Issue 5, 2024

Cancer-targeting gold-decorated melanin nanoparticles for in vivo near-infrared photothermal therapy

Abstract

Photothermal cancer therapy has gained increasing attention as a minimally invasive treatment via the localized heating of photothermal agents to eradicate cancer cells. However, its clinical translation has been limited by insufficient photothermal conversion in the near-infrared (NIR) range and low tumor-targeting efficiency. Here, synthetic melanin-like nanoparticles (∼190 nm in diameter) decorated with a cluster of smaller gold nanoparticles (∼20 nm in diameter) are developed as efficient NIR photothermal agents for in vivo cancer treatment. The melanin-gold hybrid nanoparticles are prepared by the oxidative polymerization of dopamine into colloidal melanin-like nanoparticles, followed by the spontaneous reduction of gold ion precursors into plasmonic nanoparticles on the surface of melanin nanoparticles. The gold nanoparticles significantly increase the NIR light absorption and photothermal conversion of the melanin nanoparticles, making their overall photothermal performance superior to conventional gold nanorods. Chemical conjugation of epidermal growth factor to the hybrid nanoparticles facilitates their cellular internalization into lung adenocarcinoma cells and enables in vivo tumor-targeting in a xenograft mouse model. The nanoparticles also exhibit excellent dispersion stability in serum and maintain high photothermal efficiency even after extensive laser irradiation. Our results suggest that the electronic hybridization of melanin and gold nanostructures provides a new opportunity to fine-tune their optical and chemical properties for tumor-targeted photothermal therapy.

Graphical abstract: Cancer-targeting gold-decorated melanin nanoparticles for in vivo near-infrared photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
01 nóv. 2023
Accepted
27 feb. 2024
First published
29 feb. 2024
This article is Open Access
Creative Commons BY-NC license

Mol. Syst. Des. Eng., 2024,9, 507-517

Cancer-targeting gold-decorated melanin nanoparticles for in vivo near-infrared photothermal therapy

G. Pornnoppadol, S. Cho, J. H. Yu, S. Kim and Y. S. Nam, Mol. Syst. Des. Eng., 2024, 9, 507 DOI: 10.1039/D3ME00173C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements