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flow photoreactors†
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Light interacts with gas bubbles in various ways, potentially leading to photon losses in gas–liquid

photochemical applications. Given that light is a valuable ‘reagent’, understanding these losses is crucial for

optimizing reactor efficiency. In this study, we address the challenge of quantifying these interactions by

implementing a method that separately determines the photon flux and utilizes actinometric experiments

to determine the effective optical path length, a key descriptor of photon absorption. The results reveal the

unexpected impact of gas phase introduction in continuous-flow photoreactors. Notably, photon

absorption, and consequently the throughput of a photoreactor, can be increased by the introduction of a

gas phase. This enhancement arises from the reflection and refraction effects of gas bubbles, which can

intensify light intensity in the liquid volume and thereby offset any loss in residence time. The photon

absorption losses that were observed were associated with large bubbles and were less significant than

anticipated. In contrast, the introduction of small bubbles was found to increase photon absorption,

suggesting it is a potential strategy to optimize photoreactor performance.

Introduction

Continuous-flow reactors are widely employed for
photochemical reactions due to their numerous advantages,
including small dimensions and enhanced process control.1–3

The merging of a liquid reaction mixture with a gas phase in
these reactors to form gas–liquid systems has significantly
expanded the options for synthetic organic chemists,
providing a means to mitigate gas–liquid mass transfer
limitations.4–6 Gaseous reagents offer distinct benefits, being
atom-efficient, cost-effective, and simplifying downstream
separation processes. These advantages are demonstrated in
various photochemical applications such as singlet oxygen
chemistry, carbonylations, and light alkane activation.7–14

Additionally, inert gases are sometimes introduced to create
segmented flow, improving mixing in the liquid phase. This
approach has been shown to enhance residence time
distribution properties and stabilize solid suspensions.15–17

In general, the use of gas–liquid systems in continuous-flow
reactors has been shown to improve the performance of
photochemical transformations.17–21 However, the incorporation
of such multiphasic systems introduces additional complexity to
photon absorption, as photons interact with gas–liquid
interfaces.22,23 Small gas bubbles present in low volumetric
quantities have been observed to have a minimal effect on
photon absorption.24,25 Nonetheless, various characterization
methods have reported different phenomena in intensified
reactors, leading to a lack of consensus on the overall
impact.26–28

The amount of photons absorbed in a photochemical system
is a critical metric for assessing quantum yield, scaling up
reactions, and designing energy-efficient reactors.29–32 However,
accurately determining photon absorption in intensified gas–
liquid systems presents a challenge due to the complexity of
quantifying the fraction of unabsorbed, transmitted photons,
which is necessary to in turn calculate the absorbed fraction
from the incident photons. This challenge could be addressed
by employing the radiative transfer equation or ray-tracing
simulations tailored to the system's specific geometry.33–38 Yet,
these methods require precise data on bubble size and position,
which are not always readily available without extensive
dedicated studies. A promising alternative to this complex
geometrical determination is the use of the effective optical
path length as a one-dimensional parameter to represent
complex light interactions.39 This approach enables reliable
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assessment of transmitted photons in intensified gas–liquid
systems and facilitates the characterization of various
photoreactors under different hydrodynamic conditions.

For any photoreactor system, illustrated in Fig. 1, the
effective optical path length can be determined by solving the
mole balance. By selecting an appropriate actinometer, the
corresponding balance can be constructed, with an ideal plug
flow reactor represented by eqn (1).40,41 The key parameters
in this balance include the concentration of the actinometer
(C), the liquid flow rate (Ql, controlled by the pump), the
photon flux (q, determined by radiometry and ray tracing39),
the quantum yield (φ, specific to the reaction system), the
Napierian absorption coefficient (κ, measurable by UV-VIS
spectroscopy) and the effective optical path length (l̄, derived
from actinometric experiments). In constructing the balance,
gas bubbles are assumed to be non-absorbing and non-
stagnant, resulting in the absence of the gas flow rate (Qg)
and liquid residence time (τl).

30,42,43 Instead, the ratio of
photon flux to inlet flow rate is used rather than liquid
residence time. These assumptions imply that the photon
flux incident on the reactor remains constant, with variations
in photon absorption attributed solely to changes in the
effective optical path length. In this work, the impact of the
gas phase on photon absorption in gas–liquid photochemical
transformations is investigated using both a microcapillary
reactor and a high-shear reactor.44,45

dC

d
1
Ql

¼ −qφ 1 − exp −κCl
� �� �

(1)

Results

The potassium ferrioxalate actinometer (eqn (2)), a well-
established standard, was employed to characterize the setups
using ultraviolet UV-A (∼315–400 nm) light-emitting diode
(LED) light sources.46–49 The actinometer conversion was
measured at various flow rates to generate kinetic curves under
each set of conditions. Nitrogen was introduced as an inert gas
to examine the effect of gas phase addition on photon

absorption, while gas-phase effects from carbon dioxide
formation were neglected (Fig. S1b†). By utilizing photon flux
data obtained via ray-tracing and radiometry, the effective
optical path length was determined by fitting the kinetic curves
to an appropriate reactor model.

2 Fe IIIð Þ C2O4ð Þ3
� �3 −

→
hν

2 Fe IIð Þ C2O4ð Þ2
� �2 −

þ 2CO2 þ C2O4
2 −

(2)

The microcapillary reactor used in this study is the open-source,
3D-printed Uflow reactor, as illustrated in Fig. 2.45 This
photoreactor system consists of a capillary coiled around a
holder, along with a light source and fan, all housed within a
casing. The light source irradiates a cone, reflecting the light
towards the capillary reactor. The holder and the interior of the
casing are lined with reflective aluminum tape to maximize the
incident photon flux on the reactor. The high-shear
photoreactor used is the photo rotor–stator spinning disk
reactor (pRS-SDR, shown in Fig. 2), which features a rotating
disk enclosed in a closely fitting housing.44,50 The top section of
the reactor is a quartz window, allowing for irradiation via an
LED-based floodlight mounted in a stainless steel casing.51

Photon absorption in a gas–liquid
Uflow photoreactor

The photoreactor setup, featuring the widely used Kessil light
source (PR160L, 370 nm),52–54 incorporates a capillary reactor
(4.1 mL, 1.6 mm outer diameter (OD), 0.8 mm inner diameter
(ID)) coiled to span the full height of the holder. Considering
the effects of refraction and the curvature of the capillary
surface, the reactor's effective collection area can be extended to
cover the entire height of the capillary, simplifying the
determination of photon flux.45,51,55 Ray-tracing simulations
confirmed that the total photon flux on the capillary is 1.9 μmol
s−1, a value validated experimentally (see ESI† section S3.4).45,56

Using this data, the effective optical path length of the system,
in the absence of gas, was determined by fitting the kinetic
curve shown in Fig. 3, yielding a value of 2.6 mm.

Interestingly, this fitted path length is significantly larger
than the inner diameter of 0.8 mm, suggesting that the setup
using a capillary coil contributes to an extension of the optical
path length, allowing light to pass the reaction volume multiple
times. A different capillary (8.9 mL reactor volume, 3.2 mm OD,
1.6 mm ID) was tested under the same conditions, and similarly
resulted in a path length much greater than the inner diameter
(3.9 mm). Notably, the change in reactor volume induced by the
different capillaries had a marginal effect on conversion
(Fig. 3a). This is due to a proportional change in photon flux
per reactor volume and comparable path lengths (2.6 mm and
3.9 mm). The use of a smaller capillary size effectively
concentrates light on the reaction volume, significantly
increasing space–time yield—achieving higher conversions at
the same liquid residence time (Fig. S9b†). This observation
confirms that the number of absorbed photons per unit of

Fig. 1 Schematic representation of the experimental setup for a gas–
liquid continuous-flow photoreactor system, comprising a pump, mass
flow controller (MFC), photoreactor system (including the reactor and
light source), and a collection vessel.
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liquid flow rate, rather than per unit of liquid residence time, is
the determining metric.30

Introducing an equivalent volume of gas into the system
led to the formation of slug flow, characterized by

alternating gas and liquid slugs.57,58 In this flow regime, a
thin film of liquid can separate the gas bubbles from the
capillary wall.59,60 As illustrated in Fig. 3b, introducing one
equivalent volume of gas resulted in a decrease in photon

Fig. 2 Schematic representation and cross section of the used microcapillary reactor (Uflow, 4.1 mL) and high shear reactor (photo rotor–stator
spinning disk reactor (pRS-SDR), total volume 59 mL).

Fig. 3 a) The kinetic curves and corresponding fits for the Uflow reactor (without any gas addition), using reactor coils with varying capillary size
(ID inner diameter, OD outer diameter). b) The kinetic curves and corresponding fits for the Uflow reactor (4.1 mL), at various amounts of gas
equivalents fed into the system. c) Selected results at different conditions, with a schematic of the expected volume contributions of the gas and
liquid in the microcapillary (1/Φl of 4.9 × 10−2 min mL−1). d) The effective optical path lengths obtained from the kinetic curves, against the
expected values based on the feed ratio.
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absorption, which is attributed to a reduction in the
effective optical path length. However, in terms of the feed
ratio and actual gas holdup, photons are concentrated on
the liquid inside the reactor. This is supported by a
comparison with the expected path length, which serves as
a reference point. The expected path length accounts for the
volume occupied by the gas in the reactor, reducing the
system's ability to absorb photons.61 Assuming an equal
volumetric ratio of gas to liquid in both the feed and the
reactor suggests that the original path length of 2.6 mm is
reduced proportionally (i.e., to 1.3 mm).

However, under the condition that the reactor model
remains constant, photon absorption losses are mitigated, as
the gas–liquid interfaces tend to interact with the light. This
leads to similar performance levels at the same liquid flow
rate, despite a significant reduction in liquid residence time
(Fig. 3c). As the volumetric gas flow rate increases to a 3 : 1
gas-to-liquid feed ratio, the loss in photon absorption
becomes more pronounced. These results indicate that larger
gas bubbles are associated with a further reduction in the
effective optical path length, as the flow regime remains in
slug flow. Nonetheless, when comparing the expected path
length based on the feed ratio to the fitted path length, it is

evident that the decrease in photon absorption is
significantly less than anticipated (Fig. 3d).

Photon absorption in a gas–liquid
photo rotor–stator spinning disk
reactor

The pRS-SDR has a total reactor volume of 59 mL, with an
irradiated volume of approximately 28 mL, located primarily
between the quartz window and the rotating disk, which are
separated by a 2.0 mm axial gap. The remaining volume,
mainly beneath the disk, is considered non-irradiated. When
the feed enters at the bottom of the reactor, the flow moves
outward through the non-irradiated region (centrifugal flow)
and inward in the irradiated region (centripetal flow).62 The
photon flux for this system has been previously reported as
12.5 μmol s−1, which allows for the determination of the
effective optical path length using an appropriate reactor
model (using 3 CSTRs in series rather than 1 CSTR; see ESI†
section S1.3). The fit obtained with this model gives an
optical path length of 4.3 mm.39

Fig. 4 a and b) The kinetic curves and corresponding fits for the pRS-SDR reactor, at different rotation speeds and various amounts of gas
equivalents fed into the system. Experiments without gas were conducted at a rotation speed of 1000 rpm. c) Representative images of the gas–
liquid behavior in the irradiated part of the pRS-SDR at different rotation speeds and gas to liquid volumetric ratios. d) The effective optical path
lengths obtained from the kinetic curves, against the expected values based on the feed ratio.
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The behavior of gas bubbles in the pRS-SDR is highly
dependent on the operating conditions. In the centrifugal
flow region, a thin liquid film segregates a continuous gas
phase from the liquid.63–65 In the centripetal flow region, a
dispersed phase containing large bubbles (separated from
the rotor and stator by a liquid film) and smaller bubbles is
observed.66 The size of these bubbles in the dispersed region
correlates with the rotation speed of the disk: higher rotation
speeds lead to smaller bubbles, which can range within the
micrometer scale.44 Fig. 4c shows the formation of different
bubble sizes when nitrogen is introduced into the
actinometric system. At 50 rpm, large bubbles form,
spanning most of the axial gap, while at 3000 rpm, smaller
bubbles are generated due to the high shear forces exerted
on the gas.44,63

The kinetic curves in Fig. 4 reveal that photon absorption
is only slightly affected by the introduction of one equivalent
of gas. At high rotation speeds (3000 rpm), photon
absorption actually increases. The shortening of liquid
residence time is almost fully counteracted, and in some
cases even overcompensated, by the concentration of light on
the liquid within the reactor. Similar to the Uflow reactor, the
expected path length based on the feed ratio is significantly
lower than the fitted path lengths (Fig. 4d). The lengthening
of the effective optical path length at 3000 rpm is maintained
even when the gas flow rate is increased to three times that
of the liquid flow rate. At high rotation speeds, the addition
of gas enhances photon absorption, thereby increasing the
system's throughput.

At 50 rpm, a reduction in photon absorption and effective
optical path length is observed, similar to the Uflow reactor,
where large gas pockets span a large fraction of the axial gap.
Gas holdup experiments indicate that the overall gas holdup
increases with higher gas flow rates, and image analysis
further confirms an increase in gas holdup within the
irradiated region (Fig. S21†). These findings suggest that the
decrease in photon absorption at lower rotation speeds can
be correlated with the amount of gas in the bubbles in the
upper part of the reactor.

Discussion

Distinct cases with varying gas–liquid hydrodynamic
behaviors were analyzed, revealing that photon absorption is
highly dependent on the specific conditions employed. Gas
bubbles create gas–liquid interfaces that interact with
photons, but their influence on photon absorption in the
liquid was found to be less significant than initially
anticipated based on the feed ratio (Fig. 3d and 4d). Factors
such as relatively low gas holdups, as well as reflection,
refraction, and scattering, contribute to reducing photon
absorption losses.66–72 The decrease in liquid residence time
caused by the addition of a gas phase is counteracted by
these effects, meaning that adding a gas phase does not
require a proportional reduction in the liquid flow rate to
maintain photon absorption at the same level.

Although the photon absorption losses were lower than
expected, they were most pronounced in cases where gas
bubbles nearly spanned the full axial length of the reactor.
The results imply that a fraction of the photons which are
initially transmitted after interacting with large gas bubbles
find their way back into the reaction mixture. Total internal
reflection can occur at the interface between the gas bubble
and the reaction mixture, as well as between the reactor
material (PFA or quartz) and the surrounding air. This allows
the reactor material to function as a waveguide, preventing
photon losses and enabling those photons to be absorbed
upon re-entering the reaction mixture. The transition from
large bubbles to smaller, spherical gas bubbles, as
demonstrated in this study, led to increased photon
absorption. Light rays scatter and change direction at these
complex interfaces, so the introduction of smaller bubbles
can further extend the effective optical path length.73–76

The results obtained apply to the specific experimental
conditions and setup used, which include factors such as the
light source, solvent, choice of (inert) gas, reactor material,
and setup configuration. Nevertheless, these findings are
likely to be relevant to other photoreactor systems and
chemistries involving non-absorbing gases, similar reactor
designs, bubble behavior, and comparable light source
characteristics.

During the experiments, mass transfer effects were ruled
out based on the absence of dark zones in the photoreactors,
along with the use of high flow rates and/or rotation speeds
(see ESI† section S1.4).77–79 Plug flow behavior was assumed
for the microcapillary reactor, while a continuously stirred
tank reactor (CSTR) model in series was applied to the high-
shear reactor. These models were assumed to be valid across
all operational conditions.80 Any variation in photon
absorption due to changes in the reactor model is captured
in the effective optical path length, which serves as an
effective descriptor for photon absorption. This path length
was obtained using photon fluxes determined through a
combination of radiometry and ray-tracing.39

The methodology employed allows for the quantification of
the average fraction of transmitted photons within the
photoreactor system. The applicability of this method extends
beyond the use of UV-A light and the potassium ferrioxalate
actinometer. In principle, any actinometer and non-absorbing
gas can be used, allowing for precise determination of the
effective optical path length in most photoreactor systems. As
demonstrated by the unexpected findings in this study, this
characterization is crucial for accurately assessing performance
and operational expenditures.81–83

Conclusion

In conclusion, this study highlights the complex interplay
between gas–liquid hydrodynamics and photon absorption in
photoreactor systems. While gas bubbles introduce interfaces
that can alter photon behavior, the anticipated photon
absorption losses were less significant than expected,
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presumably due to mechanisms such as reflection, refraction,
and total internal reflection. The results demonstrate that the
introduction of a gas phase does not necessitate a proportional
reduction in liquid flow rate to maintain efficient photon
absorption. Smaller gas bubbles enhanced photon absorption
by extending the effective optical path length through scattering
and reflection effects. These findings, though specific to the
experimental setup, have broader implications for optimizing
gas–liquid photochemical processes, especially in systems
involving non-absorbing gases. The methods used in this study,
including the determination of the effective optical path length,
offer a robust approach for evaluating and enhancing
photoreactor performance across various configurations and
conditions.

Methods
Chemical actinometry

The experimental procedure for potassium ferrioxalate
actinometry was based on literature.39,45–47 A solution of 6.0
mM of potassium ferrioxalate (Alfa Aesar/Thermo Scientific)
in 50 mM sulfuric acid (Sigma Aldrich) solution, using
demineralized water as solvent, was prepared. The solution
was pumped through the Uflow and pRS-SDR at selected
liquid flow rates. Gases were supplied with a mass flow
controller (MFC, Bronkhorst) and the gas and liquid phase
were mixed using a T-mixer. Gas equivalents are based on the
volume under normal conditions (0 °C and 1 atm). The
mixture was irradiated with a UV-light source (Uflow: Kessil
PR160L 370 nm, input power 43 W, operated at 25% power
intensity, pRS-SDR: UV-A curing 365 nm floodlight, input
power 175 W). Sampling at the outlet was done at steady-
state conditions (i.e., after waiting at least two residence
times). The microcapillary reactor (PFA, 1.6 mm outer
diameter, 0.8 mm inner diameter, 4.1 mL) was not operated
in stop-flow to increase the mixing and prevent unwanted
dilution.77,78 Blank samples were taken after each experiment
to account for any conversion of the actinometer caused by
background irradiation.

The samples (0.1 mL) were diluted with water (1.4 mL)
and after dilution 0.6 mL was added to a buffer solution (2.0
mL). The buffer consisted of 6 mM 1,10-phenanthroline
(Sigma Aldrich), 0.6 M sodium acetate (Sigma Aldrich) in 0.18
M sulfuric acid, using demineralized water as solvent,
consistent to the procedure reported.39,45 The samples were
measured using a UV-VIS spectrophotometer (UV-2501 PC
Shimadzu or Horiba Scientific Duetta) in a 1 cm cuvette and
the peak absorption of the complex at 510 nm was noted and
used to determine the conversion, using calibration curves.

Radiometry

Radiometric characterization of the light sources was
previously conducted and the resulting data was applied in
the current study.39

Ray-tracing

To develop the light source and reactor setup simulations,
geometric representations of the light sources and reactors
were constructed based on the measured dimensions, as
detailed in prior research.39,45 These representations, along
with the material properties were then modeled in COMSOL
Multiphysics 5.4. Calibrated models of the light sources, and
the model of the pRS-SDR and Uflow were obtained from
previous work and simulated using the Geometric Optics
module.39,45

Non-linear fitting of the effective optical path length

The mole balance for each reactor system was implemented
in MATLAB R2022b. A non-linear least squares method was
used to fit the effective optical path length in the balance.
The differential equations were solved with a variable-step,
variable-order (VSVO) solver for stiff differential equations.

Workflow

The applied workflow to obtain the photon flux and effective
optical path length is given by prior research.39

Imaging of the pRS-SDR

Images of the pRS-SDR supplied in the main text (Fig. 4c)
were recorded with a high-speed camera (SpeedSense, Dantec
Dynamics). A sample rate of 200 pulses per second was used,
with exposure times ranging from 150 μs to 1000 μs and an
extended dynamic range (EDR) from 100 μs to 500 μs, based
on the employed rotation speed. A solution consisting of 6.0
mM of potassium ferrioxalate in 50 mM sulfuric acid was
used for the imaging to ensure conditions equal to the
operating conditions. Representative images were selected for
each condition.

Data availability

The data supporting this article have been included as part
of the ESI.†
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