Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Anode materials with capacitive charge storage (CCS) are highly desirable for the development of high-performance sodium-ion batteries (SIBs), because the capacitive process usually shows kinetically high ion diffusion and superior structural stability. Here, we report a new CCS anode material of graphene-based nitrogen-doped carbon sandwich nanosheets (G-NCs). The as-prepared G-NCs show a high capacitive contribution during the discharge/charge processes. As expected, the G-NCs exhibit excellent rate performance with a reversible capacity of 110 mA h g−1, even at a current as high as 10 000 mA g−1, and outstanding cycle stability (a retention of 154 mA h g−1 after 10 000 cycles at 5000 mA g−1). This represents the best cycle stability among all reported carbon anode materials for SIBs, thereby showing great potential as a commercial anode material for SIBs.

Graphical abstract: Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries

Page: ^ Top