Issue 42, 2015

Au–Rh and Au–Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability

Abstract

Au, Rh, Pd, Au–Rh and Au–Pd nanoparticles (NPs) were synthesized by colloidal chemical reduction and immobilized on hydrothermally-prepared rutile titania nanorods. The catalysts were characterized by aberration-corrected TEM/STEM, XPS, and FTIR, and were evaluated in the hydrogenation of tetralin in the presence of H2S. Oxidizing and reducing thermal treatments were employed to remove the polyvinyl alcohol (PVA) surfactant. Reduction in H2 at 350 °C was found efficient for removing the PVA while preserving the size (ca. 3 nm), shape and bimetallic nature of the NPs. While Au–Pd NPs are alloyed at the atomic scale, Au–Rh NPs contain randomly distributed single-phase domains. Calcination–reduction of Au–Rh NPs mostly leads to separated Au and Rh NPs, while pre-reduction generates a well-defined segregated structure with Rh located at the interface between Au and TiO2 and possibly present around the NPs as a thin overlayer. Both the titania support and gold increase the resistance of Rh and Pd to oxidation. Furthermore, although detrimental to tetralin hydrogenation initial activity, gold stabilizes the NPs against surface sulfidation in the presence of 50 ppm H2S, leading to increased catalytic performances of the Au–Rh and Au–Pd systems as compared to their Rh and Pd counterparts.

Graphical abstract: Au–Rh and Au–Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability

Supplementary files

Article information

Article type
Paper
Submitted
15 jan. 2015
Accepted
06 mar. 2015
First published
06 mar. 2015

Phys. Chem. Chem. Phys., 2015,17, 28112-28120

Author version available

Au–Rh and Au–Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability

Z. Konuspayeva, P. Afanasiev, T. Nguyen, L. Di Felice, F. Morfin, N. Nguyen, J. Nelayah, C. Ricolleau, Z. Y. Li, J. Yuan, G. Berhault and L. Piccolo, Phys. Chem. Chem. Phys., 2015, 17, 28112 DOI: 10.1039/C5CP00249D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements