Issue 91, 2024

Functional metal–organic frameworks derived electrode materials for electrochemical energy storage: a review

Abstract

Pristine metal–organic frameworks (MOFs) are built through self-assembly of electron rich organic linkers and electron deficient metal nodes via coordinate bond. Due to the unique properties of MOFs like highly tunable frameworks, huge specific surface areas, flexible chemical composition, flexible structures and a large volume of pores, they are being used to design the electrode materials for electrochemical energy storage devices. As per the literature, MOFs (including manganese, nickel, copper, and cobalt-based zeolitic imidazolate frameworks (ZIFs), University of Oslo (UiO) MOFs, Hong Kong University of Science and Technology (HKUST) MOFs and isoreticular MOFs (IRMOFs)) have attracted much attention in the field of supercapacitors (SCs)/batteries. According to their dimensionality such as 1D, 2D and 3D, pristine MOFs are mainly used as SC materials. Highly porous materials and their composites are capable for intercalation of metal ions (Na+/Li+). Moreover, the supramolecular features (π⋯π, C–H⋯π, hydrogen bond interactions) of redox stable MOFs provide better insight for electrochemical stability. So, this review provides an in-depth analysis of pure MOFs and MOF derived composites (MOF composites and MOF derived porous carbon) as electrode materials and also discusses their metal ion charge storage mechanism. Finally, we provide our perspectives on the current issues and future opportunities for supercapacitor materials.

Graphical abstract: Functional metal–organic frameworks derived electrode materials for electrochemical energy storage: a review

Article information

Article type
Highlight
Submitted
11 ágú. 2024
Accepted
01 okt. 2024
First published
28 okt. 2024

Chem. Commun., 2024,60, 13292-13313

Functional metal–organic frameworks derived electrode materials for electrochemical energy storage: a review

Basree, A. Ali, K. Kumari, M. Ahmad and G. C. Nayak, Chem. Commun., 2024, 60, 13292 DOI: 10.1039/D4CC04086D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements