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Review of the tight-binding method applicable to
the properties of moiré superlattices
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Moiré superlattices have emerged as a versatile platform for exploring a wide range of exotic quantum

phenomena. Unlike angstrom-scale materials, the moiré length-scale system contains a large number of

atoms, and its electronic structure is significantly modulated by the lattice relaxation. These features

pose a huge theoretical challenge. Among the available theoretical approaches, tight-binding (TB)

methods are widely employed to predict the electronic, transport, and optical properties of systems

such as twisted graphene, twisted transition-metal dichalcogenides (TMDs), and related moiré materials.

In this review, we provide a comprehensive overview of atomistic TB Hamiltonians and the numerical

techniques commonly used to model graphene-based, TMD-based and hBN-based moiré superlattices.

We also discuss the connection between atomistic TB descriptions and effective low-energy continuum

models. Two examples of different moiré materials and geometries are provided to emphasize the

advantages of the TB methods. This review is intended to serve as a theoretical and practical guide for

those seeking to apply TB methods to the study of various properties of moiré superlattices.

1 Introduction

Moiré superlattices can be constructed by stacking two-
dimensional materials with relative rotation or slight lattice
mismatch, giving rise to long-wavelength interference patterns
in their atomic structures.1,2 A famous example is twisted bilayer
graphene (TBG), where a small-angle rotation between the gra-
phene layers generates a moiré superlattice with emergent elec-
tronic properties, for example, moiré flat band structure.3–5 Such
moiré materials have rapidly become a versatile platform for
exploring exotic physics,1,6 as well as new opportunities in materi-
als science and chemistry.7–10 Remarkably, experiments have
revealed a variety of strongly correlated phenomena and topology
in these systems. Unconventional superconductivity and corre-
lated insulating states have been observed in twisted bilayer
graphene layers,11–17 multilayer graphene/hexagonal boron nitride
(hBN) heterostructures,18–20 as well as in moiré transition-metal
dichalcogenides (TMDs).21–24 Beyond superconductivity, moiré
systems exhibit tunable ferromagnetism,25–29 ferroelectricity,30–32

and integer and fractional quantum anomalous Hall effects.33–40

These experimental breakthroughs highlight the potential of

moiré materials for applications in quantum technologies and
optoelectronics,41,42 including quantum computing,43–47 lasing
and cavity engineering,41,48–51 and chemical property tuning via
twist-angle control.7,8,52–54

Experimental observations on moiré materials also motivate
extensive theoretical and numerical efforts to understand these
phenomena and provide accurate and robust predictions of the
moiré systems. However, theoretical modeling remains challen-
ging because realistic moiré superlattices often contain thousands
of atoms.5 In addition, lattice reconstruction and atomic relaxation
play critical roles in determining electronic, transport and optical
properties of moiré materials.55–62 Several atomistic approaches
have been employed to study the electronic structure of moiré
superlattices. Density functional theory (DFT) not only supports
phenomenological descriptions and synthesis control across
diverse two-dimensional (2D) materials,63–65 but also provides
accurate descriptions of their electronic structures,66 and has been
applied to relatively small and large-angle twised graphene layers,
twisted bilayer TMDs and twisted bilayer hBN.67–75 However, its
computational cost makes the direct simulation of large-scale
moiré superlattices inefficient. At the opposite limit, continuum
models offer effective low-energy descriptions that capture essen-
tial band features and have been widely used to provide insights
into some experimental observations.76–80

Bridging these two methods, the tight-binding (TB) model
offers an atomistic yet computationally efficient framework for
modeling moiré materials.81–84 Crucially, atomic TB Hamilto-
nians have been built to simulate a broad variety of 2D materials

a Texas Materials Institute and Department of Mechanical Engineering, The

University of Texas at Austin, Austin, Texas 78731, USA
b IMDEA Nanociencia, Faraday 9, Madrid 28015, Spain.

E-mail: zhenzhanh@gmail.com
c Donostia International Physics Center, Paseo Manuel de Lardizabal 4, San

Sebastian 20018, Spain

Received 8th September 2025,
Accepted 10th November 2025

DOI: 10.1039/d5cp03472h

rsc.li/pccp

PCCP

REVIEW

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

25
. D

ow
nl

oa
de

d 
on

 0
2/

02
/2

02
6 

10
.2

1.
01

. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-0757-3499
https://orcid.org/0000-0001-5915-5427
https://orcid.org/0000-0002-1575-7722
http://crossmark.crossref.org/dialog/?doi=10.1039/d5cp03472h&domain=pdf&date_stamp=2025-11-19
https://rsc.li/pccp
https://doi.org/10.1039/d5cp03472h
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP027047


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 25232–25253 |  25233

such as graphene,85,86, TMDs,87,88 black phosphorus,89 and group-
IV/V ‘‘enes’’ (silicene/germanene/stanene).90–92 Unlike continuum
models, TB retains lattice-level resolution, making it possible to
capture the effects of atomic relaxation,93,94 local disorder,95,96

strain,97 and chemical specificity.98–100 Furthermore, the method
can be systematically extended to include many-body
interactions,101–103 external fields,104 and coupling to lattice or
optical degrees of freedom.105 Moreover, TB model is orders of
magnitude more efficient than DFT method, enabling conven-
tional numerical simulations of realistic moiré supercells with
thousands of atoms. The TB model can be further integrated with
advanced real-space linear scaling numerical techniques to simu-
late up to millions of atoms.82,106–108 Because of this unique
balance between accuracy and efficiency, TB method has become
a central tool for studying electronic, transport, and optical proper-
ties of moiré superlattices across material platforms, from twisted
bilayer graphene to hBN- and TMDs-based heterostructures.

In this Review, we focus on TB methods that have been applied
to study broad properties of moiré materials such as electronic,
transport, and dynamical properties. In Section 2, we introduce
widely used TB Hamiltonians in moiré materials including
graphene-based, TMDs-based and hBN-based moiré superlattices.
In Section 3, we also review the numerical methods in dealing
with the large scale TB Hamiltonian matrices and introduce some
practical software packages used to study the properties of moiré
materials. In Section 4 we then analyze the relation of TB methods
to DFT and continuum models used in moiré materials. We also
display two typical examples of implementing TB methods to
study properties of moiré materials in Section 5.

2 Tight-binding Hamiltonian of moiré
materials

In the study of two-dimensional (2D) superlattices, the most
commonly investigated materials are graphene, hBN, and transi-
tion metal dichalcogenides (TMDs). In homobilayer systems, such
as TBG, the superlattice structure is characterized by a single twist
angle y. For certain special twist angles, the superlattice preserves
translational symmetry and forms a well-defined commensurate
supercell. At these special angles, the two graphene lattices beat in
space, giving rise to a moiré period defined by integer numbers of
graphene lattice vectors. We refer to these angles as commensu-
rate angles. Another structure of interest is an incommensurate
structure, the dodecagonal quasicrystal with y = 301.109–111 The
atomistic TB model is widely used to study the electronic struc-
tures of these superlattices. The starting point for the TB model is
the construction of the superlattice. Therefore, in this section, we
will first give a brief description of the geometry and then
explicitly discuss the TB Hamiltonians of these systems. For
simplicity, we limit our attention to moiré systems. The TB
Hamiltonian for the incommensurate case is straightforward.

2.1 Moiré geometry

A moiré pattern can be generated in several ways. For example,
when two single layers of 2D materials are stacked on top of

each other with a relative commensurate angle, a moiré pattern
is formed.112 Moiré patterns can also be created solely by
applying strain.113 The period of the moiré pattern is deter-
mined by the twist angle or lattice mismatch. In this section, we
briefly introduce the geometry of the moiré pattern defined by
rotation. The general and universal formulas for generating
moiré systems are given in ref. 95 and 113.

For the TBG case, the period of the moiré pattern is ref. 114:

Am ¼
aG

2j sin y=2j; (1)

where aG is the graphene lattice constant. The TBG could be
constructed by identifying a common periodicity in the two
graphene monolayers. For one layer, we define a supercell with
a lattice vector A1 = na1 + ma2, where a1,2 are the lattice vectors
of monolayer graphene, and m, n are integers with n 4 m Z 1.
For the second layer, a supercell with the same size and rotated
by an angle y can be obtained by taking a lattice vector A2 =
�ma1 + (n + m)a2. The moiré superlattice is then constructed by
rotating the cell with A1 by y/2 and the cell with A2 by �y/2.
Each pair of (n, m) identifies a commensurate supercell with
twist angle y as:

cos y ¼ 1

2

n2 þ 4nmþm2

n2 þ nmþm2
: (2)

Fig. 1(a) shows a moiré pattern of TBG with y = 3.151, which
consists of AA, AB and DW stackings. These stacking config-
urations have distinct stacking energies, resulting in a strong
lattice reconstruction of the system to achieve an equilibrium
condition. The moiré pattern can be visualized by means of
transmission electron microscopy and scanning tunneling
microscopy.95,115

2.2 Graphene-based moiré materials

2.2.1 Single-particle TB method. The most widely studied
moiré materials are graphene-based heterostructures, such as
twisted bilayer graphene, twisted trilayer graphene, and twisted
multilayer graphene. To describe their electronic structure,
single-particle tight-binding models are commonly employed.
A typical example is the TB model restricted to the pz orbital,
which captures the essential low-energy physics of graphene.
The Hamiltonian is written as

H0 ¼
X
i

Eic
y
i ci þ

X
iaj

tijc
y
i cj ; (3)

where Ei is the onsite energy of the pz orbital at site i, and tij

denotes the hopping between pz orbitals at sites i and j. The
hopping amplitudes follow the Slater–Koster (SK) relation

tij = n2Vpps(rij) + (1 � n2)Vppp(rij), (4)

where rij = |rj � ri| is the distance between sites i and j, and n is
the direction cosine along the ez axis perpendicular to the
graphene plane. The SK parameters Vppp and Vpps are given
by ref. 116 and 117

Vppp(rij) = �t0eqp(1�rij/d)Fc(rij), (5)
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Vpps(rij) = t1eqs(1�rij/h)Fc(rij), (6)

where d and h are the nearest in-plane and out-of-plane carbon–
carbon distances, respectively. The parameters t0 and t1 set the
in-plane and out-of-plane hopping strengths, while qp and qs

are decay factors satisfying
qs

h
¼ qp

d
¼ 2:218 Å�1. A smooth cut-

off function

FcðrÞ ¼
1

1þ e r�rcð Þ=lc
; (7)

with lc = 0.265 Å and cutoff distance rc = 5.0 Å, is used to
suppress long-range hopping terms. According to eqn (5) and
(6), the electronic structure varies with SK hopping parameters
(t0 and t1) and bond lengths (d and h). For example, by
modulating slightly the SK parameters, the first magic angle
can be shifted between 1.051 and 1.21.94 For bilayer graphene
case, the equilibrium bond length are d = 1.419 Å and hAA =
3.599 Å, which are reproduced by a DFT + vdW calculation.118

More information on the bound length refers to ref. 93, 114 and
118–120. This minimal pz-orbital model provides a reliable
starting point for describing the electronic structure of
graphene-based moiré systems. In practice, more refined
models are often required to include lattice relaxation, correla-
tion effects, or substrate-induced modifications.

In 2010, Guy Trambly de Laissardière and co-workers
derived the above TB model and predicted the electronic
structure of TBG at different twist angles.116 The agreement
between the ab initio and TB results was excellent (see the red
dot and red line in Fig. 1(b)). From the calculated band

dispersions along G–K, they extracted the velocity of the Dirac

states near the K point using Vbi ¼
1

�h

@E

@k
; and compared it with

the corresponding value in monolayer graphene, Vmono. As
shown in Fig. 1(c), the velocity renormalization varies symme-
trically around y = 301.

Within the small-angle regime (y o 31), the low-energy bands
become flat. At the particular twist angle y = 1.081, referred to as
the first magic angle, the velocity tends to zero. This value is very
close to y = 1.051, obtained from the continuum model by
Bistritzer and MacDonald,76 and consistent with the experimen-
tally observed magic angle near y = 1.11.11 In the flat-band regime,
the moiré potential induces a strong peak near the charge
neutrality point in the local density of states (DOS) of the AA
stacking region, where the states are mainly localized (Fig. 1(d)).
This behavior was unexpected at the time, since Dirac electrons in
graphene obey the so-called Klein paradox, which makes them
difficult to localize with an electrostatic potential.121

A similar TB model was proposed by E. Suárez Morell et al.
in 2010, who predicted the magic angle at 1.51.122 Their model
included up to third-nearest-neighbor interlayer hoppings. The
precise value of the magic angle depends strongly on the hopping
parameters t0 and t1,94 which can be tuned in realistic models to
better fit DFT results67,104 or experimental data.94 Moreover, based
on the above TB framework, the existence of flat bands has also
been demonstrated in twisted trilayer graphene,104,123–126 twisted
double bilayer graphene,67,127,128 and twisted multilayer
graphene.129–131

The atomistic TB model offers several advantages for studying
moiré systems. First, lattice relaxation effects can be incorporated
by modifying the distance-dependent hoppings tij in eqn (4)
according to the relaxed atomic positions,93,94,119,132 which allows
the model to reproduce the observed band gaps between flat and
remote bands.12,133 One option to obtain relaxed structures is
through the classical simulation package LAMMPS.134 For refer-
ence, libraries of lattice relaxation are available for graphene,119

TMDs,135 and hBN136 (LAMMPS potentials are presented in
Table 1).

Second, substrate effects, strain, impurities, and external
electric or magnetic fields can be readily implemented within
the TB framework. For example, a perpendicular electric field
can be introduced by adding an onsite potential term to each
site, while a perpendicular magnetic field can be included
through the Peierls substitution151

tij ! tij � exp i
e

�hc

ðj
i

A � dl
� �

¼ tij � exp i
2p
F0

ðj
i

A � dl
� �

; (8)

where
Ð j
iA � dl is the line integral of the vector potential from

orbital i to orbital j, and F0 = 2pch�/e is the flux quantum. For a
perpendicular magnetic field along �z, the Landau gauge A =
(By,0,0) can be used. This framework enables the study of large-
scale properties such as the moiré Hofstadter butterfly in TBG152

and quantum Hall effect in twisted graphene using linear-scaling
methods and linear-response theory.107,108

Fig. 1 (a) The atomic structure of TBG with y = 3.151. The moiré unit cell is
illustrated with a black parallelogram. (b) Band structure of TBG with y =
5.081 obtained by performing TB (solid line) and ab initio (dot) calculations.
In the TB calculation, the hopping parameters are t0 = 2.7 eV and t1 =
0.48 eV. (c) Fermi velocity ratio Vbi/Vmono of TBG versus angle y. Red dot
for the ab initio calculations and black cross for the TB calculations. The
velocity close to 0 at angle y = 1.081 with integer pair (30,31). (d)
Distribution of one eigenstate at K point with energy E = 0, in the unit
cell of TBG with y = 1.081. Black small dots are the positions of all atoms,
red dots are atoms where 80% of the states are localized. Inset shows the
local density of states (DOS) of the AA stacking (solid red line) and the total
DOS (dashed black line). Adapted with permission from ref. 116. Copyright
(2010) American Chemical Society.
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2.2.2 TB with electronic interactions. The localization of
electrons in flat bands near the Fermi energy results in strong
electronic interactions that cannot be ignored in graphene
based moiré materials. For the long range electron-electron
interactions, the simplest model is the Hartree approximation,
which accounts for a mean field direct interaction between an
electron and the surrounding charge density. In TBG, this
interaction has been found to be strongest near the magic
angle and can be incorporated into the single particle TB model
as153–156

H = H0 + HH, (9)

where

HH ¼
X
i

dn rið Þfi (10)

is a self consistent Hartree potential. The electron interaction is
replaced by a site-dependent electric potential fi, which is
determined self consistently through the equation

fi ¼
X
j

V ri � rj
� �

dn rj
� �� �

; (11)

where dn(r) � n(r) � %n is the deviation of the electron density
n(r) from the average density %n, and V(ri � rj) is the screened
Coulomb interaction. The simplest form of this interaction can
be written as153

V ri � rj
� �

¼ 1:438

0:116þ ri � rj
�� �� eV; (12)

but this potential can take different forms depending on the
surrounding environment,154 which has important effects
when calculating the electronic interactions. Eqn (9)–(12)
define a self consistent iterative scheme to obtain the band
structure and eigenstates of the system. From these equations
we can deduce the electronic density and then compute the
electric potentials fi. The electronic density can be expressed in
terms of the Bloch eigenstates cnk(r) (with n the band index and
k the crystal momentum) of the Hamiltonian in eqn (9) as

nðrÞ ¼
X
nk

fnk cnkðrÞj j2; (13)

where fnk = 2Y(eF � enk) is the occupancy at zero temperature of
the state cnk with eigenvalue enk, eF is the Fermi energy, and
Y(e) is the Heaviside step function. In Fig. 2 we show the results
of ref. 102, where a TB model with a Hartree potential gives
filling dependent renormalized flat bands near the Fermi
energy. Similar results are obtained in ref. 153. The TB results
are also consistent with those from continuum models includ-
ing the Hartree potential.157–159

To go beyond the Hartree approximation one can consider
the Fock contribution, which accounts for the non local elec-
tronic interaction. The Fock approximation can be seen as the
simplest effective description of the exchange interaction of
electrons. Together with the Hartree interaction, this gives the
mean field Hartree–Fock approximation. An example of a
Hamiltonian with electron–electron interactions in twisted
bilayer and trilayer graphene is a mean field Hartree-Fock

Table 1 Summary of tight-binding (TB) models that have been used for moiré superlattices of three representative material families: (i) twisted bilayer
and multilayer graphene, (ii) twisted bilayer hexagonal boron nitride (hBN), and (iii) twisted homobilayer and heterobilayer transition–metal dichalco-
genides (TMDs). The second column lists the orbital basis actually used in the TB Hamiltonians (from the simplest pz model for graphene to the 11-orbital
Wannier model for TMDs). The third column specifies the intralayer and interlayer hopping functions, including SK parametrizations, range cutoffs, and
angle dependences reported in the cited works. The fourth column collects SK-related numerical parameters (lattice constants, onsite energies, hopping
amplitudes and decay lengths). The last column summarizes how the atomic structures were relaxed via LAMMPS with corresponding intra- and inter-
layer potetials before evaluating SK matrix elements

Material
family

Orbitals
(basis) Hopping used (intralayer/interlayer)

Parameters
(SK-related numerics)

Relaxation (LAMMPS
potentials)

Moiré
graphene
(TBG &
stacks)

pz per C Intra/inter:116,117 tij = n2Vpps(r) + (1 �n2)Vppp(r);
Vppp(r) = �t0eqp(1�r/d)Fc(r); Vpps(r) = t1eqs(1�r/h)Fc(r);
Fc(r) = (1 + e(r�rc)/lc)�1

t0 = 2.7 eV; t1 = 0.48 eV;
qs/h = qp/d = 2.218 Å�1;
rc = 5.0 Å; lc = 0.265 Å

Intra:94,119 AIREBO137

LCBOP;138 inter:93,119

Kolmogorov–
Crespi (KC)139

Moiré hBN
(twisted
bilayer)

pz on B/N Intra: (A)140 and (B)141 nearest neighbor (NN) hopping.

(c) 6 neighbor hoppings.136 Inter: (A)140 tXY
> (r) = tXYe�a(r�h);

(B)141 tXY
? ðrÞ ¼ n2gXYF

XY
c ðrÞeQXYðh�rÞ; (C)136 full SK:

Vppp(r) = �g0eqp(1�r/dBN), Vpps(r) = g1eqs(1�r/h)

(A)140 h = 3.33 Å, a = 4.4 Å�1;
tNN = 0.15, tBB = 0.7, tNB = 0.3 eV.
(B)141 h = 3.22 Å, lc = 0.265 Å,
rXY

c = h + ln(103)/QXY. (C)136

dBN = 1.43 Å, h = 3.261 Å; g0 = 2.7 eV;
g1 A {0.831, 0.6602, 0.3989} eV

Intra:136 extended
Tersoff;142 inter:136

DRIP143,144

Moiré TMDs
(twisted
homo/
hetero)

11-orbital:
5d (M) +
px,y,z on
two X;
SOC
on-site

Intra: Wannier 11-orbital TB.145 Inter

(homobilayer p–p):145 t
ðLLÞ
p0
i
;pj
ðrÞ ¼ Vpp;s � Vpp;p

� �rirj
r2
þ Vpp;pdij

with Vpp,b(r) = nbe�(r/Rb)Zb. Inter (heterobilayer pz–dz2):146

tpz ;dz2 ðrÞ ¼ n
n2 � 1

2
l2 þm2
� �	 


VpdsðrÞ þ
ffiffiffi
3
p

n l2 þm2
� �

VpdpðrÞ;

Vpd,b(r) = Vb(r/h)ab cos(bbr/h + gb)

Homobilayer:147 interlayer cutoff
rcut E 5 Å; nb, Rb, Zb from
Table V in ref. 145.

Intra:146,148

Stillinger–Weber
(SW);149 inter:146,148

Lennard-Jones
(LJ)150/KC135

Heterobilayer:146 mean interlayer
distance h E 3.5 Å; (Vb, ab, bb, gb)
from ref. 146
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Hamiltonian of the form102,160–164

HMF ¼ H0 þHHF

¼ H0 þ
X

iaj;s;s0
V ri � rj
� �

c
y
iscis

D E
0
c
y
is0cis0

�
X
iaj;s

V ri � rj0
� �

c
y
jscis

D E
0
c
y
iscjs;

(14)

where H0 is the spin independent non interacting Hamiltonian
of eqn (3), s(s0) is the spin quantum number, which can be
ignored when considering spin symmetric solutions,161 and
h� � �i0 denotes the expectation value in a reference state. This
HF equation HMF can be solved self consistently.102,160–164 We
note that the Hartree-Fock solution predicts a gap opening at
the Dirac points, as shown in Fig. 2(b), a result that is also
captured by low energy continuum models.159

2.2.3 TB model with Hubbard-U interaction. In moiré
superlattices, the localized states of flat bands imply strong
local electron–electron interaction that could lead to Mott
insulating states, ferromagnetism12,25,165,166 and other corre-
lated phases.167 This short range interaction can be described

in a minimal way using a local Hubbard term

HU ¼ U
X
i

ni"ni#; (15)

where nim (nik) is the electron density operator c†
imcik (c†

ikcim) at
each site for pz orbital and U is the interaction strength. In a
mean-field approximation, the TB Hamiltonian with the Hub-
bard-U term can be expressed as168,169

HMF ¼ H0 þHU

� H0 þU
X
i

ni"
� �

ni# þ ni" ni#
� �

� ni"
� �

ni#
� �

; (16)

where H0 is a single-particle TB Hamiltonian. The mean-field
values hnim,ki are obtained by iteration until convergence. For
TBG around the magic angle, the self-consistent process is
typically time-consuming due to the large number of atoms in
each moiré unit cell. Therefore, a rescaled non-interacting
TB Hamiltonian is proposed to reach an affordable numerical
self-consistent calculation. Specially, the low-energy electronic
structure of TBG with a small angle y can be reproduced at a
larger angle y0 that contains a smaller number of atoms.168,169

The rescaled Hamiltonian can be obtained by tuning the
parameters in eqn (5) and (6) by the following scaling
transformations168

t 00 !
1

l
t0; d 0 ! ld; h0 ! lh; (17)

where the dimensionless re-scaling parameter l is given by

l ¼
sin

y0

2

sin
y
2

: (18)

Fig. 3(a) shows the band structure of TBG with y = 1.51 obtained
from a scaled (solid lines) and an unscaled (dashed lines) TB
Hamiltonian. The two methods give bands that agree well in
the low energy region. The rescaled TB model with a mean field
Hubbard U Hamiltonian at the atomic level provides insight
into ferromagnetism and Mott insulating states in TBG and
other moiré superlattices.168–170 As shown in Fig. 3(b), at half
filling of the second band, interactions induce a Stoner instabil-
ity that splits the flat bands.169

2.3 TMDs-based moiré materials

Another family of materials for moiré physics is TMDs, which
have attracted growing interest in condensed matter physics.
Recently, exciting experimental phenomena, like moiré flat
bands, correlated insulating states, interfacial ferroelectricity,
Wigner crystals, superconductivity, have been observed in
twisted TMDs.21,23,24,147,171,172 TMDs have a triangular geome-
try that can host both hexagonal (2H) and tetragonal (1T)
stackings. In monolayer TMDs, each cell contains one metal
and two chalcogenide elements with chemical formula MX2.
The geometry and electronic properties vary with different
elements. Interestingly, the bilayer moiré pattern can be gen-
erated by both identical monolayers (homobilayer) and differ-
ent monolayers (heterobilayer). In the following, we will

Fig. 2 (a) The band structure of TBG with y = 1.081 by taking long-range
Hartree corrections into account at electron filling number n = 0 (left side)
and n = �1 (right side). The gray lines are the band structure without
Hartree corrections. The dashed line is the Fermi level at each filling.
Adapted with permission from ref. 153. Copyright (2019) by the American
Physical Society. (b) The first valence (upper) and conduction (lower) flat
bands obtained by including the Hartree-Fock interaction at filling number
n = 0 for TBG with y = 1.161. The dashed line is the Fermi level. Adapted
with permission from ref. 102. Copyright (2020) by the American Physical
Society.
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describe the TB model for the TMDs homobilayer and
heterobilayer.

2.3.1 TB for twisted homobilayer TMDs. In general there
are three TB models for the homobilayer TMDs moiré systems.
These three TB models propose very different parameters
(onsite energies and SK parameters), but provide electronic
structures that are highly consistent. All models adapt an
11-orbital in the monolayer, but consider different interlayer
interactions. One of the TB models, discussed by Zhan and
coworkers,173,174 considers only the interlayer interactions
between the p orbitals of the X atoms at the interface between
the two layers. The corresponding TB parameters were devel-
oped by Fang and coworkers.145 In the following we describe
the theory of this TB model.

The geometry of the TMDs moiré patterns can be defined in
the same manner of the graphene moiré systems. The bilayer
TB Hamiltonian can be derived by adding an interlayer hopping
term to two monolayer Hamiltonians as

Ĥ = Ĥ(1L)
1 + Ĥ(1L)

2 + Ĥ(2L)
int , (19)

where the first two terms are the monolayer Hamiltonians and
the third term is the interlayer hopping term. The monolayer
TB model is constructed from an 11 basis set (five d orbitals
from M and three p orbitals from X) as

ĉ
y
pd ¼ d̂

y
z; d̂
y
xy; d̂

y
x2�y2 ; d̂

y
xz; d̂

y
yz; p̂

Ay
x ; p̂Ayy ; p̂Ayz ; p̂Byx ; p̂

By
y ; p̂

By
z

h i
, which

contains the on-site energy, the hopping terms between orbitals
of the same type at first-neighbor positions, and the hopping
terms between orbitals of different type at first- and second-
neighbor positions.145 TB parameters in the single-layer Hamil-
tonian for MoS2, MoSe2, WS2 and WSe2 can be obtained from
Table 7 of ref. 145. The term Ĥ(2L)

int is the interlayer interaction
expressed as

H2L
int ¼

X
p0
i
;r2;p

0
j
;r1

f̂
y
2;p0

i
ðr2ÞtðLLÞp0

i
;pj

r2 � r1ð Þf̂1;pj
r1ð Þ þ h:c:; (20)

where f̂i,pj
is the pj orbital basis of i-th monolayer. Within the

SK parametrization, the interlayer hoppings are expressed as175

t
ðLLÞ
p0
i
;pj
ðrÞ ¼ Vpp;sðrÞ � Vpp;pðrÞ

� �rirj
r2
þ Vpp;pðrÞdi;j ; (21)

where r = |r| and the distance-dependent SK parameter is

Vpp,b = nbe[�(r/Rb)Zb], (22)

where b = s, p, nb, Rb and Zb are constant values that can be
obtained from the ref. 145. The interlayer interactions in
twisted homobilayer TMDs are included in the TB Hamiltonian
by adding hoppings between p orbitals of chalcogen atoms in
top and bottom layers. The cuttoff distance of interlayer hop-
ping can be taken as 5 Å.148,173,174 The TMDs have two set of
bond length values (theoretical and experimental bulk values).
For MoS2, the bond lengths are the in-plane lattice constant a =
3.18[3.16] Å, unit cell size along the z direction h = [12.29] Å,
distance alone z direction between chalcogen layers dX–X =
3.13[3.17] Å, nearest-neighbor bond betwwen metal and chalgo-
gen atoms dX–M = 2.41[2.42] Å.145 Values in brackets are
experimental bulk values. More details on the bond length of
other TMDs refer to ref. 87 and 145.

Strong spin-orbital coupling (SOC) is a main characteristic
in TMDs. By expanding the 11 orbitals to 22, SOC can be
incorporated into the TB model. The intralayer Hamiltonian
of eqn (19) with SOC is given by145

Ĥ
ð1LÞ
SO ¼

X
k

f̂
y
"ðkÞH

ð1LÞ
"" ðkÞf̂"ðkÞ

h

þ f̂
y
#ðkÞH

ð1LÞ
## ðkÞf̂#ðkÞ þ f̂yðkÞHLSf̂ðkÞ

i
:

(23)

The diagonal blocks in the first term H(1L)
mm = H(1L)

kk = H(1L) are the
intralayer Hamiltonian. These are the spin-independent hop-
ping processes. The effect of spin-orbit coupling, HLS, is incor-
porated by the on-site lSOL�S term for each atom. Because it is
an on-site term, it does not carry momentum dependence and
is a constant matrix with elements

fi;s HLSj jfj;s0

D E
¼ fi;s lMSOLM þ lXSOL

A
X þ lXSOL

B
X

� �
� S

�� ��fj;s0

D E
;

(24)

where lM
SO and lX

SO are the SOC strength of the M and X atoms,
respectively.145 Within SOC, the interlayer Hamiltonian will
only consider the interaction of electrons with the same spin
direction. In this way, the tunable SOC in twisted homobilayer
and homotrilayer TMDs were carefully studied.111,173

Lattice relaxation is also an important effect in TMDs moiré
systems that needs to be taken into account in the TB model.
When relaxing the system, atoms moves away from its equili-
brium position, both in-plane and out-of-plane. Upon relaxa-
tion, the intralayer hoppings can be modified through the
form176

tintraij;mn rij
� �

¼ tintraij;mn r0ij

� 

1� Lij;mn

rij � r0ij

��� ���
r0ij

��� ���
0
B@

1
CA; (25)

Fig. 3 (a) Band structure of TBG with y = 1.51 obtained from a scaled (solid
lines) and unscaled (dashed lines) TB models. Adapted with permission
from ref. 168. Copyright (2017) by the American Physical Society. (b) The
calculated flat bands and spin z magnetization of TBG with angle y = 0.81
by considering the effect of local mean-field interactions. At angle y = 0.81,
the second bands from both conduction and valence bands became flat.
The interaction strength is U = 2t, where t the nearest-neighbor hopping
within one layer, and the electron filling number is n = �6, corresponding
to half-filling of the second band. The red (blue) color indicates a positive
(negative) expectation value hSzi = Mz of the spin operator. The calculation
was performed by using a rescaling method. Adapted with permission
from ref. 169. Copyright (2019) by the American Physical Society.
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where tintra
ij,mn is the intralayer hopping between the m orbital of

the i atom and n orbital of the j atom, r0
ij and rij are the distance

between the i and j atoms in the equilibrium and relaxed cases,
and Lij,mn is the dimensionless bond-resolved local electron-
phonon coupling. It is assumed that Lij,mn = 3, 4, 5 for the
chalcogen–chalcogen pp, chalcogen–metal pd and metal–metal
dd hybridizations, respectively.176 By using the TB model,
ultraflat bands were found to exist in TMDs for almost any
small twist angles.173

The second TB model was presented by Venkateswarlu and
coworkers.70 In this TB model, the interlayer interaction
included p S–p S, d Mo–p S and d Mo–d Mo terms. The TB
parameters were set up to correctly match the DFT band
structures.

In the third TB model, formulated by Vitale and
coworkers,146 the interlayer interactions p;S–p;S and pz;S–
dz2;Mo were included. Moreover, they described the interlayer
hoppings (p–p and pz–dz2) using different sets of SK parameters
for varying interlayer separations. The TB parameters were
obtained from a Wannier transformation of the DFT Hamilto-
nian. Fig. 4 shows the band structures of twisted MoS2 with the
same twist angle but derived from different TB models. The
results are highly consistent with one another.

2.3.2 TB for twisted heterobilayer TMDs. In 2021, by fitting
DFT band strutures, Vitale and coworkers extended the work of
Fang et al., to construct the TB Hamiltonian for both twisted
heterobilayer and homobilayer TMDs. In this TB model, they
also consider the interlayer hoppings between chalcogen p and
metal dz2 orbitals with a SK expression146

tpz ;dz2 ðrÞ ¼ n n2 � 1

2
l2 þm2
� �	 


VpdsðrÞ

þ
ffiffiffi
3
p

n l2 þm2
� �

VpdpðrÞ; (26)

where the directional cosines are defined as l = rx/r, m = ry/r and
n = rz/r. To determine the functions Vpds(r) and Vpdp(r), Vitale
and coworkers calculated tpz

, dz2, tpz,dxz
and tpz,dyz

for a set of
untwisted bilayers with different stacking configurations and
different interlayer separations, using a Wannier transforma-
tion of the DFT Hamiltonian. Then, a least square fitting
process was used to extract Vpds and Vpdp at different

interatomic distances. The results were fitted to functions of
the type

Vpd;bðrÞ ¼ Vb
r

h

� 
ab
cos bb

r

h
þ gb

� 

; (27)

where b = s, p Vb, ab, bb and gb denote interlayer hopping
parameters fitted from DFT calculations, which are dependent
on the types of heterostructures of bilayer TMDs.146 h = 3.5 Å is
an average interlayer distance. All the TB parameters are in ref.
146. Fig. 5 shows the band structures of the TMDs hetero-
structures containing different species of chalcogens. Similar to
the homobilayer case, the highest valence bands are derived
from monolayer K/K0 states (Fig. 5(a)) or G states (Fig. 5(b)).

2.4 hBN-based moiré materials

2.4.1 TB for twisted bilayer hBN. Similar to TMDs, the
bilayer hBN has two possible distinct stacking configurations,
the parallel BN/BN and antiparallel alignment BN/NB. In the
beginning, the twisted bilayer hBN was studied by DFT calcula-
tions, unveiling multi-flat bands at the edges of the bands at an
angle y = 2.641, and no constraint of magic angles that was
similar to the TMDs case.177 Therefore, twisted bilayer hBN
could provide an ideal platform to study correlations effects.
However, the DFT calculations could only tackle large angle
systems. Thus, an atomic TB model was proposed by Walet and
Guinea, which could further facilitate finer studies of electronic
properties for small angle twisted bilayer hBN.140 In this TB
model, the twisted bilayer hBN Hamiltonian is composed of
intralayer H1(2) and interlayer H12 parts

H = H1 + H2 + H12. (28)

H1(2) is similar to the single-layer Hamiltonian of graphene and
has the form:

Ĥ1ð2Þ ¼
X
i

Eic
y
i ci �

X
i;jh i

tc
y
i cj ; (29)

in which i denotes the pz orbital site of B or N atom. Ei is the
onsite energy that has a difference D ¼ EB � EN for B and N
atoms.178 t is the intralayer nearest hopping between B and N. D
and t are set as 8 eV and 2.33 eV, respectively.140 H12 is the
interlayer Hamiltonian with the form140

tXY
> (r) = tXY exp(�a(r � h)), (30)

Fig. 4 Tight-binding band structure of twisted homobilayer MoS2 at y =
3.151. (a) Bands obtained from a TB model from ref. 173 and 148. Adapted
with permission from ref. 148. Copyright (2022) by the American Physical
Society. (b) Bands calculated from the TB model from ref. 146. Adapted
under the terms of the CC BY license from ref. 146. Copyright (2021) IOP
Publishing.

Fig. 5 Tight-binding band structure of twisted heterobilayer TMDs for (a)
twisted bilayer WSe2 /MoS2 and (b) MoSe2 /WS2 heterostructure at twist
angle y = 4.51.146 Adapted under the terms of the CC BY license from ref.
146 Copyright (2021) IOP Publishing.
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where r is the distance between X and Y atoms (X(Y) is B or N)
and the empirical parameters are set as h = 3.33 Å, a = 4.4 Å�1,
tNN = 0.15 eV, tBB = 0.7 eV and tNB = 0.3 eV in ref. 140. In the
above TB model, the hopping term in eqn (30) does not
distinguish the atomic species, and assumes one distance-
dependent relation for all atoms. However, this model could
capture the flat band features and give an explanation of charge
polarization in twisted bilayer hBN.140,179

Two additional TB models, fitted from DFT results for
twisted bilayer hBN, have been proposed.136,141 One of them,
developed by Sponza and coworkers, employs the first nearest-
neighbor in-plane Hamiltonian [eqn (29)] with EB ¼ 4:90 eV,
EN ¼ 0 eV, and t = 2.65 eV, and uses a TBG-like relation that
includes only Vpps for the interlayer hopping.141

tXY
> (r) = n2gXYFXY

c (r)exp[QXY(h � r)], (31)

where h = 3.22 Å is the interlayer distance, XY labels the
pairings BN, BB, or NN, and

FXY
c rð Þ ¼ 1

1þ exp r� rXY
c

� ��
lc

� � (32)

is a smooth function with lc = 0.265 Å and cutoff distance rXY
c .

The values of gXY and QXY in eqn (31) can be found in ref. 141.
The cutoff distance rXY

c depends on the value of QXY according

to the relation rXY
c ¼ hþ

ln 103
� �
QXY

.

Another TB model, developed by Li and coworkers, consid-
ered intralayer hoppings up to six neighbors and used onsite
energies of EB ¼ 1:7666 eV and EN ¼ �2:1843 for the first term
in eqn (29).136 In addition, the lattice relaxation effect could be
incorporated into the intralayer interaction as

tab rij
� �

¼ tab r0;ij
� �

exp �2:45 rij � r0;ij

r0;ij

� �	 

; (33)

where tab(r0,ij) is the intralayer hopping terms of the rigid lattice
with distance r0,ij between atoms i and j, and rij is the relaxed
distance. r0,BB, r0,BN and r0,NN can be obtained by using the
lattice constant a = 2.4795 Å of the rigid case. The interlayer
hopping terms are determined by the SK relation in
eqn (4) with

Vppp rij
� �

¼ �g0 exp qp 1� rij
dBN

� 
h i
;

Vpps rij
� �

¼ g1 exp qs 1� rij
h

� �� �
;

(34)

where the intralayer distance is dBN ¼ a
� ffiffiffi

3
p
¼ 1:43 Å; the

vertical interlayer distance is h = 3.261 Å, g0 = 2.7 eV, while g1

has g1 = tBB0 = 0.831 eV, g1 = tNN0 = 0.6602 eV, or g1 = tBN0 = tNB0 =
0.3989 eV. The parameters qp and qs have the relation

qs

h
¼ qp

dBN
¼ ln 0:1g0=g0ð Þ

dBN � a
: (35)

Fig. 6 shows the band structure of twisted bilayer hBN obtained
from Li’s TB Hamiltonian.136 The band gap increased signifi-
cantly after lattice relaxation. The bands from the edges became
extremely flat in the small-angle region.

2.4.2 TB model for graphene/hBN moiré superlattice. In
experiments, hBN is widely used as a substrate to support or
encapsulate graphene and twisted graphene layers. Its atom-
ically flat surface and lack of dangling bonds improve the
device quality by reducing disorder and enhancing carrier
mobility. Because of the lattice mismatch between graphene
and hBN, a graphene/hBN superlattice forms even when the
lattices are crystallographically aligned. The presence of hBN
modifies the electronic properties of graphene, multilayer
graphene, and twisted graphene through interlayer interactions
between carbon and B or N atoms. The total TB Hamiltonian
can be written as

H = Hg + HhBN + H>, (36)

where Hg and HhBN denote the TB Hamiltonians of graphene and
monolayer hBN, respectively. The single layer Hamiltonians Hg

and HhBN are as introduced in the previous sections. The key
ingredient is the interlayer interaction H>, which can be
expressed using the Slater–Koster relation in eqn (4), with the
same Vppp and Vpps as in eqn (5) and (6). In most calculations,
the hopping parameters t0 and t1 between a carbon atom and a B
or N atom are set to t0 = 2.7 eV and t1 = 0.48 eV. A complementary
route is to construct effective hBN potentials within TB
models.180 When lattice relaxation is important, combining
atomistic TB with classical molecular dynamics provides a
practical way to include structural relaxation in TBG on hBN
and to quantify its impact on the electronic spectrum.181 The
developed theoretical approaches establish the central role of
hBN in reshaping the electronic structure of graphene180 and
twisted bilayer graphene,181,182 including gap openings at the
Dirac point and the appearance of secondary Dirac cones.183–192

Fig. 6 (a) Low-energy valence band and (b) conduction band for the BN/
BN stacking with various twist angles, for rigid and relaxed configurations.
(c) and (d) are the same plot but for BN/NB. Adapted with permission from
ref. 136. Copyright (2024) by the American Physical Society.
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3 Computational methods with TB for
moiré superlattices

The TB model is a powerful tool for analyzing the physics
arising from the moiré systems. In particular, the single-
particle band structure of the TB Hamiltonian is a good and
accurate starting point to describe the moiré structure and
explain the experimental results. However, in these large-scale
and complex systems, the loss of angstrom-scale periodicity
and possession of moiré-scale period imply that the moiré unit
cell contains a large number of atoms. Such large-scale TB
Hamiltonian matrix poses a significant theoretical challenge.
In the following, we review several methods for dealing with
these large-size Hamiltonian matrices.

3.1 Diagonalization method

To analyze electronic properties such as the band structures in
Fig. 1, a typical computational method is directly diagonalizing
the full TB Hamiltonian Htb to obtain its eigenvalues E and
eigenstates c satisfying

Htbc = Ec. (37)

For the orthogonal basis, this is a dense Hermitian eigen-
problem, with the cost of time and memory scaling as O(N3)
and O(N2), respectively. The non-orthogonal TB Hamiltonian
leads to a generalized form Hc = ESc with an overlap matrix
S.193 When only a small number of eigenpairs near the Fermi
level are required, e.g., bands in a narrow energy window or low-
frequency transport/optics, partial-spectrum solvers are mark-
edly efficient tools for sparse TB Hamiltonian matrices. The
Krylov method can target extremal or interior eigenvalues. With
a shift–invert one iterates on the operator

(H � sS)�1S, (38)

so that eigenvalues closest to the shift s E EF converge
first.194–199 In practice, full diagonalization remains simple
and robust for moderate N, while partial-spectrum solvers
become attractive for very large supercells or dense k-meshes
focused on a small energy window around EF.

Once {E, c} are available, numerous static and dynamical
observables can be evaluated via Kubo formulas in the eigen-
state basis.200 For example, the optical conductivity can be
formulated as201,202

sa1a2 oð Þ ¼ gsi

ð2pÞD
ð
BZ

dDk
X
l;l0

nF Ekl0ð Þ � nF Eklð Þ
Ekl � Ekl0

� kl0 Ja1j jklh i kl Ja2j jkl0h i
Ekl0 � Ekl þ �hoþ id

;

(39)

where gs is the spin degeneracy and D is the dimension of
structure, typically set to 2 for 2D materials. Ja1 and Ja2 are
current operators along the a1 and a2 directions, respectively.
nF is the Fermi-Dirac distribution. Eigenvalues Ekl and eigen-
states |kli, with band index l and momentum k, are needed to
describe optical band transitions between l and l0 bands. The
integration runs over the whole Brillouin zone (BZ).

3.2 Linear-scaling random state methods

A full diagonalization method will not be very efficient when a
moiré supercell contains more than thousands of atoms. For
example, the number of atoms in TBG increases rapidly when
reducing the angle y. For instance, the angle y E 0.221 contains
more than 260 000 atoms. The calculation of electronic struc-
tures of TBG with tiny angles is numerically challenging. In this
case, a linear-scaling method with scale of O(N) has the advan-
tage of tackling the large-scale TB Hamiltonian.106,107,203

One of the linear-scaling methods is the random state kernel
polynomial method (KPM).203 For example, the DOS can be
expressed as

DðEÞ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2
p gM0 m0 þ 2

XM
m¼1

gMm mmTmðEÞ
" #

; (40)

where E is rescaled to [�1,1] and gM
m is a kernel coefficient; a

Jackson kernel, widely used, has the form

gMm ¼
ðM �mþ 1Þ cos pm

M þ 1

� �
þ sin

pm
M þ 1

� �
cot

p
M þ 1

� �
M þ 1

;

(41)

where Tm(E) is the Chebyshev polynomial with the recursive
relation

Tm(x) = 2xTm�1(x) � Tm�2(x). (42)

Here Tm(x) = cos[m arccos(x)], resulting in T0(x) = 1 and T1(x) = x.
The parameter mm is the Chebyshev moment computed through

mm ¼ Tr Tmð ~HÞ
� �

� 1

R

XR
p¼1

cpðrÞ Tmð ~HÞ
�� ��cpðrÞ

D E
; (43)

where cp(r) is the random (stochastic) state of the expanded
moiré superlattice, and H̃ is a rescaled Hamiltonian with
eigenvalues ranging for �1 to 1. The error of this approxi-
mation is O 1

� ffiffiffiffiffiffiffiffi
RN
p� �

; with R the number of random states and
N the size of the Hamiltonian. The large-scale moiré super-
lattices naturally give a large N Hamiltonian that benefits the
trace of eqn (43) convergence, but is hard to be diagonalized. A
Kubo-Bastin DC conductivity of large-scale moiré can be com-
puted with204–206

sa1a2ðm;TÞ ¼
4e2�h

pA
4

DE2

ð1
�1
d ~E

nFð ~EÞ
1� ~E2
� �2

�
X
m;n

Gnmð ~EÞma1a2nm ð ~HÞ
(44)

where DE = E+
max � E�min is the energy range of the spectrum and

Ẽ is the rescaled energy within [�1, 1]. Gnm(Ẽ) and ma1a2
nm (H̃) are
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functions of the energy and the Hamiltonian, respectively

Gnmð ~EÞ ¼ Tmð ~EÞ ~E � in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E2

p� 

ein arccosð

~EÞ

þ Tnð ~EÞ ~E þ im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E2

p� 

e�im arccosð ~EÞ;

ma1a2nm ð ~HÞ ¼ gmgn

1þ dn0ð Þ 1þ dm0ð ÞTr va1Tmð ~HÞva2Tnð ~HÞ
� �

;

(45)

where gm can be represented as a Lanczos kernel with gn ¼

sinh l 1� n

N

� 
h i
sinhðlÞ and l = 4. va1 is the a1 component of velocity

operator v ¼ � i
�h
½l;H�; where l is the distance vector, and the

trace can be calculated in a random state basis through
eqn (43).204 As shown in Fig. 7, the KPM is a powerful method
for modeling the DOS, Direct current (DC) conductivity and
conductance in graphene-based moiré systems with tiny
angles207–211 and could facilitate the computation of properties
of more complex morié superlattices in the future.212,213

The tight-binding propagation method (TBPM) is another
powerful approach to simulate the broad properties of large-
scale moiré materials.107 Compared to KPM, a time-evolution is
applied to extract the information of a simulated system.106 For
example, the DOS can be calculated as106,107

DðEÞ ¼ 1

R

XR
p¼1

1

2p

ð1
�1

eiEt jpð0Þ e�iHt
�� ��jpð0Þ

D E
dt; (46)

where jp(0) is the pth initial random state at t = 0. The
calculation converges with an increasing number of random
samples R and the size of the Hamiltonian N. Based on TBPM,

the optical conductivity can be calculated106,107

sa1a2 oð Þ ¼ lim
e!0þ

e�b�ho � 1

�hoO

ð1
0

e�et sinot� i cosotð Þ

� 2Im f nF Hð ÞeiHtJa1e
�iHt 1� nF Hð Þ½ �Ja2

�� ��f� �� �
dt:

(47)

Here, O is the area or volume of the model, b = 1/kBT with kB the
Boltzmann constant and T the temperature. Compared to the
O(N3) time scaling of eqn (39), the random-state method scales
linearly O(N) with the dimension of Hamiltonian in real space.
Besides, TBPM can be applied to calculate dynamical properties in
both commensurate and incommensurate moiré supperlatice (see
Fig. 8(b)), while the diagonalization method in reciprocal space
can only work for commensurate ones (see Fig. 8(a)). The merits
and flexibility of TBPM also make it validly explain experimental
phenomena and simulate broad electronic and dynamical proper-
ties in various moiré materials (see Section 5).95,214–217

3.3 Tight-binding methods with machine learning

A convincing atomic TB model is relevant for exploring properties
of morié supperlatices. Recently, machine learning methods have
emerged to favor the construction of TB Hamiltonian and inves-
tigate the electronic properties of moiré superlattices.220–226 For
example, by training various small bilayer stackings of graphene,
deep learning-based methods such as DeepH can reproduce
electronic structures of a large-scale TBG moiré up to DFT
accuracy (see Fig. 9(b)).223,224,227 By similarly preparing the train
dataset from real-space DFT calculation as DeepH, HamGNN
method can also train and infer the ab initio accuracy TB
Hamiltonian of large-scale moiré materials such as twisted bilayer
MoS2 as displayed in Fig. 9(a).228,229 While the so-called ab-initial
TB Hamiltonian from DeepH and HamGNN is actually a numer-
ical TB Hamiltonian expanded in a group of non-orthogonal
and overlapped localized basis, a DeepTB method can generate

Fig. 7 DC conductivity and DOS calculated from KPM based on the TB
model introduced in Section 2.2.1 for TBG over a wide range of angles. Left
and right insets display the DC and DOS for small and large angles,
respectively. Adapted with permission from ref. 204. Copyright (2018) by
the American Physical Society.

Fig. 8 (a) Evolution of the optical conductivity (solid black lines) of TBG
with commensurate angles, calculated by using eqn (39) with exact
diagonalization of the TB Hamiltonian. The dashed red circles are the
continuum results. Adapted with permission from ref. 218. Copyright
(2013) by the American Physical Society. (b) Evolution of the optical
conductivity of TBG with varied angles, calculated by using eqn (47) with
a combination of TBPM and TB model. Conductivity peaks corresponding
optical transitions between VHS of DOS are indicated by arrows in the
inset. Adapted with permission from ref. 219. Copyright (2018) by the
American Physical Society.
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a semi-empirical SK TB Hamlitonian with ab initio accuracy over a
wide range of elements, which could open new possibility to
provide accurate SK parameters for generating Hamiltonian for
unknown moiré materials.230

3.4 Software packages within TB for modeling moire superlattices

Atomically modeling a moiré material based on TB Hamiltonian
contains some typical tasks including the construction of the
superlattice, relaxation, building a TB Hamiltonian, employing
numerical methods to study properties and postprocessing. There
are some useful and versatile software packages facilitating these
modeling tasks. Twister is specialized to construct and relax a
moiré superlattice.231 Recently, DPmoire provides a means to
generate ab-initial accuracy machine-learning force fields specifi-
cally tailored for moiré structures,232 which interfaces with mole-
cular dynamics software such as Lammps233 and ASE234 for
atomic relaxation. The versatile package KITE incorporates the
atomic construction of a moiré superlattice, KPM for calculating
transport and optical properties and visualization.108 It also
provides the interface with other packages such as Pybinding,
which is also based on TB methods with both the exact diagona-
lization and the KPM.235 TBPLaS is a functional package covering
all the procedures required to simulate a moiré superlattice.107 It
features with exact diagonalization, TBPM, and KPM to calculate
various properties of moiré superlattice. It also has interface with
Wannier90,236 Lammps,233 DeepH223 and DeepTB230 to keep its
flexibility in considering relaxation and constructing a new
Hamiltonian for a moiré superlattice.

4 Fitting TB to low-energy continuum
models

The interesting regime of low twist angles in moiré super-
lattices leads to very large moiré lengths, with up to thousands
of atoms per supercell. This naturally imposes a heavy

computational cost on atomistic TB simulations. Besides
time-consuming limitations, dealing with huge supercells can
hinder an intuitive understanding on how the system behavior
changes as the twist angle decreases. In addition, going beyond
the TB single-particle picture becomes exponentially more
difficult as the number of atoms increase. Yet, it is at these
large moiré superlattices where the electronic correlations
become crucial.

These considerations have motivated the need of having
effective continuum descriptions of the electronic properties in
moiré systems, which can capture the TB results, but yet are
simpler enough to allow efficient extensions of it by including,
for instance, correlations effects. Having simpler continuum
models can also provide valuable insights on the nature and
origin of flat bands in moiré systems.237–242 Furthermore, a
continuum model can be constructed even if the systems is
incommensurate.76,243 A simple schematic hierarchy of the
fitting of TB models to low-energy continuum models is shown
in Fig. 10.

The continuum description rest upon the fact at low twist
angles the moiré scale becomes much larger than the atomic
length, so the interlayer interaction is dominated by its long
wavelength components.76,243 This means that the electronic
behavior can be well described by the continuum approxi-
mation. The continuum description was originally introduced
for TBG in 2007 by Lopes dos Santos et al.,112 for commensurate
structures, and later extended to account for incommensurate
structures by Bistritzer and MacDonald in 2011.76 The later
model allows one to define a moiré Brillouin zone and obtain

Fig. 9 (a) Comparison of band structures of twised bilayer MoS2 at y =
3.51 obtained from machine-learning HamGNN method (lines) and DFT
calculation (dots). A band zoom near zero is shown in the inset. Adapted
under the terms of the CC BY license from ref. 228. Copyright (2023) the
authors. (b) Bands of TBG at y = 1.081 predicted by DeepH method,
compared to those obtained from DFT calculation (red dots) and con-
tinuum model (red lines) (Details of continumm model in next section).
Adapted under the terms of the CC BY license from ref. 227. Copyright
(2023) the authors.

Fig. 10 Schematic representation of the path from TB models to effective
continuum models in TBG. Different approximations are gauged by the
properties of the band structure around the magic angle: the emergence
of flat bands, their gap with the remote bands, and the particle-hole
asymmetry. The later two properties only emerge in the TB model when
the system is allowed to relax. The continuum model provides a low-
energy description in which the two layers, with Dirac Hamiltonians H1 and
H2, are coupled by a moiré potential U with effective hoppings uAA and uAB

at the AA and AB/BA stacking regimes. Capturing the three main properties
of the flat bands depends, primarily, on the ratio between the hopping
energies and the locality of the moiré potential.244–246 From the simple
continuum model one can then more easily go beyond the single-particle
picture by taking into account many-body interactions.
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the band structure of TBG for any low twist angle. These
pioneering formulations not only captured the low energy
spectra obtained by the TB model, but also allowed one to
obtain further simpler models of the flat bands as linear
dispersions with a renormalized velocity that vanishes at the
magic angle y B 1.051.76,112 Since then, many other works have
reformulated,77,218,245–251 and extended these continuum
models to account for large twist angles,243 lattice
relaxation,119,244,252–254 and strain effects.97,113,255–260 The ori-
ginal continuum model of TBG has been further extended to
other moiré structures, such as twisted TMDs,71,261,262 twisted
hBN,140 twisted graphene/hBN,181,182,263,264 and twisted multi-
layer graphene.265,266 In what follows we focus on TBG and
mostly follow the continuum formulation of Koshino et al.247

The starting point is to define the Bloch wave states in each
layer as

k;Xj i ¼ 1ffiffiffiffi
N
p

X
RX

eik�RX RXj i; (48)

where X = {A1, B1, A2, B2} is the layer-sublattice index, N is the
number of graphene monolayer cells in each layer, and Rl are
the atomic positions

RA1
¼ n1a1 þ n2a2 þ sA1

;

RB1
¼ n1a1 þ n2a2 þ sB1

;

RA2
¼ n1a1 þ n2a2 þ sA2

þ dþ d dð Þez;

RB2
¼ n1a1 þ n2a2 þ sB2

þ dþ d dð Þez;

(49)

where a1 = a(1, 0) and a2 ¼ a 1=2;
ffiffiffi
3
p

=2
� �

are the monolayer’s

lattice vectors, while sX are the sublattice displacements (sA1
=

sA2
= 0, sB1

= sB2
= �s1 with s1 = (2a2 � a1)/3). The displacement

vector d accounts for the variation in the atomic positions of
layer 2 due to its relative rotation with layer 1, while d(d)
accounts for the interlayer distance at d. When the layers are
relatively rotated by a small twist angle y, the displacement
vector d is taken to vary with the real space position r as247

d(r) = [R(y/2) � R(�y/2)]r. (50)

Due to relaxation effects, the corresponding interlayer distance
d(d) is not uniform throughout the supercell: it is maximum
around the AA stacking with dAA = 0.36 nm, and minimum
around the AB stacking dAB = 0.335 nm. Koshino et al.247

interpolated d as

d dð Þ ¼ d0 þ 2d1
X3
j¼1

cos bi � dð Þ; (51)

where b3 = �b1 � b2, d0 = (dAA + 2dAB)/3 and d1 = (dAA � dAB)/9.
Assuming that the transfer integral between sites RX and RX0

depends only on their relative distance, the interlayer matrix
elements that couple the two layers takes the form ref. 218 and
243

U ¼ �
X
X;X0

t RX0 � RXð Þ RX0j i RXh j þ h:c:; (52)

where the transfer integral t(R) is given by the SK parametriza-
tion in the TB model. Replacing the plane-wave expansion of
the Bloch states |RXi, and using the continuum description of
the displacement vector d(r), leads to the interlayer interaction

UX0X k0; kð Þ � k0;X 0h jU k;Xj i

¼
X
m1;m2

tX0X kþm1b1 þm2b2ð Þ

� ei m1b1þm2b2ð Þ� s
X0 �sXð Þdk0�k;m1G1þm2G2

;

(53)

where Gi = [R(y/2) � R(�y/2)]bi are the moiré vectors and tX0X(q)
is the in-plane Fourier transform of the transfer integral

tX0X qð Þ ¼ � 1

S0

ð
drt rþ d r� sX0 þ sXð Þ½ �e�iq�r; (54)

where S0 ¼
ffiffiffi
3
p

=2
� �

a2 in the unit cell of monolayer graphene.
Fig. 11 shows the variation of the hopping amplitude t(q) as a
function of momentum q = |q|, for different models. The key
observation is that t(q) decays very rapidly with q because the
interlayer separation exceeds the intralayer carbon–carbon dis-
tance by more than a factor of 2.76

Following the Dirac approximation, the momenta in both
layers is measured with respect to their Dirac points Kx (where x
is the valley index), and the transfer integral in eqn (53) is
approximated as � tX0X Kx þm1b1 þm2b2ð Þ; leading to a local
moiré potential

UX0X r; xð Þ ¼
X
m1;m2

tX0X Kx þm1b1 þm2b2ð Þ

� ei m1b1þm2b2ð Þ� s
X0 �sXð Þei m1G1þm2G2ð Þ�r:

(55)

The coupling amplitude tX0X Kx þm1b1 þm2b2ð Þ only depends
on the distance of the Dirac points to the origin. As tX0X(q) decay
rapidly with q, one can take only the first three leading terms
(m1, m2) = {(0, 0), x(1, 0), x(1, 1)} in the summation over m1 and
m2. The moiré potential, in matrix form, then takes the well-
known form ref. 243 and 247

U(r, x) = U0 + U1eixG1�r + U2eix(G1+G2)�r, (56)

where76,112

Uj ¼
u0 u1e

�ifj

u1e
ifj u0

0
@

1
A; (57)

with fj = ( j � 1)2p/3, and u0 and u1 are the AA and AB/BA
stacking amplitudes given by247

u0 ¼ �
1

S0

ð
drt rþ d rð Þez½ �e�iKx�r; (58)

u1 ¼ �
1

S0

ð
drt rþ d r� t1ð Þez½ �e�iKx�r: (59)

Koshino et al.247 obtained u0 = 0.0797 eV and u1 = 0.0975 eV.
Note that for flat TBG, as considered initially in the Bistritzer-
MacDonald model,76 the interlayer distance d(r) is constant and
thus u0 = u1.
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Finally, the effective continuum model Hamiltonian for the
x valley takes the form ref. 247

Hx ¼
H1 Uy

U H2

 !
; (60)

where Hl is the intralayer Dirac Hamiltonian in layer l = 1, 2,
given by the two-dimensional Weyl equation centered at the
Kl,x point

Hl = �h�v[R(ly/2)(k � Kl,x)]�(xsx, sy). (61)

Here sx and sy are the Dirac matrices acting on the sublattice
space, and ref. 218

v ’
ffiffiffi
3
p

2

a

�h
V0

ppp 1� 2e�a0=d0
� �

(62)

is the Fermi velocity, where a0 ¼ a=
ffiffiffi
3
p

is the carbon–carbon
distance and d0 = 0.184a is the decay length,218 so that the
nearest intralayer coupling is 0.1V0

ppp. With V0
ppp B �2.7 eV,

Koshino et al. obtained h�v/a = 2.1354 eV.247

To compute the energy bands in the continuum model one
expands the Bloch states in plane-waves as

cX
nk rð Þ ¼

X
G

CX
nk Gð Þei kþGð Þ�r; (63)

where n is the moiré band index and k is a momentum vector in
the moiré Brillouin zone. Since each state with momentum k in
one layer is coupled, through the moiré potential, to another
state with momentum k + G in the other layer, the continuum
model Hamiltonian in reciprocal space has no inherent cutoff
(any state can be always coupled to another through umklapp
processes). However, the relevant low-energy spectra is domi-
nated by the coupling of the states closest to the Dirac points,
so in practice it is sufficient to consider a large enough
momentum cutoff (e.g., |k| o 4|G1|), up to which the low-
energy spectra converges. The caveat is that the lower the twist
angle, the stronger the moiré coupling becomes, and thus the
more reciprocal vectors one needs to consider for convergence.
This again leads to a high-dimension continuum model Hamil-
tonian (albeit still much smaller than those in the TB models),
further motivating yet simpler effective models for the flat
bands.242,250,270–277

The moiré potential given by eqn (55) corresponds to the
zeroth order approximation in momenta, i.e., taking k B K in
the general expression given by eqn (53). As noted, this results
in a local, momentum-independent interlayer tunneling.
Although this approximation already captures very well the
TB spectra (specially the emergence of flat bands around the
magic angle; see Fig. 12), it still cannot capture other important
features of the band structure, such as the particle–hole asym-
metry of the flat bands due to relaxation effects. To capture
such behavior one needs to take into account the contribution
of the non-local interlayer tunnelings.

The leading order, non-local term follows by expanding the
interlayer tunneling tX0X(k) around the Dirac point k = K up to

Fig. 11 Dependence of the moiré-induced interlayer tunneling on the
momentum qa = |q|a, where a C 0.142 nm is the carbon–carbon distance
in graphene. The solid, dashed and dot lines correspond to the models
described in ref. 267, 268 and 269, respectively. The vertical lines indicates
the point kDa, where kD = |K| is the distance of the monlayer’s Dirac point.
Inset shows the renormalized Fermi velocity v obtained by the Bistritzer–
MacDonald continuum model, predicting a series of magic angles where
v* vanishes. Adapted under the terms of the CC BY license from ref. 76.
Copyright (2011) National Academy of Sciences.

Fig. 12 (a) Band structures of rigid twisted bilayer graphene for different commensurate angles y. The black solid line correspond to the tight-binding
results, while the red dotted-line corresponds to the continuum model results with a local moiré potential. Adapted from ref. 218. (b) Comparison
between the band structures of rigid and relaxed twisted bilayer graphene at the magic angle y = 1.051, obtained by the tight-binding model, and the
continuum model with local and non-local (k-dependent) moiré potential. Only the later captures the relaxed particle-hole asymmetry of the tight-
binding flat bands. Adapted from ref. 244.
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first order in momenta244–246,252

tX0X kð Þ ’ tX0X Kð Þ þ t 0X0X Kð Þ k� Kð Þ; (64)

where

t 0X0X Kð Þ ¼ @t
0
X0X

@k

����
k¼K

o 0 (65)

is the non-local tunneling parameter and K = |K|. Keeping still
the three leading-order Fourier components, the momentum-
space matrix elements of the moiré potential then become

UX0X k0; kð Þ ¼
X3
j¼1

tX0X Kð Þ þ t 0X0X Kð Þ kþ ~bj
�� ��� K
� �� �

� ei
~bj � sX0 �sXð Þd

k0�k;~Gj
;

(66)

where G̃1 = 0, G̃2 = xG1, G̃3 = x(G1 + G2) and b̃1 = 0, b̃2 = xb1, b̃3 =
x(b1 + b2). Jihang Zhu et al.246 estimated the non-local tunnel-
ing energies as t 0AAgM ¼ �12 meV and t 0ABgM ¼ �20 meV;

where gM = |G1|. Fig. 12(b) show the continuum band structure,
at the magic angle y = 1.051, with and without the non-local
moiré potential; only the non-local potential effectively cap-
tures the particle-hole asymmetry obtained in the relaxed TB
models.

5 Examples of using TB model in moiré
systems

In this section, we provide two examples of using the TB model
to study the moiré systems. The first example is the theoretical
investigation of the electronic properties of graphene
quasicrystal,278 and the second example is the theoretical

explanation of the Rydberg moiré excitons in WSe2 /TBG
heterostructure.215

5.1 Dedocagonal bilayer graphene quasicrystal

When the AA stacking bilayer graphene rotates with an angle of
y = 301, a dodecagonal bilayer graphene quasicrystal is formed
(see Fig. 13(a)). Interestingly, the dodecagonal graphene quasi-
crystal has a 12-fold rotational symmetry but lacks translational
symmetry. The dodecagonal graphene quasicrystal has been
investigated by experiments, showing distinct properties from
graphene.109,110 The lack of translational symmetry prevents the
application of band theory and requires a new method in this
system. In 2019, Yu and coworkers explicitly studied the electro-
nic properties of the dedocagonal graphene quasicrystal.278 First,
by combining the TBPM and TB methods, they studied the
electronic and optical properties (Fig. 13(b) and (c)). In particu-
lar, to accurately calculate the characteristics, we adopted a large
round disk of graphene quasicrystal with ten million atoms
described by the TB Hamiltonian. Such large dimension of TB
Hamiltonian was solved by the TBPM method. As shown in
Fig. 13(b), compared to the graphene case, the graphene quasi-
crystal possessed distinct peaks in the DOS spectrum around
	2 eV, which were attributed to the interlayer interaction. In the
vicinity of the Fermi level, the DOS was almost the same as the
pristine graphene, which indicated that the optical conductivity
at low energies was also the same (see Fig. 13(c)). Importantly,
peaks emerged around 4.0 E 4.6 eV in the optical spectrum,
which were attributed to the VHS of quasicrystal states.

Second, commensurate configurations of TBG with twist
angle close to 301 were used as the approximant. In these
approximants, the top graphene layer was compressed or
stretched to satisfy the condition M � 3d = N � at, with at

Fig. 13 (a) Graphene quasicrystal. (b) DOS obtained from graphene quasicrystal and its approximants. The number of atoms in each unit cell of
approximants are in brackets. The DOS of pristine graphene is also plotted. (c) The optical conductivities of graphene quasicrystal, its approximants and
graphene. (d) Atomic structure of 4/7 approximant with four unit cells. (e) The eigenstates of 41/71 approximant at �4.2 and �2.76 eV. Red and blue
circles represent the states from the top and bottom layers, respectively. (f) Hofstadter’s butterflies of 41/71 approximant with magnetic field less than
50 T. Colorbar represents the value of DOS. The blue numbers indicate the indexes of the corresponding Landau levels. Adapted under the terms of the
CC BY license from ref. 278. Copyright (2019) the authors.
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being the lattice constant of the top graphene with strain. The
approximant was named as M/N. The structure of 4/7 approx-
imant is shown in Fig. 13(d). The accuracy of these approx-
imants were varified by comparing the DOS and optical
conductivity with those calculated directly from the quasicrys-
tal. Moreover, the quasi-periodicity still remained in the
periodic approximants. The eigenstates obtained from the
approximant perserved the 12-fold rotational symmetry
(Fig. 13(e)). The approximant was used to study the magnetic
field effect. Some new Landau levels (LLs) appeared below
Fermi level by 1.6 eV when the magnetic field exceeded 10 T.
These new LLs followed a two-dimensional Dirac fermion with
reduced Fermi velocity of 5.21 � 105 m s�1. Moreover, the LL of
n = 0 was missing, but its position was predicted to be around
�1.49 eV by interpolation. At this energy, there was a band gap
at M point, and the valleys hybridized strongest.

5.2 Rydberg moiré excitons in WSe2/TBG heterostructures

Another example is the observation of the Rydberg moiré
excitons in WSe2/TBG heterostructure.215,279 In this system,
the induced moiré potential in TBG provided a possible path-
way to spatially confine and manipulate the Rydberg excitons in
the monolayer WSe2. We named the moiré-trapped Rydberg
excitons as Rydberg moiré excitons. For TBG with angle below a

crossover angle y = 1.21, the lattice relaxation played a signifi-
cant role in both structural and electronic properties.118,280 In
the geometry, the lattice relaxation shrunk the AA region and
expanded the AB region to a triangular domain (see the inset of
Fig. 14(e)). The states from lowest energy narrow bands were
mainly localized in the AA region and states from the remote
bands were mainly in the AB region.280 Such lattice reconstruc-
tion was relevant in the generation of the Rydberg moiré
excitons in WSe2/TBG heterostructures. The lattice relaxation
effect could be well captured by a combination of molecular
dynamics, TB Hamiltonian and the TBPM methods.

In the WSe2/TBG heterostructure, when the angle in TBG
was relatively low, for instance y = 0.61, the period l of the
moiré pattern was larger than the exciton size rB (E7 nm for the
2 s states in monolayer WSe2

281). Due to the lattice relaxation,
the AA region had a radius of E2.6 nm (estimated from the half
maximum of the spatially accumulated charge peak), much
smaller than rB. Moreover, the accumulated charges in the AA
region of the TBG were strong enough to trap the opposite
charge of the 2 s exciton. Then, the system was in a strong
coupling regime with l/rB 4 E2.4. In this regime, the Rydberg
moiré excitons XRM showed some significant features in the
reflectance spectra (see Fig. 14(a)): (1) multiple energy splittings
near 1.783 eV, (2) pronounced red shift, (3) narrowed linewidth,

Fig. 14 (a) Reflectance contrast spectrum of WSe2/TBG heterostructure with the angle y = 0.61 in TBG. XRM is the spatial confinement of Rydberg moiré
excitons. (b) Photoluminescence spectrum of the same sample measured at the same location. (c) Energy shift of the lowest-energy branch extracted
from (a) as a function of n/ns. n is the carrier density and ns is the full filling density of the first narrow band. (d) The TB calculation of local carrier density
difference between the states in the AA and AB/BA regions as a function of n/ns. Inset was a schematic exemplification of the XRM with the lowest energy
confinement on the electron-doped side. (e) TB calculation of the spatial charge distribution of TBG with y = 0.61 at different doping densities. The lowest
map was a schematic of relaxed TBG with AA, AB and BA stackings. From ref. 215. Reprinted with permission from AAAS.
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indicating a significant enhancement of the interlayer Rydberg
exciton-accumulated charge interactions. Such features were
confirmed by photoluminescence measurements in Fig. 14(b).
The energy shift magnitude |Eshift| from the charge neutrality
point (CNP) was extracted, which showed a nonmonotonic
dependence on the density. Then, the real-space charge distru-
bution in TBG was calculated by a combination of the TB
Hamiltonian in eqn (3) with TBPM methods, and molecular
dynamics for lattice relaxation.215 As shown in Fig. 14(e), in the
CNP, the local charge density located mainly in the AA region,
which created deep and narrow potential wells for trapping
charges of the exciton. The |Eshift| E (eUAA � eUAB/BA) p (nAA

� nAB/BA) estimated from the difference in attraction in the AA
region and repulsion in the AB/BA region, is plotted in Fig. 14(d).
The nonmonotonic trend was similar to the observed result.

6 Summary and perspectives

We have carefully reviewed the single-particle, atomistic TB
Hamiltonian for twisted graphene layers. Intralayer and inter-
layer hoppings in graphene-based moiré materials can be
described by the Slater–Koster relation. The single-particle TB
Hamiltonian can be combined with Hartree–Fock interactions
and a Hubbard-U term within a mean-field approximation. A
rescaling strategy can reduce the computational cost of self-
consistent mean-field calculations. The SK relation including
the pz orbital remains valid when constructing TB Hamilto-
nians for hBN-based moiré materials, though the hopping
parameters fitted from DFT differ from those of graphene-
based systems. For TMD-based moiré materials, an ab initial
intralayer TB Hamiltonian is needed, while SK relations can be
employed to generate an interlayer Hamiltonian. Beyond tradi-
tional diagonalization methods, robust linear-scaling
approaches can be combined with real-space atomistic TB
Hamiltonians to compute diverse properties of moiré materi-
als. Machine-learning methods are accelerating the construc-
tion of ab initial-quality TB Hamiltonians for moiré systems.
We also summarized how low-energy continuum models can be
derived from atomistic TB models. Other low-energy effective
lattice models are crucial for understanding electron–electron
interaction phenomena in moiré superlattices, but lie beyond
the scope of this work.247,248,282–285

As for future prospects of atomistic TB methods for simulat-
ing moiré materials, an essential direction is the accurate
parameterization of TB Hamiltonians for systems not only with
hexagonal lattices (the main focus here) but also with rectan-
gular, kagome, and more general lattices,286 and searching for
moiré flat bands in other 2D superlattices. As more experi-
mental results of correlated phases and topology are reported,
the TB method is still an accurate enough and powerful tool to
understand the origin of the flat band-related correlated phe-
nomena, and needs to be further explored. Building open
databases for training deep-learning Hamiltonian models287

will further facilitate data-driven construction and discovery of
new interesting moiré superlattices. From the perspective of

practice, for simulations of large-scale moiré systems, linear-
scaling random-state methods require additional development
to ensure compatibility with TB Hamiltonians in non-
orthogonal basis.
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S. Y. Kruchinin, K. Watanabe, T. Taniguchi and I. Bilgin,
et al., Nat. Nanotechnol., 2023, 18, 572–579.

61 M. Van Winkle, I. M. Craig, S. Carr, M. Dandu,
K. C. Bustillo, J. Ciston, C. Ophus, T. Taniguchi,
K. Watanabe and A. Raja, et al., Nat. Commun., 2023,
14, 2989.

62 Z. Fu, X. Zhou and L. He, J. Phys.: Condens. Matter, 2024,
37, 073001.

63 G. Sfuncia, G. Nicotra, F. Giannazzo, B. Pécz,
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108 S. M. João, M. Anelković, L. Covaci, T. G. Rappoport, J. M. Lopes
and A. Ferreira, R. Soc. Open Sci., 2020, 7, 191809.

109 W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, K. Bao,
C. K. Chan, C. Chen, J. Avila and M. C. Asensio, et al., Proc.
Natl. Acad. Sci. U. S. A., 2018, 115, 6928–6933.

110 S. J. Ahn, P. Moon, T.-H. Kim, H.-W. Kim, H.-C. Shin,
E. H. Kim, H. W. Cha, S.-J. Kahng, P. Kim, M. Koshino, Y.-
W. Son, C.-W. Yang and J. R. Ahn, Science, 2018, 361,
782–786.

111 Y. Li, Z. Zhan and S. Yuan, Phys. Rev. B, 2024, 109, 085118.
112 J. Lopes dos Santos, N. Peres and A. Castro Neto, Phys. Rev.

Lett., 2007, 99, 256802.
113 F. Escudero, A. Sinner, Z. Zhan, P. A. Pantaleón and

F. Guinea, Phys. Rev. Res., 2024, 6, 023203.
114 M. Van Wijk, A. Schuring, M. Katsnelson and A. Fasolino,

2D Mater., 2015, 2, 034010.
115 H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux,

S. H. Sung, R. Hovden, A. W. Tsen and T. Taniguchi, et al.,
Nat. Mater., 2019, 18, 448–453.

116 G. Trambly de Laissardière, D. Mayou and L. Magaud,
Nano Lett., 2010, 10, 804–808.

117 G. Trambly de Laissardière, D. Mayou and L. Magaud, Phys.
Rev. B: Condens. Matter Mater. Phys., 2012, 86, 125413.

118 F. Gargiulo and O. V. Yazyev, 2D Mater., 2017, 5, 015019.
119 F. Guinea and N. R. Walet, Phys. Rev. B, 2019, 99, 205134.
120 K. Zakharchenko, M. Katsnelson and A. Fasolino, Phys.

Rev. Lett., 2009, 102, 046808.
121 M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Nat.

Phys., 2006, 2, 620–625.
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Kruczyński and S. Adam, Phys. Rev. B, 2017, 96, 085442.

264 T. Cea, P. A. Pantaleón and F. Guinea, Phys. Rev. B, 2020,
102, 155136.

265 D. Waters, R. Su, E. Thompson, A. Okounkova, E. Arreguin-
Martinez, M. He, K. Hinds, K. Watanabe, T. Taniguchi and
X. Xu, et al., Nat. Commun., 2024, 15, 10552.

266 R. Su, D. Waters, B. Zhou, K. Watanabe, T. Taniguchi,
Y.-H. Zhang, M. Yankowitz and J. Folk, Nature, 2025, 637,
1084–1089.

267 V. M. Pereira, A. Castro Neto and N. Peres, Phys. Rev. B:
Condens. Matter Mater. Phys., 2009, 80, 045401.

268 M. Tang, C. Wang, C. Chan and K. Ho, Phys. Rev. B:
Condens. Matter Mater. Phys., 1996, 53, 979.

269 R. Bistritzer and A. H. MacDonald, Phys. Rev. B: Condens.
Matter Mater. Phys., 2010, 81, 245412.

270 P. San-Jose and E. Prada, Phys. Rev. B: Condens. Matter
Mater. Phys., 2013, 88, 121408.

271 D. K. Efimkin and A. H. MacDonald, Phys. Rev. B, 2018,
98, 035404.

272 C. De Beule, F. Dominguez and P. Recher, Phys. Rev. B,
2021, 104, 195410.

273 Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett., 2022,
129, 047601.

274 Y.-Z. Chou and S. Das Sarma, Phys. Rev. Lett., 2023, 131, 026501.

275 H. Hu, B. A. Bernevig and A. M. Tsvelik, Phys. Rev. Lett.,
2023, 131, 026502.

276 D. Bennett, D. T. Larson, L. Sharma, S. Carr and E. Kaxiras,
Phys. Rev. B, 2024, 109, 155422.

277 L. L. Lau and P. Coleman, Phys. Rev. X, 2025, 15, 021028.
278 G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson and S. Yuan, npj

Comput. Mater., 2019, 5, 122.
279 M. He, J. Cai, H. Zheng, E. Seewald, T. Taniguchi,

K. Watanabe, J. Yan, M. Yankowitz, A. Pasupathy and
W. Yao, et al., Nat. Mater., 2024, 23, 224–229.

280 V. H. Nguyen, D. Paszko, M. Lamparski, B. Van Troeye,
V. Meunier and J.-C. Charlier, 2D Mater., 2021, 8, 035046.

281 A. V. Stier, N. P. Wilson, K. A. Velizhanin, J. Kono, X. Xu
and S. A. Crooker, Phys. Rev. Lett., 2018, 120, 057405.

282 H. C. Po, L. Zou, A. Vishwanath and T. Senthil, Phys. Rev. X,
2018, 8, 031089.

283 N. F. Q. Yuan and L. Fu, Phys. Rev. B, 2018, 98, 045103.
284 J. F. Dodaro, S. A. Kivelson, Y. Schattner, X.-Q. Sun and

C. Wang, Phys. Rev. B, 2018, 98, 075154.
285 F. Wu, T. Lovorn, E. Tutuc and A. H. MacDonald, Phys. Rev.

Lett., 2018, 121, 026402.
286 J. Yu, S. Qian and C.-C. Liu, Phys. Rev. B, 2025, 111, 075434.
287 T. Bao, R. Xu, H. Li, X. Gong, Z. Tang, J. Fu, W. Duan and

Y. Xu, arXiv, 2024, preprint, arXiv:2404.06449, DOI:
10.48550/arXiv.2404.06449.

Review PCCP

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

25
. D

ow
nl

oa
de

d 
on

 0
2/

02
/2

02
6 

10
.2

1.
01

. 
View Article Online

https://doi.org/10.1039/d5cp03472h



