Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In recent years, the innovative design of small-molecule non-fullerene acceptors (NFAs), in particular fused ring electron acceptors (FREAs), has greatly promoted the development of organic solar cells (OSCs), with PCEs higher than 19% to date. However, there is still a certain efficiency gap compared to inorganic and perovskite solar cells, mainly due to the large energy loss (Eloss) in OSCs. Impressively, symmetry breaking of FREAs has recently emerged as an effective molecular design strategy to reduce the Eloss to a remarkably low value of 0.44 eV. Thus, in this perspective, we carefully summarize the recently encouraging progress of asymmetric FREAs and try to show a picture of the relationship between the asymmetric molecular structure, Eloss, and the device performance. Moreover, molecular insights for the future development of high performance asymmetric NFAs are also provided.

Graphical abstract: Symmetry breaking: an efficient structure design of nonfullerene acceptors to reduce the energy loss in organic solar cells

Page: ^ Top