi-

tional support for LS-SVM usage is the evidence that this model

leads to robust models for spectral variations due to nonlinear

interferences.3
Fig. 1 Correlation between the decrease in relative error (%) using ANN

and SVM (LS-SVM) regression methods: (x-axis) 100% � (RMSEPANN

� RMSEPPLS)/RMSEPPLS; (y-axis) 100% � (RMSEPLS-SVM � RMSE-

PANN)/RMSEPANN. Note the use of fourteen (14) different datasets.
4.4. General remarks. Trends and peculiarities

Fig. 1 shows the scatter plot of two relative error differences:

(RMSEP2 � RMSEP1)/RMSEP1 � 100%, where {1} and {2}

refer to {PLS} and {ANN} differences and {ANN} and {LS-

SVM} differences, respectively. Fig. 1 clearly shows that

a correlation between model behaviors exists because the points

form two distinct classes. The first, larger class with 10 points is

characterized by a relative error decrease due to neural networks

usage of 10–40%; in this case the use of LS-SVM regression does

not lead to any significant error decrease compared to the ANN

model. The second, smaller class of 4 points has an x-value below

�50% and a y-value below �10%. So, if the PLS error is greatly

decreased by ANNs by more than half, one can expect that the

SVM-based regression model will be more effective than the

ANN approach. Since the difference between the PLS and ANN

models can be interpreted as a measure of object or property

nonlinearity, the SVM-based approach is preferable for highly

nonlinear objects.

This observation can be explained by the fact that the ANN

method tends to overfit highly nonlinear objects. This behavior

can significantly lower the generalization ability of the network.

The same is not observed for the LS-SVM calibration model.

Note that the point with the smallest absolute x-value on Fig. 1

is the resins in benzene sample (see also the Discussion above).

The maximum accuracy achieved by each technique is the

main, but not the only characteristic of model applicability to

real-world (industrial) tasks. For example, one of many benefits

of the SVM approach is its deterministic nature. It leads to the

fact that the range of prediction errors for different training/test

subsets separation for the SVM-based techniques is much smaller

than for top-20 ANNs: [130�133] vs. [147�281] ppm for diesel
1710 | Analyst, 2011, 136, 1703–1712
fuel analysis, [0.15–0.17] and [0.13–0.30] % w/w for [EtOH] in

biofuel, etc. for LS-SVM and ANN methods, respectively. In

other words, one needs to repeat the ANN training many times

to get a really accurate result.
5. Conclusions

The results of application of linear (PLS), quasi-nonlinear (Poly-

PLS), and nonlinear (ANN, SVR, and LS-SVM) regression

methods on NIR spectroscopy data are shown in Fig. 2. One can

conclude the following:

(1) Fourteen different sample sets were studied by linear (PLS),

quasi nonlinear (Poly-PLS), and three nonlinear (ANN, SVR,

and LS-SVM) multivariate methods. NIR spectroscopy data

were used in all cases.
This journal is ª The Royal Society of Chemistry 2011

https://doi.org/10.1039/c0an00387e


Pu
bl

is
he

d 
on

 2
5 

fe
br

úa
r 

20
11

. D
ow

nl
oa

de
d 

on
 2

0.
11

.2
02

5 
00

:2
4:

01
. 

View Article Online
(2) The accuracy of the SVM-based calibration models, SVR

and LS-SVM, is comparable with the accuracy of the ANN-

based approach.

(3) There is a correlation between the relative accuracies of the

ANN- and SVM-based approaches.

(4) For highly nonlinear objects like petroleum macromole-

cules, SVM-based regression models are preferable to neural

networks.

(5) Regression methodologies, based on the support vector

machine ideology, are recommended for practical implementa-

tion. The regression models based on SVMs are sufficiently

accurate and robust to be used for gasoline, biofuel, or diesel fuel

analysis.

We hope that the role of SVM-based regression in chemo-

metrics and multivariate data analysis is clearer after this study

and that the possibilities of SVM-based approaches and obsta-

cles to their application have become more evident to both

analytical and industrial communities.

We believe that our results will help future chemometric

investigations and investigations in the sphere of vibrational (IR,

NIR, and Raman) spectroscopy of multicomponent

systems.1–3,56–63,75–82 The results presented herein can help achieve

rapid and accurate analysis or classification of biofuels, products
Fig. 2 Results of petroleum systems analysis by different multivariate

techniques: LS-SVM vs. ANN and SVR vs. LS-SVM. Sample sets and

properties: (top, from left to right) density—gasoline density at 20 �C,

IB—initial boiling point, T10—end boiling point 10% v/v, T50–end

boiling point 50% v/v, T90—end boiling point 90% v/v, FB—final boiling

point, [Benzene]–benzene content in gasoline; (bottom, from left to right)

density—ethanol–gasoline fuel density at 20 �C, [EtOH]—ethanol

content, [Sulfur]—total sulfur content in diesel fuel, [A]—asphaltene

content in petroleum macromolecule solution, [R]—resins content in

petroleum macromolecule solution, [P]—paraffins content in petroleum

macromolecule solution, [R]—petroleum resin concentration in benzene.7

Calibration models: PLS—partial least squares regression (projection to

latent structures), Poly-PLS—polynomial partial least squares regres-

sion, ANNs–artificial neural networks (multilayer perceptron), SVR—

support vector regression, LS-SVM—least-squares support vector

machine regression. The root mean squared errors of prediction

(RMSEP) are presented. The errors are normalized for comparison

among different systems.

This journal is ª The Royal Society of Chemistry 2011
of petroleum refining, and petrochemicals. The use of NIR

spectroscopy in other fields of analytical chemistry, such as

pharmaceutical quality control, food quality control, and active

pharmaceutical ingredient/pharmacon (pharmakon) analysis of

tablets, can be enhanced by the application of modern methods

of multivariate data analysis, including support vector machines

and artificial neural networks as well as other machine learning

techniques.
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