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Shape matters: inferring the motility of confluent
cells from static images†

Quirine J. S. Braat, ‡a Giulia Janzen, ‡ab Bas C. Jansen,‡a Vincent E. Debets, a

Simone Ciarella cd and Liesbeth M. C. Janssen *ae

Cell motility in dense cell collectives is pivotal in various diseases like cancer metastasis and asthma.

A central aspect in these phenomena is the heterogeneity in cell motility, but identifying the motility of

individual cells is challenging. Previous work has established the importance of the average cell shape in

predicting cell dynamics. Here, we aim to identify the importance of individual cell shape features, rather

than collective features, to distinguish between high-motility and low-motility (or zero-motility) cells in

heterogeneous cell layers. Employing the cellular Potts model, we generate simulation snapshots and

extract static features as inputs for a simple machine-learning model. Our results show that when cells

are either motile or non-motile, this machine-learning model can accurately predict a cell’s phenotype

using only single-cell shape features. Furthermore, we explore scenarios where both cell types exhibit

some degree of motility, characterized by high or low motility. In such cases, our findings indicate that a

neural network trained on shape features can accurately classify cell motility, particularly when the

number of highly motile cells is low, and high-motility cells are significantly more motile compared to

low-motility cells. This work offers potential for physics-inspired predictions of single-cell properties

with implications for inferring cell dynamics from static histological images.

1 Introduction

Collective cell migration in dense cell layers and tissues is a
fundamental process underlying many physiological pheno-
mena including wound healing, embryogenesis, and tissue
development, but it also plays a critical role in disease progres-
sion such as asthma and cancer.1,2 In general, cell migration is
driven by a dynamic interplay between forces, deformations,
and environmental cues, making the process complex from
both a biological and physical perspective.3,4 This inherent
complexity hampers our ability to reliably predict the migratory
capacity of confluent cells and densely packed cellular aggregates,
both in healthy and pathological conditions. For prognostic

purposes, especially in the context of cancer metastasis,5–8 it would
be highly desirable if one could infer information on the expected
dynamical behaviour of cellular collectives based solely on static
information, i.e., from static, microscopic images routinely
obtained from histopathology slides.

Recent breakthroughs have already revealed important mor-
phodynamic links that correlate static, structural features with
the collective dynamics of multicellular aggregates. Indeed,
pioneering work has established that the average cell shape
(as quantified by a dimensionless shape index) in confluent cell
layers can serve as a remarkably good proxy for collective cell
dynamics, including jamming and unjamming behaviour.9–16

Additional static features such as the shape and size of cell
nuclei can further refine the predictive power.5,6,17 However,
these studies have focused mainly on morphodynamic links for
the emergent collective cell dynamics. The question to what
extent static or structural information can also inform on
single-cell dynamical properties, such as individual cell moti-
lity, has thus far remained largely unexplored. Gaining knowl-
edge about such single-cell properties is particularly important
in heterogeneous cell layers, where the presence of more
intrinsically motile cells, as in the context of a partial epithe-
lial-to-mesenchymal transition (EMT), is associated with more
aggressive cancer progression.18–22

Here, we seek to derive information about individual cell
motility from purely static cell data. In particular, we aim to
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discriminate between two different cellular phenotypes, high-
motility and low-motility cells, based on static images of a
minimally heterogeneous in silico confluent cell layer. The
static information that is extracted includes both single-cell
geometric shape features and structural properties of the
neighbouring cells surrounding a given cell. Our work draws
inspiration from Janzen et al.,23 who recently investigated the
possibility of predicting particle motility in a dense, hetero-
geneous mixture of spherical active and passive colloidal par-
ticles. Briefly, they showed that the shapes of the Voronoi
polygons surrounding active particles exhibit distinct charac-
teristics which can serve as sufficient static information to
accurately classify different particle motilities. In the present
work, we expand upon this approach to study the more challen-
ging, and more biologically realistic, case of a heterogeneous
confluent cell layer. Our primary goal is to infer the phenotype
of individual cells based on their static properties. This
approach allows us to make predictions about single-cell beha-
viour without relying on collective cell data.

Our confluent cell model is based on the cellular Potts
model (CPM), a simulation technique that allows for cell-
resolved dynamics with controllable single-cell motilities.13,24–29

The CPM, despite its simplicity, has been used successfully in
the past to capture the behaviour of biological systems.27,30,31

To distinguish between high-motility and low-motility cells, we
employ a machine-learning (ML) approach that takes as input
instantaneous static information derived from CPM simulation
snapshots. Our choice to invoke machine learning stems from the
fact that, in recent years, ML has emerged as a powerful tool for
identifying structure-dynamics relations in dense disordered pas-
sive systems,32–51 purely active systems,51–59 and active–passive
colloidal mixtures.23 Moreover, it has been successfully employed
in experimental studies to predict information about the proper-
ties of cell collectives.60–63 We therefore envision that this work
could not only advance our understanding of distinguishing
motile and non-motile cells in simulations, but also find future
applications in studying the behaviour of individual cells in
biological confluent cell layers.

A schematic overview of our methodology is shown in Fig. 1.
Briefly, we extract different static features for a given cell from
an instantaneous CPM configuration, from which a simple ML
algorithm subsequently seeks to classify the cell’s motility
phenotype. The static input features are subdivided into four
categories, namely single-cell (local) shape features, neigh-
bouring-cell (non-local) shape features, local structural features
and non-local structural features. The shape features refer to
the geometric properties of the cells, such as their size, aspect
ratio, and perimeter. Structural features, on the other hand,
encompass the spatial arrangement and include metrics such
as the cell’s position relative to the neighbouring cells. The
distinction between shape and structural features allows us to
identify how much information regarding a cell’s intrinsic
motility is captured by its shape. By comparing the predictive
power of shape features with structural features, we can deter-
mine if the intrinsic motility of a cell can be accurately
classified solely on the basis of its shape or if the structural
context provides essential additional information. Additionally,
focusing on shape features helps minimize the number of
parameters to be extracted from images, as pinpointing struc-
tural features that require an accurate centre of mass position
can be more challenging and computationally intensive. To test
the validity range of our ML model, we vary the number of
motile cells and their motility strength, thus allowing us to
control the cell properties in the heterogeneous confluent layer.

Our analysis reveals that local (single-cell) shape features
alone are sufficient to predict whether a cell is highly motile or
non-motile for the computational model at hand. The local
shape features work particularly well in the regime where the
number of motile cells is small and the difference in cell
motility between the two cell types is large. In this regime,
the cells have a clearly distinct phenotype and local distortions
due to a small number of motile cells can be more easily
detected. These results illustrate that the shape of a single cell
contains a significant amount of information about the motility
of an individual cell. We also investigate how the ML algorithm
performs with different cell parameters and show that the

Fig. 1 Schematic overview of our machine learning approach for identifying active cells within a mixture of active and passive cells. The cellular Potts
model generates static cell snapshots, and from each snapshot, a set of shape and structure features is extracted. These features include both local and
non-local characteristics. Local features are determined by information on individual cells, while non-local features depend on the cell’s neighbours,
encompassing neighbour averages, neighbour maximum, and neighbour minimum values. Table 1 shows the complete list of features and the
corresponding formulas used to compute them. Local shape features are highlighted in blue, local structure features in green, non-local shape features
in orange, and non-local structure features in violet. Following feature extraction, a multilayer perceptron is trained to classify cell types, distinguishing
between low motility and high motility cells solely based on the features extracted from a snapshot.
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model trained only on local shape features is also successful in
generalising to data with a different number of motile cells.

2 Methods
2.1 Simulation model

The ML prediction of a cell’s phenotype is derived from static
images produced using the cellular Potts model.24,25 The CPM
is a coarse-grained, lattice-based computational model that
simulates cell dynamics via a Monte Carlo algorithm.64 Briefly,
cells are represented as pixelated domains on a square lattice, and
their dynamics are driven by pixel-copy attempts that minimise the
Hamiltonian. We note that recent work has also extended the CPM
to disordered lattices.65 For our study, we utilise the open-source
CPM implementation in CompuCell3D.66

We simulate a two-dimensional confluent layer composed of
cells with either a high or low motility. The reference Hamilto-
nian without motility is defined as follows24,25

H0 ¼ Hadhesion þHarea þHperimeter

¼
X

i; j

Jai ;aj 1� d si; sj
� �� �

þ
X

s

lA As � Atð Þ2

þ
X

s

lP Ps � Ptð Þ2:

(1)

The individual pixels are indicated with i, j. All cells can be
identified with their cell number s and have an associated cell
type a; the cell type is either active or passive, indicating high
and zero (or low) motility of the cells, respectively. Each of the
terms in the Hamiltonian corresponds to a different physical
aspect of the cells. The first term, Hadhesion, accounts for the
change in adhesion energy associated with cell–cell adhesion
contacts. The magnitude of the cell–cell adhesion term between
the cell type is set by Jai,aj

. The Kronecker delta function (d(si,sj))
ensures that cells do not experience adhesion interactions with
themselves. The second term, Harea, penalises large differences
between a cell’s actual area As and its preferred area At and
maintains a cell’s size. Similar to the area constraint, an energy
penalty term is included for large variations of a cell’s peri-
meter, Hperimeter. Contrary to the area constraint, this penalty is
only accounted for if the cell’s perimeter Ps exceeds a threshold
value Pt. When a cell’s perimeter is below the threshold Pt, no
perimeter constraint is applied. We include the perimeter
constraint to avoid cell shapes with non-physically large peri-
meters, which we observed primarily when the motility of the
cells was large. We only include the perimeter constraint for
these non-physical cell shapes such that the term does not
affect the emerging cell shapes otherwise.

To implement the motility of the cells, we include an energy
bias26,67 in the Monte Carlo algorithm using

DH ¼ DH0 �
X

s
ka~ps � D~R: (2)

Here, D
-

R is the centre-of-mass displacement due to the
proposed pixel-copy attempt. The strength of the cell motility

is given by ka and depends on the specific cell type a (either
active or passive) for each individual cell. The unit vector -

ps
represents the directional persistence of the cell. When the
centre-of-mass displacement is in the direction of the unit
vector -

ps, the cell is biased to migrate in that direction. The
dynamics of -

ps is governed by rotational diffusion, i.e., the direction
gets updated every Monte Carlo step (MCS) with a random angular
perturbation Z. We set Z in the range from �p/36 to p/36, which is
sufficiently long to allow the cells to escape their local environment
and explore space. Overall, for a single motile cell, this implemen-
tation effectively amounts to a persistent random walk akin to e.g.
active Brownian particles.68

Phenotypic heterogeneity is included via the motility term.
In biology, motility is controlled by many intrinsic and external
factors,3,4,69 but here we reduce this complexity to a single
parameter. The key difference between the high-motility and
low-motility cells is the strength of the active force ka (which
depends on the cell type a). We distinguish between two
different scenarios in the simulations, namely

(1) zero-motility cells (kp = 0; passive) combined with high-
motility cells (ka = 1500; active);

(2) both cell types are motile, but the high-motility cells are
more motile than the low-motility ones (ka 4 kp 4 0).

The first situation allows us to investigate how active cells
distort the cellular arrangements in a purely passive cellular
environment. The second resembles a more realistic represen-
tation of confluent cell layers, as the motility of cells shows
heterogeneity even within confluent tissue.70 The actual hetero-
geneity in cell motility can vary significantly between different
biological systems and experimental conditions. In this study,
we aim to provide a proof of principle by varying the number of
highly motile cells (Na) and the ratio g, which represents the
ratio between low-motility (kp) and high-motility cells (ka). This
approach allows us to explore the effects of motility hetero-
geneity in a controlled manner.

For the numerical implementation, we employ a two-
dimensional square lattice of 300 by 300 pixels with periodic
boundary conditions. The simulation contains 144 cells where
a number Na of these cells are randomly chosen to be active,
creating a mixture of active and passive cells. We vary the
number of active cells between 1 and 60. We set the adhesion
strength Jai,aj

= 5.0 for all cells, and each cell has a target area At

of 625 pixels which is enforced with an energy penalty con-
straint of lA = 1.0. To avoid any cell fragmentation, the pixels of
an individual cells are forced to remain connected throughout
the entire simulation. This can cause artefacts in the cell
shapes (long tails are formed). To circumvent this problem,
the perimeter constraint (with lP = 1.0) is applied when the cell
perimeter exceeds a value of Pt = 150 pixels. The complete set of
simulation parameters is provided in Table S1 in the ESI.† 71

The same simulation set-up is used for the heterogeneous
mixture of high-motility and low-motility cells.

After equilibration, the static snapshots are stored every
1000 mcs. This time interval is chosen such that the high-
motility cells can move sufficiently between consecutive snap-
shots. Snapshots for different parameters are shown in Fig. 2.
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It is challenging to distinguish between the two cell types in the
static images by visual inspection only. We therefore extract
physical features from these snapshots to determine whether a
machine-learning algorithm can predict the phenotype of the
cell based on a set of simple physical properties.

2.2 Classification model

We approach the task of identifying highly motile cells as a
binary classification problem. To accomplish this, we employ a
multilayer perceptron,72,73 as implemented in Scikit-learn,74

which consists of interconnected neurons in multiple layers.
The first layer, i.e. the input layer, receives the input vector,
while the output layer provides output signals or classifications
with assigned weights. The hidden layers adjust the weights
until the neural network’s margin of error is minimised.75 In
this work, we use a simple neural network with a single hidden
layer containing a number of nodes equal to the input features.
We update the weights using the ADAM algorithm.76

To evaluate the model’s performance, we calculate the
accuracy, defined as the number of correct predictions divided
by the total predictions. Correct predictions include both
accurately identifying high-motility cells as motile and low-
motility cells as non-motile. Here, a prediction is a single
classification attempt (motile or non-motile) based on the static
input features for one given cell from one simulation snapshot
(detailed in the section below). When the number of motile
cells Na deviates from the number of non-motile cells, indicat-
ing an imbalanced dataset, we address this by randomly
selecting a subset of non-motile cells and excluding them. This
method ensures a balanced dataset with the same number of
motile and non-motile cells. We use multiple independent

snapshots to obtain a total of 120 000 cells. Note that the
number of snapshots used depends on Na, but the overall
number of cells remains fixed. We randomly divide the dataset
into training and test sets, allocating 80% of the data to the
training set and 20% to the test set. We train 20 independent
neural networks, and the reported accuracy is the average
accuracy obtained from these neural networks. Consequently,
while the single-cell features used for training are extracted
from multiple snapshots, the trained model can be tested on
features extracted from a single cell. This means that although
multiple snapshots are used during the training phase to
improve the model’s robustness, the properties of an indivi-
dual cell are sufficient for making predictions during the
testing phase.

While this paper presents results based on the application of
a multilayer perceptron, we have confirmed that similar results
can be achieved using a more sophisticated ML algorithm,
specifically a gradient-boosting model, which is a machine-
learning method based on decision trees.77 Additionally, our
results show that a simple logistic regression model78–80 exhi-
bits markedly lower accuracy in predicting cell motility than
either the multilayer perceptron or the gradient-boosting algo-
rithm (see Table S2 in the ESI† 71). Consequently, we can
conclude that, for this classification problem, a more advanced
non-linear model such as a multilayer perceptron is necessary.

2.3 Input features

Rather than using simulation snapshots as input features, we
extract single-cell features from each snapshot to use as input
for our simple machine-learning model. This approach is
preferred because it provides interpretable results. We employ
a total of 145 possible features as input for our machine-
learning model, categorising them into structure and shape
features. Shape features are defined by the geometric properties
of the cells. In contrast, structural features pertain to the spatial
organization, incorporating metrics such as the cell’s position
relative to neighbouring cells. The comprehensive list of these
features and the formulas used for their computation are
shown in Table 1. A visual representation of the variables used
in the computation is provided in Fig. S1 in the ESI.† 71

Structural features are derived from the centres of mass
(COM) of cells and are based solely on properties akin to local
structural metrics commonly used for dense, disordered parti-
cle systems. These features encompass bond order parameters
cn with n = 2, . . ., 12,81 along with the first and second moment
of the neighbour distance and its standard deviation. The
single-cell shape features, instead, are computed based on
the pixels that constitute each cell. These geometric features
include cell size, border length, semi-minor and semi-major
axes, parallel and perpendicular alignment, number of neigh-
bouring cells (calculated for each cell to determine how many
other cells are adjacent to it), and eccentricity. The eccentricity
is determined by fitting cells with an ellipse using a least
squares approach.82

For both shape and structural features, we further divide
these types into two categories: local features, derived from

Fig. 2 Overview of the static images extracted from the cellular Potts
simulations. The colours indicate the motility of the different cell types.
(a)–(c) The snapshots in which the number of active cells Na and the
motility of active cells ka is varied for constant passive cell motility, kp =
150. The ratio g is defined as kp/ka, (d) the snapshots in which the number
of active cells Na is varied for constant cell motility, kp = 0 and ka = 1500.
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Table 1 Features employed for the machine learning model with their corresponding formulas. The colour-coded distinctions represent the four
feature subsets: local shape features in blue, local structure features in green, non-local shape features in orange, and non-local structure features in
violet. The ‘boundary pixels’ of a cell are defined as pixels with at least one first-order neighbouring pixel belonging to a different cell. The definitions of
the variable names are discussed and shown visually in the ESI71
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information about individual cells, and non-local features,
which depend on the properties of a cell’s neighbours. Since
motile cells tend to deform their neighbourhoods more signifi-
cantly, examining non-local features provides additional insights.
These non-local properties include neighbour averages, and maxi-
mum and minimum distances between the centres of mass of a
cell and its neighbouring cells. Cells are classified as neighbours
when they share at least one pixel. Similar to previous work,83

local shape alignment between neighbouring cells has also been
included. Table 1 illustrates local shape features in blue, local
structure features in green, non-local shape features in orange, and
non-local structure features in violet. The distributions of various
features used in the ML model are provided in the ESI.† 71

Note that the list of features used here is by no means
complete. Depending on the specific biological situations,
other features could be relevant as well. For example, individual
human bone marrow stromal cells (hBMSCs) exhibit strong
surface curvature, which can also be a relevant shape charac-
teristic to include.84 These features have not been included
here, since the cells in the simulations do not exhibit strong
curvature. Moreover, it is worth noting that additional radial
and angular descriptors can be incorporated into the structural
features, as outlined previously.42 However, we choose to
focus on a simpler approach for computational efficiency23

and because, as will be explained in the results section, our
approach, though simple, is robust and provides sufficiently
accurate results.

2.4 Feature selection

To achieve optimal performance and gain physical insight
from the ML predictions, we evaluate the importance of input
features using three different approaches: manually removing
some features, Shapley additive explanation (SHAP), and prin-
cipal component analysis (PCA). The first approach involves
training seven different neural networks: one with all the
features and the remaining six with subsets of the entire
dataset. These subsets include shape features (both local and
non-local), local shape features, non-local shape features,
structural features (both local and non-local), local structural
features, and non-local structural features. After training, we
evaluate which neural network achieves the highest accuracy on
the test set.

Our second approach involves using SHAP85 to determine
the relative contribution of each feature to the prediction.
In essence, the SHAP explanation method computes Shapley
values by integrating concepts from cooperative game theory.
The objective of this analysis is to distribute the total payoff
among players, considering the significance of their contribu-
tions to the final outcome. In this context, the feature values act
as players, the model represents the coalition, and the payoff
corresponds to the model’s prediction.

Lastly, our third approach involves applying PCA86 on our
dataset, including shape and structural features. PCA is a
valuable tool for condensing multidimensional data with corre-
lated variables into new variables, representing linear combi-
nations of the original ones. Essentially, PCA serves as a

method to reduce the dimensionality of high-dimensional data.
By identifying the features with significant variances, we can
reveal the inherent characteristics within our dataset. The first
component corresponds to the projection axis that maximises
variance in a particular direction, whereas the second principal
component represents an orthogonal projection axis that
maximises variance along the subsequent leading direction.
This iterative process can be continued to identify additional
components.

3 Results and discussion
3.1 Distinguishing motile and non-motile cells

Let us first focus on the situation in which non-motile cells are
passive (kp = 0) and the high-motility cells are active (ka = 1500).
This system represents a purely active–passive mixture. Fig. 3
shows the accuracy as a function of the number of active cells,
Na. The neural network is trained with different feature config-
urations, encompassing either all 145 features (black dots), all
shape features only (both local and non-local, represented by
red stars), solely local shape features (blue triangles), exclu-
sively non-local shape features (orange inverted triangles), and
only structural features (both local and non-local, represented
by green squares). All five curves produce comparable accura-
cies, approaching unity when a single active cell moves through
a non-motile confluent layer. This result is expected given that
the active cell, characterised by a more elongated shape com-
pared to the passive cells (see Fig. S2 in the ESI† 71), is the only
one present, making it easily distinguishable even to the naked
eye (see Fig. 2). The elongated shape is accompanied by local
distortions in an otherwise ordered confluent layer (see Fig. S4
in ESI† 71), which explains why the accuracy is highest for
Na = 1. Across all four datasets, as the number of motile cells
increases, the accuracy decreases. This can be attributed to a
change in shape and structure for both the motile and the non-

Fig. 3 Accuracy as a function of the number of active particles Na, with
kp = 0 and ka = 1500. The black dots, red stars, blue triangles, inverted
triangles and green squares correspond to a neural network trained on all
the 145 features, all the shape features, local shape features, non-local
shape features, and structural features respectively. The lines are used as a
guide to the eye.
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motile cells (see Fig. S2–S11 in ESI† 71). The cell shapes become
more similar and the differences in features are more difficult
to measure directly. Nevertheless, when the neural network is
trained with all features, all shape features, or only local shape
features, the accuracy remains above 0.7, suggesting that the
algorithm can classify the cell’s motility with reasonable accu-
racy even when cells become more similar. Some of the shape
features (see e.g. Fig. S8 in ESI† 71) still possess unique char-
acteristics that allows the ML model to distinguish between the
motile and non-motile cells, even for larger Na. On the contrary,
employing structural features alone results in significantly
lower accuracy compared to the full dataset or the shape
features. Hence, the shape of individual cells contains a sub-
stantial amount of information regarding the cell’s motility in a
purely active–passive mixture.

To gain a deeper understanding of the importance of shape
features, we have further subdivided the shape features into
local features (single-cell information) and non-local features
(information from neighbouring cells). As shown in Fig. 3, it is
noteworthy that relying solely on local shape features predicts
the correct cell phenotype with almost the same accuracy as
using the full set of features.

Apart from the accuracy, we have also investigated the types
of errors made by our machine learning model. The model can
generate false negatives (high-motility cell is not identified as
motile) or false positives (zero-motility cells identified as
motile). These results for the ML models trained on all features
and local shape features are presented in Fig. S13 in the ESI.† 71

This analysis shows that when all features are used, both types
of error occur with approximately the same frequency, with a
slight bias toward not identifying the active cell as Na increases.
When only local shape features are used, active cells are missed
more frequently, while false identification of passive cells as
active is less likely. This suggests that the local environment
actually contains some information to improve the prediction
of an active cell in a confluent layer. Despite these differences,
overall performance remains similar and is still reliable for
predicting cell phenotype.

Lastly, we perform analyses using both SHAP and PCA. Both
reveal that the list of important features is not limited to local
shape features but rather encompasses a combination of the
four feature groups: shape (both local and non-local) and
structural (both local and non-local) features. Retraining the
neural network with the features selected by SHAP or with the
principal components obtained from the PCA yields an accu-
racy almost identical to that obtained with a neural network
trained with all features.71 As shown in Fig. S16 and Table S3 in
the ESI,† 71 these analyses indicate that features related to
neighbour distance (e.g., standard deviation of neighbour dis-
tance) are often the most important ones. Since the neighbour
distance-related features are indirectly connected to the shape
of the cells, it is perhaps not surprising that these analyses
identify these features as the most important ones.

Although SHAP and PCA reveal that the most important
features are a combination of both shape and structure, the
list of relevant features selected by these machine-learning

approaches changes with Na, making these analyses less com-
putationally efficient. This inefficiency arises from the need to
repeat these analyses (SHAP or PCA) for each specific configu-
ration to obtain this list of most important features. Therefore,
we can conclude that our simpler approach of selecting only
shape features is sufficient for achieving reasonable accuracy
for our simplest CP model and is the most robust, consistently
yielding results almost identical to those obtained using all
features, regardless of Na.

3.2 Distinguishing cells with different motility

In the previous section, we have shown that a neural network
trained with local shape features can correctly predict the cells
motility when the passive cells are non-motile (kp = 0) and the
active cells are significantly more motile (ka = 1500). However,
in realistic heterogeneous biological tissues, cells are expected
to have different but finite degrees of motility.10,87,88 To study a
system that more closely resembles actual biological systems,
albeit still simplified, we focus on a binary mixture of high-
motility and low-motility cells. The low-motility cells have a
fixed motility kp = 150. Their motility remains lower than that
of highly-motile cells (kp o ka), where ka is varied between 300
and 1500 to represent a wide range of potentially relevant
biological systems.

Following a similar approach as in the previous section, we
train a neural network for each dataset using static properties,
as introduced in Section 2.3. Here, each dataset corresponds
to a distinct ratio between low and high cell motility, denoted
as g = kp/ka, along with the number of highly motile cells Na.
Fig. 4 shows the accuracy within the (g, Na)-plane for a neural
network trained with only local shape features. Consistent
with the results observed for non-motile (passive) cells in the
previous section, the neural network exclusively trained on
local shape features has nearly identical accuracy compared to
the one trained with all 145 features (see Fig. S14 in ESI† 71).
This figure shows that when the number of highly motile cells
Na is low, and the ratio between cell motility g is small,
indicating a substantial difference between high-motility
and low-motility cells, the model can accurately classify the
cell motility.

While the machine learning model relies on individual static
images, our numerical CPM simulations also enable the explicit
tracking of the emergent dynamics. Notably, we find that our
machine learning model tends to fail only when the emergent
dynamics, specifically the long-time diffusion coefficients, of
high-motility and low-motility cells are very similar (see Fig. S15
in the ESI†).71 These findings align with those presented in
earlier work,23 where it was shown that in an active–passive
mixture of spherical, rigid particles, a machine learning model
can correctly classify particle types when the number of active
particles is low, and the activity is high.

Finally, invoking a SHAP analysis or PCA, we achieve accu-
rate predictions using only the most important SHAP- or PCA-
selected features (see Fig. S16 and Table S3 in the ESI† 71).
Similarly to the previous section, where the cells are passive, we
observe that the most important features identified by these
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analyses are a combination of shape (both local and non-local)
and structural (both local and non-local) features. While this
feature list remains consistent for fixed g 4 0 and different Na,
it varies for different g. Consequently, as discussed in the
previous section, this approach is less computationally efficient
compared to the case of using local shape features, which yields
accurate results for different configurations.

In summary, our findings indicate that our machine-
learning model can accurately classify cell motility when the
number of motile cells is low, and the motility of highly-motile
cells significantly surpasses that of low-motility cells. Compar-
able to the case in which the low-motility cells are passive,
accurate predictions can be achieved using local shape features
alone. While this approach shows its potential for the simpli-
fied CP model that we have developed, we speculate that these
results can generalize to other computational models and
potentially to experimental results.

3.3 Generalisation of the model

We now aim to assess how effectively our machine-learning
model generalises to different data featuring either a distinct
number of motile cells or varying motility. First, we explore the
generalisation capability of the machine learning model when
the low-motility cells are passive (kp = 0), and the number of
motile cells Na varies. In the previous section, we established
that a model trained exclusively on local shape features
achieves an accuracy almost identical to that of a model trained
with all 145 features. Therefore, in the remainder of this paper,
we present the results from neural networks trained exclusively
on local shape features.

In Fig. 5, we compare the accuracy obtained when the ML
model is trained and tested on a singular specific value of the
number of motile cells Na (black dots), with the accuracy of
models trained with Na = 1 (red stars), Na = 15 (blue triangles),
or Na = 60 (orange inverted triangles). As expected, this figure
shows that the model performs best when trained and tested on

a singular, specific value of Na. Nevertheless, all four curves
yield an accuracy surpassing 0.7, suggesting that a single model
trained at a fixed Na can provide accurate predictions for
unseen parameter regions.

Fig. 5 reveals that the ML model trained with an intermedi-
ate number of motile cells, Na = 15, yields nearly identical
results compared to the model trained and tested on a single,
specific value of Na. This model is the most effective across the
entire range of Na. We attribute this to the fact that a system
with an intermediate number of motile cells shares similarities
with both low and high numbers of motile cells, contributing to
its robust performance. Additionally, while the model trained
on one motile cell generalises better to different data associated
with a small number of motile cells (Na o 10), the model
trained on Na = 60 generalises better to different data corres-
ponding to a high number of motile cells (Na 4 30). This
discrepancy arises from the distinctive system structures (see
feature distributions in ESI† 71) between scenarios with
only one motile cell and those with a substantial number,
respectively.

Lastly, we explore whether the machine learning approach
can generalise to a different data set when the number of
motile cells is constant, and the ratio between cell motilities g
varies. For each value of Na, we train four distinct models: one
with g = 0 (where kp = 0 and ka = 1500), another with g = 0.1
(where kp = 150 and ka = 1500), a third with g = 0.2 (where
kp = 150 and ka = 750), and the last one with g = 0.4 (where
kp = 150 and ka = 375). Subsequently, each of these four models
is tested with the local shape features corresponding to the
dataset with a fixed ratio g = 0.1. We have decided to test the
generalization of the ML model with g = 0.1, as the previous
section has shown that the accuracy is highest for this mixture
of high-motility and low-motility cells.

Fig. 6 demonstrates that, as expected, the highest perfor-
mance is achieved by a model trained and tested on the

Fig. 4 Accuracy map of a neural network trained on local shape features
in the (g, Na)-plane, where Na ranges from 1 to 60 and g = kp/ka, with
kp = 150 and 300 r ka r 1500. The data points are shown in white, and
the accuracy is interpolated using a linear interpolation method.

Fig. 5 Accuracy as a function of the number of active cells Na = Ntest
a , with

kp = 0 and ka = 1500. The black dots represent accuracy obtained from
individual models, each trained using Ntrain

a = Ntest
a . The red stars, blue

triangles, and orange inverted triangles represent accuracy obtained from
a single model trained with data for Na = 1, Na = 15 or Na = 60, respectively.
Each neural network is trained exclusively with local shape features.
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identical ratio between cell motility, g = 0.1 (black dots).
Additionally, the figure shows that a model trained on g = 0
(represented by red stars) yields an accuracy nearly indistin-
guishable from the model trained and tested on g = 0.1 when
the number of motile cells is high (Na 4 10). In both datasets
corresponding to g = 0 and 0.1, the motility of the highly-motile
cells remains constant. Consequently, the model exhibits effec-
tive generalisation within this parameter range, even if is
trained on data associated with different low motility. This
generalisation can be attributed to the similarity in behaviour
between the two systems, given the abundant high-motile cells
sharing the same motility.

When the model is trained on g = 0.2 and tested on g = 0.1
(blue triangles), the accuracy is always lower than that of the
model trained and tested on g = 0.1. Nonetheless, the accuracy
is consistently higher than 0.7, indicating that this model can
reasonably generalise unseen data. Lastly, when the model is
trained on g = 0.4 (orange inverted triangles), the accuracy
significantly diminishes compared to the model trained and
tested on g = 0.1. Furthermore, the accuracy drops below 0.7 as
the number of motile cells increases (Na 4 20). These results
indicate that a decrease in the motility of motile cells corre-
sponds to a lower predictive power of the model when tested on
unseen data. We expect that testing the trained networks with
larger values for g also makes it more difficult to generalize as
the baseline prediction (see Fig. 4) is significantly worse for this
parameter in the first place.

In summary, we find that the generalisation capability of our
machine-learning approach to different unseen data is reason-
able. The model is capable of making fairly accurate predic-
tions when the number of motile cells is unknown, but its
predictive power diminishes when the motility of the highly-
motile cells in the training and testing sets are significantly
different.

4 Conclusions

This study establishes proof-of-concept for discriminating
between highly motile (active) cells and less motile or non-
motile (passive) cells within a heterogeneous confluent cell
layer, using only static information of a cell’s instantaneous
shape and structural environment. We have developed the
confluent layer in a cellular Potts model with minimal ingre-
dients such that we could control the motility of the two cell
phenotypes in a simplistic manner. Our results are valid for our
CP model, but we expect these findings to hold among other
computational models and real-world biological systems with
similar characteristics. Our results show that a simple machine-
learning model trained on local, single-cell shape features
alone can predict the cellular motility phenotype with reason-
ably good accuracy, and excels especially when the fraction of
highly-motile cells is low and their motility is significantly
higher than that of low-motility cells.23 While prior studies
have also highlighted the importance of cell shape and
morphology,9,60–62 most notably in strongly anisotropic tissues,
other measures, such as the alignment between cells, may
be necessary for a fully accurate prediction83 as these tissues
behave differently from the cells in our confluent layer model.

Common limitations of machine-learning approaches are
that they may generalise poorly to unseen data, and that they
may offer limited physical insight. We find that our model
exhibits reasonably good generalisation when the number of
motile cells or the motility ratio is unknown, provided that the
motility strengths in the training and testing sets do not differ
greatly. This reaffirms that the power of machine-learning
methods relies heavily on the use of a sufficiently diverse data
set. Additionally, to gain some physical insight from our
machine-learning predictions, we have employed three differ-
ent methods to assess the importance of the various input
features. Of these, the analyses based on SHAP and PCA reveal
that there is not a universal list of most important static
features: in general, the most important features combine
cellular shape and structural characteristics, and the list varies
with different heterogeneity settings (Na). Nonetheless, if we
restrict the data set to local single-cell shape features alone, we
find that this simple approach leads to remarkably robust
predictions across the different settings studied in this work.
This suggests that the full list of structural input features may
contain some redundancies. Importantly, it also allows us
to conclude that a cell’s instantaneous shape, though not
perfect, can serve as a remarkably useful informant on a cell’s
phenotype.

Our work, which establishes a morphodynamic link for
individual cells, is complementary to recent research on mor-
phodynamic links at the collective cell level. In particular,
previous studies have demonstrated that the average cell shape
within confluent tissue can be used as a static order parameter
for emergent, collective cell jamming and unjamming dyna-
mics.9–16 By integrating these insights, our work not only
reinforces the significance of cell shape in understanding collec-
tive behaviour, but it also provides a more nuanced perspective

Fig. 6 Accuracy as a function of the number of active cells Na, for neural
networks solely trained on local shape features. The black dots represent
accuracy obtained from individual models, each trained using gtrain = gtest =
0.1. The red stars, blue triangles, and orange inverted triangles represent
accuracy obtained from models trained with data for g = 0, g = 0.2 or
g = 0.4, respectively. The accuracy for each of these lines corresponds to
the neural network tested on g = 0.1.
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on how intrinsic single-cell properties are coupled to a cell’s
morphology. This study also opens up avenues for further
research on the role of heterogeneity in dense cell collectives,
following previous work that has studied the heterogeneity in
size and softness of cells.89,90 Given the simplicity, performance,
and computational efficiency of our machine-learning approach,
we anticipate that a similar approach could ultimately prove
valuable in analyzing experimental cell data—particularly for
diagnostic tasks like assessing the progression of partial or
complete EMT in tumors or tissues.
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