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Molecular field analysis for data-driven molecular
design in asymmetric catalysis

Shigeru Yamaguchi

This review highlights the recent advances (2019–present) in the use of MFA (molecular field analysis) for

data-driven catalyst design, enabling to improve selectivities/reaction outcomes in asymmetric catalysis.

Successful examples of MFA-based molecular design and how to design molecules by MFA are described,

including how to generate and evaluate MFA-based regression models, and future challenges in MFA-

based molecular design in molecular catalysis.

1. Introduction

The use of molecular catalysis, such as asymmetric catalysis,
metathesis, cross-coupling, and organocatalysis, is essential
for modern organic synthesis. Currently, the development and
optimization of catalytic reactions highly rely on the time and
labor-intensive trial-and-error approach. Machine learning-
based data-driven approaches have attracted tremendous inter-
est recently due to their potential to change the conventional
reaction development processes.1 Although classification2 and
clustering3 techniques have been applied to analyze molecular
catalysis/reactivities of transition metal complexes, regression
analysis between reaction outcomes (e.g., enantioselectivity)
and molecular descriptors is one of the central foci in data-

driven approaches for the design and optimization of mole-
cular catalysis. Among the regression-based data-driven
approaches, this review focuses on MFA (molecular field ana-
lysis). MFA in asymmetric catalysis is regression analysis
between enantioselectivity and molecular fields calculated by
3D (3-dimensional)-molecular structures placed in a grid space
(Fig. 1).1 The fascinating characteristic of MFA is that we can
visualize important structural information about enantio-
selectivity. The structural information seems to be useful for
molecular design in asymmetric catalysis. However, there were
no examples of the design of molecules showing improved
enantioselectivity based on the visualized information until
our report in 2019.4 Although excellent reviews about data
science in molecular catalysis including MFA in asymmetric
catalysis have been reported,1 MFA-based molecular design to
improve enantioselectivities has not been summarized to date.
Therefore, the purpose of this review article is to highlight the
recent advances (2019–present) in the use of MFA (molecular
field analysis) in asymmetric catalysis for data-driven catalyst
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design to improve selectivities, in particular, molecular design
based on the visualized structural information. Before introdu-
cing the successful examples of MFA-based data-driven mole-
cular design, we present a brief background of regression ana-
lysis in organic chemistry as well as in molecular catalysis.

2. Overview of regression analysis in
molecular catalysis
2.1. A brief background of regression analysis in organic
chemistry

In the 1930s, Hammett reported that there are correlations
between reaction rates in the hydrolysis of a series of substi-
tuted benzoates and equilibrium constants of the corres-
ponding benzoic acids,5 which is one of the most important
works in regression-based data science in organic chemistry.
The Hammett σ calculated from acid dissociation constants of
a series of meta- and para-substituted benzoic acids is a useful
electronic descriptor, which is still being frequently used for
mechanistic study in organic reactions including molecular
catalysis. These relationships are called (linear) free energy
relationships since logarithms of reaction rate constants and
acid dissociation constants correspond to the activation free
energies of the reactions and free energy differences before
and after acid dissociations, respectively. The extension of the
Hammett rule has been actively investigated in physical
organic chemistry,6 and the development of useful descriptors
including steric descriptors such as Taft Es has been reported
in this context.7

In the 1960s, Hansch and Fujita et al. applied the extended
Hammett rule to predict biological activities of molecules,8

which led to the construction of the QSAR (quantitative struc-
ture–activity relationships) field6,9 and the Hansch–Fujita
method is called classical QSAR. QSAR employs biological
activities as the target variables. In this review, the target vari-
ables are product selectivity. Such regression analysis can be
called QSSR (quantitative structure–selectivity relationship) or
QSPR (quantitative structure–property relationship) modelling.
According to the perspective paper ‘Understanding the roles of
the “two QSARs”’10 published by Fujita and Winkler, QSAR/
QSPR models can be roughly divided into two types:

Type I: Models for mechanistic interpretations by analysis
of small sets of chemically similar molecules.

Type II: Models for predicted purposes relying on machine
learning techniques using large and chemically diverse
datasets.

The free energy relationships represented by the Hammett
rule are classified as Type I because the main purpose of free
energy relationships/the Hammett rule is an interpretation of
reaction mechanisms through the data analysis of chemically
similar datasets. This review article focuses on regression ana-
lysis in asymmetric catalysis. The target variables in asym-
metric catalysis are logarithms of enantiomeric ratios, which
correspond to free energy differences (ΔΔG‡) between the path-
ways that lead to major and minor enantiomers (Curtin–

Hammett principle11). Thus, linear regression analysis in
asymmetric catalysis can be regarded as free energy relation-
ships. Free energy relationships in asymmetric catalysis have
been investigated by the Sigman group.1 In 2008, Sigman and
co-workers reported free-energy relationships/univariate
regression analysis in asymmetric Nozaki–Hiyama–Kishi reac-
tions using a classical steric descriptor, Taft–Charton
parameters.12,13 Since then, the Sigman group has examined
various descriptors, in particular descriptors that can be calcu-
lated on computers, such as Sterimol parameters,14 computed
IR frequencies,15 and so on. They performed mechanistic
interpretation and molecular design in molecular catalysis
including asymmetric catalysis based on their modern physical
organic chemistry framework.1

In contrast to the above Type I QSPR that mainly aims for
mechanistic interpretation, the purpose of Type II QSPR is pre-
diction. Although Type II usually employs large and chemically
diverse datasets according to the aforementioned perspective
paper,10 we call the regression models that aim to quantitat-
ively predict reaction outcomes as Type II in this article. For
example, the Doyle group constructed the regression model to
predict reaction yields in Buchwald–Hartwig reactions using
Random Forests.16 While the authors collected test and train-
ing samples by a systematic combinatorial screening of similar
catalysts, substrates, and reagents (i.e., analysis of a chemically
similar dataset), the main purpose of their regression analysis
was the quantitative prediction of reaction yields. Thus, we
classify the above example as Type II QSPR. Denmark and co-
workers reported another representative example of Type II
QSPR/QSSR. They demonstrated the prediction of higher
selectivity catalysts using molecular fields as descriptors and
non-linear regression techniques such as support vector
machines and neural networks.17 While they also employed
the framework of MFA (i.e., the main topic of this review),
their purpose is prediction and thus, the analysis is classified
as Type II QSSR in this article. The Glorius group reported
Type II QSPR/QSSR modeling using Denmark’s and Doyle’s
datasets along with molecular fingerprint descriptors (bit
strings that represent molecular structures).18 The aforemen-
tioned perspective paper by Fujita and Winkler described “One
of the major drivers for the emergence of two main “camps” of
QSAR researchers has been the increasingly arcane nature of
the descriptors used in QSAR models generated by nonclassi-
cal (e.g., machine learning-based) methods that have become
popular”.10 Thus, it should be noted that descriptors are
important for judging the types of models. In our opinion,
however, the types of QSAR/QSPR models can be classified by
purpose as described above (Type I: models for mechanistic
interpretation, Type II: models for prediction), although
further discussions regarding this classification will be
required. As the Denmark and Doyle groups employed non-
classical machine learning-based methods such as neural net-
works and their purposes are prediction, we classify their
models as Type II, although they employed highly interpret-
able and physically meaningful descriptors. This review
mainly focuses on the MFA classified as Type I that provides
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mechanistic insights leading to molecular design with
improved enantioselectivity in asymmetric catalysis.

2.2. Molecular field analysis in asymmetric catalysis

The main topic of this review, i.e., MFA (molecular field ana-
lysis), has been originally developed in the QSAR field in 1988,
which has been called CoMFA (comparative molecular field
analysis).19 Various 3D-QSAR methods related to CoMFA have
been developed such as CoMSIA,20 4D-QSAR,21 GRIND,22 and
so forth. Therefore, in order to avoid confusion, we employ the
term MFA to call the CoMFA-related 3D-QSAR/QSPR methods.
MFA was introduced into the field of asymmetric catalysis in
2003 by the Lipkowitz23 and Kozlowski24 groups. The result of
MFA reported by the Lipkowitz group is shown in Fig. 2 and
the procedure by which the authors performed MFA is as
follows:23 a set of molecular structures is optimized using a
molecular mechanics method. The set of the obtained coordi-
nates is aligned based on the common catalyst skeleton, and
the structures are placed into a grid space as shown in Fig. 1.
Probe atoms that have the van der Waals properties of sp3

carbon and a charge of +1.0 are placed at each intersection of
the grid space (grid spacing 1–2 Å). The Lennard-Jones (LJ)
and coulombic potentials between the molecules and the
probe atoms at each intersection are calculated to obtain the
molecular interaction fields. The molecular fields are then cor-
related with the logarithms of product enantiomeric ratios
(ΔΔG‡ = −RT log(enantiomeric ratio)). In MFA, the number of

descriptors usually exceeds the number of samples. In such a
case, the ordinary least squares method cannot be used to
generate regression models, and thus, MFA typically employs
PLS (partial least squares) regression. PLS regression analysis
allows for the use of a large number of descriptors25 as PLS
employs a set of linear combinations of variables, reducing the
dimension of descriptors. MFAs in asymmetric catalysis sum-
marized in this section also employ PLS regression unless
otherwise noted.

Since the Lipkowitz and Kozlowski reports, MFA was used
for the analysis of asymmetric catalysis.26 In 2004, the Hirst
group reported MFA in phase transfer asymmetric catalysis
(Scheme 1a), in which the authors calculated descriptors from
substituents R1 and R2 without considering catalyst structures
(topomer CoMFA27).28 Denmark et al. also reported MFA in
similar reactions29 (Scheme 1b), in which they employed an
indicator field (vide infra) instead of the typical molecular field
described above. Lei et al. reported MFA in Ru-catalyzed asym-
metric hydrogenation of acetophenones30 (Scheme 1c).

The examples shown above employed LJ and coulombic
potentials between probe atoms and molecules as molecular
fields.

The Kozlowski group reported MFA that employed the
quantum-mechanics (QM)-based interaction energy between
probe atoms and molecules (QM-QSAR31).24,32,33 The target
reaction was enantioselective addition of diethyl zinc reagents
to aldehydes using chiral amino alcohols. The authors used
transition-state structures that lead to major enantiomers
(Scheme 2a(I)) for the calculation of molecular fields.24 The

Fig. 2 (a) The reaction that the Lipkowitz group analyzed (23 samples
[training set: 19 samples, test set: 4 samples], data range: 10% ee–99%
ee, R2 > 0.99, q2 = 0.81, R2

pred = 0.94 [R2, q2 and R2
pred are coefficients

of determination for training sets, leave-one-out cross-validations, and
test sets, respectively]) and (b) CoMFA steric STDEV*COEFF contour
plot. Substituents around blue and yellow region increase/decrease
enantioselectivity. Adapted with permission from J. Org. Chem., 2003,
68, 4648. Copyright 2003 American Chemical Society.

Scheme 1 (a) Asymmetric phase transfer catalysts analyzed by Hirst
et al. (ref. 28) (88 samples [training set: 70 samples, test set: 18 samples],
data range: 16% ee–93% ee, R2 = 0.82, q2 = 0.72, R2

pred = 0.69). (b)
Asymmetric phase transfer catalysts analyzed by Denmark et al. (ref. 29)
(data range: −28% ee–62% ee, R2 = 0.94, q2 = 0.79 (0.76*)) *leave 20%
cross validation over 100 runs. (c) Ru-Catalyzed ketone hydrogenation
reactions analysed by Lei et al. (ref. 30) (25 samples [training set: 20
samples, test set: 5 samples], data range: −99% ee–99% ee, R2 > 0.99, q2

= 0.80, R2
pred = 0.97). Schemes 1–4 were adapted and modified with

permission from CICSJ Bull., 2017, 35, 133. Copyright 2017 the Chemical
Society of Japan.
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authors performed linear regression with two descriptors
selected from the molecular fields by a simulated annealing
method. They also employed catalyst structures32 (Scheme 2a
(II)) and substrate structures33 for calculations of the mole-
cular fields. The authors performed QM-based MFA in asym-
metric lithiation–substitution of N-Boc–pyrrolidine as well.34

MFA requires alignment based on, for example, a common
catalyst skeleton for the calculations of molecular fields. An
alignment independent 3D-QSAR method, GRIND (GRid
Independent Descriptor),22 has been applied to MFA in asym-
metric catalysis by the Morao group35 using Kozlowski’s and
Lipkowitz’s datasets (Fig. 2 and Scheme 1a). Bo et al. reported
combinations of a QM-based method and GRIND for the cal-
culations of molecular fields in asymmetric catalysis.36 Carbó
et al. applied the GRIND-based MFA to the analysis of Rh-cata-
lyzed asymmetric hydroformylation of styrenes37 (Scheme 3).

The MFA described above employed one of the conformers
(e.g., the most stable conformers) for the calculations of mole-
cular fields. MFAs using molecular fields calculated from the
structures obtained from a trajectory of MD simulations
(4D-QSAR21) and Boltzmann-weighted conformers (3.5D-QSAR)
have been reported by the Hirst group.38 The target was asym-
metric phase transfer catalysis shown in Scheme 4.

2.3. Trials for the molecular design based on MFA

As described in the introduction and as shown in Fig. 2, MFA
enables the extraction and visualization of important struc-
tural information for enantioselectivity, which can provide
insights into asymmetric induction mechanisms. Thus, MFA
can be classified as Type I QSPR/QSSR (models for mechanistic
interpretation). The visualized information seems to be useful
for molecular design. Among the MFAs described above, in
this section, we pick up examples of molecular design. In
2006, Kozlowski et al. reported a seminal report on the design
of chiral catalysts using MFA in asymmetric carbonyl addition
reactions of a diethyl zinc reagent (Fig. 3a).32 In 2016, Lei et al.
reported the design of a chiral ligand in Ru-catalyzed asym-
metric hydrogenation of acetophenone (Fig. 3b).30 In 2017, we
reported the design of a chiral diene ligand in Rh-catalyzed
asymmetric carbonyl addition reactions of Ar–boronic acids
(Fig. 3c)39 during the research on introducing LASSO40/Elastic
Net41 into MFA in asymmetric catalysis. Despite the efforts,
there were no examples of the successful design of molecules
showing improved selectivities. This is not surprising because
the prediction of higher performance catalysts typically corres-
ponds to extrapolation. Although the data-driven approach can
accurately predict reaction outcomes in the reactions using
similar molecules to those included in training samples, it is
difficult to predict the properties/catalytic activities of mole-
cules outside the range of training samples.

3. Successful examples of MFA-
based data-driven molecular design

There were no successful examples of molecular design to
improve enantioselectivity based on the structural information
visualized by MFA despite researchers’ trials as described in
the last section. During our research, however, we noticed that
almost all the previous MFA employed molecular structures
without complexation to substrates4,26 except for the MFA
reported by the Kozlowski group24 (Scheme 2a(I)). Asymmetric
reactions proceed stereoselectively via catalyst–substrate com-

Scheme 2 (a) Asymmetric alkylation of aldehyde using β-amino alco-
hols analyzed by Kozlowski et al. (I) Analysis using molecular fields cal-
culated from transition state structures (ref. 24) (18 samples [training set:
14 samples, test set: 4 samples], data range: 0% ee–98% ee, R2 = 0.90,
R2

pred = 0.92). (II) Analysis using molecular fields calculated from catalyst
structures (ref. 32) (31 samples [training set: 18 samples, test set: 13
samples], q2 = 0.85 [leave-two-out cross validation], R2

pred = 0.87). (b)
The asymmetric lithiation–substitution of N-Boc–pyrrolidine analyzed
by Kozlowski et al. (ref. 34) (16 samples, data range: 0% ee–97% ee, R2 =
0.82, q2 = 0.67).

Scheme 3 Rh-Catalyzed asymmetric hydroformylation of styrenes ana-
lyzed by Carbó et al. (ref. 37) (21 samples, data range: 2% ee–94% ee, R2

= 0.99, q2 = 0.74). Quantum mechanical method is used for calculations
of molecular fields.

Scheme 4 Asymmetric phase transfer catalysts analyzed by Hirst et al.
(ref. 38) (40 samples, data range: 30% ee–91% ee, CoMFA R2 = 0.94, q2

= 0.78, 3.5D-QSAR R2 = 0.95, q2 = 0.82, 4D-QSAR R2 = 0.86, q2 = 0.76).
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plexes. We envisioned that the use of intermediate structures
or transition-state structures in enantio-determining steps
composed of catalysts and substrates for the calculations of
molecular fields would enable the extraction and visualization
of more detailed information on asymmetric induction mecha-
nisms, and the information would lead to a molecular design
with improved enantioselectivity.

3.1. Molecular field analysis using intermediate structures4

BINAP is one of the most representative chiral ligands for
asymmetric catalysis. We selected a target asymmetric reaction
that includes BINAP–metal complex catalysts to examine the
presented concept. The reaction that we analyzed is shown in
Fig. 4a; it proceeds as follows: the BINAP–Pd catalysts react
with substrates (β-ketoesters) to form Pd-enolate complexes
(Fig. 4b(I)), followed by an enantioselective nucleophilic attack
on an electrophile (NFSI: N-fluorobenzenesulfonimide)
affording products.42 The Pd-enolate complexes are the inter-
mediates in the enantio-determining step and therefore, we
employed the structures for the calculation of molecular fields.

As molecular fields, we used steric indicator fields, which
are composed of indicator variables (0,1 values) and calculated
as follows (Fig. 4b): (I) a set of Pd-enolate structures was opti-
mized using the DFT method. (II) The coordinates of the set of
molecules obtained in step I were aligned based on the
common reactive site of the intermediates, which is shown in
red in Fig. 4b(I). Atoms except for the β-ketoester and equator-
ial Ar groups on the ligands were removed. (III) The structures
were placed in a grid space. The unit cell size is 1 Å per side.
The enolate α-carbon was set as the origin, and the xy plane
was defined based on the enolate mean plane. The size of the

grid space, which is centered at the origin, is 6 × 8 × 8 Å3. Each
unit cell is regarded as an element of the descriptor vectors.
The unit cells that included the van der Waals radii of any
atoms were counted as 1, or were otherwise counted as 0.
Columns in the descriptor matrix that exhibited small devi-
ations were removed. The calculations of the molecular fields
are further discussed in section 4.2 “How to calculate descrip-
tors”. MFA described in sections 3.2 and 3.3 also employed the
steric indicator fields. MFA in this section employed LASSO or
Elastic Net regression39–41 instead of PLS regression, which is
typically employed in MFA.

The indicator fields and enantioselectivity values were cor-
related to generate regression models. The structural infor-
mation extracted by regression analysis is shown in Fig. 4c
along with an intermediate structure. The definition of impor-
tant structural information shown in sections 3 and 4 is sum-
marized below.

Blue/red points correspond to molecular fields (i.e., unit
cells shown in Fig. 4b(III)) with positive/negative regression
coefficients, respectively. If molecular structures are on the
blue/red points, enantioselectivity increases/decreases. Blue
(red)/light blue (light red) points indicate that molecular struc-
tures overlap/do not overlap with the points.

Fig. 3 Molecular design based on MFA before 2019.

Fig. 4 The MFA using intermediate structures. (a) Dataset. (b) The cal-
culations of the indicator fields. (c) The intermediate structure with visu-
alized structural information. (d) The mechanistic insight obtained by the
MFA. Adapted with permission from Bull. Chem. Soc. Jpn., 2019, 92,
1701. Copyright 2019 The Chemical Society of Japan.
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We can obtain insights into asymmetric induction mecha-
nisms based on the visualized information as the MFA is Type
I QSPR. In this case, the blue points mainly exist on the Si-face
and were observed around the aryl group on the ligands and
the ester substituents on the substrates (Fig. 4c). This means
the substituents formed a pocket around the reaction centre,
hindering the reaction from the Si-face (Fig. 4d). On the other
hand, the aryl group of the ligands and the ester-substituents
on the Re-face were on the same side, indicating that the
nucleophilic attack of the Pd-enolate on the fluorinating
reagent (i.e., NFSI) proceeds smoothly from the Re-face.

Further comparison between visualized structural infor-
mation and intermediate structures showed us that light blue
points visualized on some intermediate structures would lead to
the design of molecules as shown in Fig. 5a(I) and b(I) (yellow
arrows). We designed a ligand and a substrate by introducing
substituents to overlap with the light blue points. Both inter-
mediates composed of a designed ligand (6Pd) and substrate
(Bzh) overlap with the blue points as shown in Fig. 5a(II) and
b(II) (green arrows), and both the intermediate structures make
the pocket on the Si-face narrow. The calculated ΔΔG‡ values in
the reactions using the designed molecules showed excellent
values (Fig. 5c). The reaction using the designed substrate exhibi-
ted significantly improved enantioselectivity in comparison with
those in the training samples (94% ee vs. up to 81% ee, Fig. 5c).

3.2. Molecular field analysis using computational screening
data43

MFA using the intermediate structures enables the visualiza-
tion of highly interpretable structural information that leads to
the design of molecules with improved selectivity. This meth-
odology is useful when high-quality experimental data are
available. Such high-quality data are, however, not always avail-
able. In some cases, experimental data include non-negligible
noise derived from various factors, such as side reactions and
experimental errors. In such cases, it should be useful to
employ enantioselectivity data obtained by transition-state (TS)
calculations based on DFT methods. While there is an
example of the use of computational screening in asymmetric
catalysis obtained by TS calculations for regression analysis,
the number of training samples are more than 600.44 As the
cost of TS calculations is high, it may be desirable to develop
the data-driven catalyst design method based on a small
number of computational screening data. A combination of
MFA and transition-state calculations will fulfill this demand.
Thus, we performed MFA using computational screening data.
We selected N-heterocyclic carbene (NHC)–Cu-catalyzed asym-
metric carbonyl additions of a silylboronate to aldehydes as a
target reaction (Fig. 6).45

To collect samples, TS calculations were performed using a
combination of three NHC ligands (1Cu–3Cu) and six sub-
strates (S1–S6). The range of the experimental ee (enantiomeric
excess) was 18–73% ee. The MFA was performed using the cal-
culated ΔΔG‡ values and corresponding transition-state struc-
tures. The extracted and visualized structural information pro-
vided an insight into the asymmetric induction mechanism
(see section 4.3, Fig. 14). Based on the obtained insight, chiral
ligands 4Cu and 5Cu were designed by introducing substitu-
ents into the template molecules to overlap the light blue
point designated by yellow and green arrows shown in Fig. 7a
and b, which exhibit improved calculated ΔΔG‡ values in com-
parison with the design template. The experimental enantio-
selectivity values in the reactions using the designed NHC

Fig. 5 Molecular design of (a) chiral ligand 6Pd and (b) substrate Bzh
based on the MFA using intermediate structures and (c) the reaction
using the substrate.

Fig. 6 Dataset for the MFA using computational screening data.
Reprinted with permission from Bull. Chem. Soc. Jpn., 2022, 95, 271.
Copyright, The Chemical Society of Japan.
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ligands were higher in comparison with those in the training
samples (87% ee vs. up to 73% ee). The MFA using compu-
tational screening data including the designed NHC ligands
(30 training samples calculated from the combination of five
ligands and six substrates) was performed and based on the
visualized information, NHC ligands were designed again,
which showed improved experimental enantioselectivity (96%
ee vs. up to 89% ee) as shown in Fig. 7c and d. While 6Cu was
an already examined optimum ligand in the related catalytic
systems, and 7Cu is the ligand that would not be examined
without the information obtained by the MFA using compu-
tational screening data.

Both the MFAs using computational and experimental
screening data described in the previous section have particu-
lar strengths and these are usually complementary. The
characteristics of the MFA using computational screening data
are listed below.43

• We can collect training samples without experiments.
• High calculation cost (transition-state calculations)
• The calculated ΔΔG‡ values include less information in

comparison with the experimental ΔΔG‡ values.
• Reaction mechanism must be to some extent known.
On the other hand, the MFA using experimental screening

data and intermediate structures4 described in section 3.1 has
the following characteristics:

• High-quality experimental data are required.
• Reasonable calculation cost (ground-state calculations)
• The experimental ΔΔG‡ values provide a lot of infor-

mation including solvent effects etc.
• This method is applicable even when reaction partner

structures are unclear (we did not calculate descriptors from
the reaction partner, i.e., NFSI as shown in section 3.1).

In summary, as experimental data includes a lot of infor-
mation that is difficult to reproduce by DFT calculations such

as solvent effects, the MFA using intermediate structures and
experimental data can extract more information in comparison
with the MFA using computational screening data. In some
cases, however, it is not easy to collect high-quality data due
to, for example, the use of expensive and synthetically difficult
catalysts. In such cases, the MFA using computational screen-
ing data are useful.

3.3. Molecular field analysis for stereodivergent asymmetric
synthesis46

As we have emphasized in this review, MFA is Type I QSPR and
can be regarded as an analytical method. Analytical methods
enabling investigation of the details of molecular structures/
properties (e.g., NMR and single-crystal X-ray diffraction ana-
lysis) accelerate molecular science research including organic
synthesis. To check the potential of the MFA framework, we
have tried data-driven catalyst design for stereodivergent asym-
metric synthesis. For the development of catalytic asymmetric
reactions that afford products bearing continuous stereocen-
tres, at least four reaction outcomes (enantio- and diastereo-
selectivity in each diastereomer) should be controlled through
catalyst structure optimization. Catalyst design to access all
possible stereoisomers in such reactions (i.e., catalytic stereo-
divergent asymmetric synthesis) remains a formidable chal-
lenge in organic synthesis.47 Our group has revealed that the
MFA-based data-driven catalyst design can control such com-
plicated reactions.46

A specific target is an asymmetric two-component iridium/
boron dual catalyst system for α-C-allylation of carboxylic
acids48 (Fig. 8). The target reaction proceeds as follows: Ir-cata-
lyst activates the substrate to afford the Ir–π-allyl intermediate
and the chiral Boron species activates the remaining carboxy-
late moiety to generate chiral B-enolate species. The chiral
B-enolate species attacks the chiral Ir–π-allyl complex to stereo-

Fig. 7 Molecular design based on the MFA using computational screening data and the experimental results. The results of MFA using (a), (b) 18
samples and (c), and (d) 30 samples. As molecular fields, the indicator fields are calculated by a similar procedure shown in Fig. 4. The sizes of the
grid spaces (unit cell size: 1 Å per side) were 6 × 6 × 6 Å3 for the 1st MFA (18 training samples) and 6 × 8 × 8 Å3 for the 2nd MFA (30 training
samples).
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divergently afford products (Fig. 8). Inversion of the absolute
configuration of the chiral ligands on the B-catalyst shown in
Fig. 9a changes the relative configuration of the products.
Although the initial attempt of the reaction afforded products
with excellent enantioselectivity, both the reactions using the S
and R boron catalysts showed low diastereo- and regio-
selectivity (linear/branch selectivity; the structure of the linear
product is shown in Fig. 9a). Thus, the purpose of the analysis
is the improvement of regio- and stereoselectivities to selec-
tively synthesize (2R,3R)- and (2S,3R)-products when using the
S and R boron catalysts, respectively. Importantly, the Ir–π-allyl
complexes are the well-established49 common intermediates in
the diastereo- and regioselectivity determining step. Thus,

molecular fields calculated from a set of Ir–π-allyl intermediate
structures allow us to analyse four sets of reaction outcomes.
While the boron enolate structures were not used for the calcu-
lation of the descriptors/molecular fields, the information
about the boron catalysis is included in the experimental data.
Thus, analysis using experimental ΔΔG‡ values and the mole-
cular fields calculated from Ir–π-allyl complexes extracts and
visualizes the information about how the Ir–π-allyl complex
and the B-enolate interact with each other when the reaction
proceeds. Important structural information about the four
selectivity outcomes visualized on the identical intermediate
structures enables facile comparison of their selectivity deter-
mining factors, thereby allowing to control the multiple reac-
tion outcomes.

The overall design process is summarized in Fig. 9b. Using
the training data (two sets of 24 reactions) collected by screen-
ing a combination of 12 phosphoramidite ligands and two
substrates (Fig. 9a), the MFA was performed. The training
samples are selected mainly based on availability (for more
details about the selection of the training data, see section
4.1). As shown in Fig. 9b, among the four regression models,
the model for the b/l ratios in the reactions using boron ligand
S was employed for molecular design. The important struc-
tural information visualized on the Ir–π-allyl intermediate
structures are shown in Fig. 9c. Light blue points are found

Fig. 8 Asymmetric iridium/boron hybrid catalysis for stereodivergent
synthesis of α-allyl carboxylic acids.

Fig. 9 The result of the MFA and the molecular design in asymmetric Ir/B hybrid catalysis. (a) Dataset for the MFA in asymmetric Ir/B hybrid cataly-
sis. (b) Overall design path. (c)–(e) Important structural information visualized on the Ir–p-allyl intermediates and the molecular design based on the
structural information. The number in parenthesis is the number of reactions used for the MFA. As molecular fields, the indicator fields were calcu-
lated using a similar procedure shown in Fig. 4. The size of the grid space (unit cell size: 1 Å per side) is 10 × 12 × 6 Å3. Adapted with permission from
Cell. Rep. Phys. Sci., 2021, 2, 100679. Copyright 2021 Cell Press.
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around the 3,4-positions of the binaphthyl skeleton. Four
ligands 13Ir–16Ir were designed by introducing substituents to
overlap with the light blue points. The structure of 15IrPr
(intermediate consisted of ligand 15Ir and substrate Pr) is
shown in the right panel of Fig. 9c. The reactions using
ligands 13Ir–16Ir showed improved regioselectivity. While
regioselectivity improved, diastereoselectivity values were not
satisfactory. Thus, we collected additional training samples
using the designed ligands and again performed the MFA
using the 32 training samples. As shown in Fig. 9b, MFA using
32 samples led to the design of optimum ligands Ir17 for the
boron ligand S and Ir18 for the boron ligand R. Here, we show
the molecular design based on the MFA using the data
obtained from the reactions using boron ligand R as shown in
Fig. 9d and e.. The structural information for the b/l ratios and
dr visualized by MFA is shown in Fig. 9d and e. The light blue
points are observed around the 2-position of the fluorene
moiety of 5IrPr. Therefore, we introduced the tBu group to the
position and the reaction using the designed ligand 18Ir
showed excellent regio- and diastereoselectivity. In summary,
the analysis of 32 molecular structures with the MFA frame-
work enabled the control of complicated organic reactions,
stereodivergent asymmetric synthesis, indicating the powerful
potential of our data-driven approach. The overview of mole-
cular design in this complicated reaction can be found as a
movie in the original literature (https://ars.els-cdn.com/
content/image/1-s2.0-S2666386421004045-mmc7.mp4).

4. The technical guideline for the
data-driven molecular design in the
MFA framework
4.1. How to select training samples and evaluate the
generated regression models

As described in the last section, the MFA using intermediate
or transition-state structures enables highly interpretable
structural information that leads to the design of molecules
with improved selectivity. Generally, the selection of training
samples is important for a molecular design using regression
models. Our MFA framework, however, does not require

careful selection of the training samples as the MFA belongs to
Type I QSPR. In order to explain this point, a rough image of
the difference between Type I and Type II QSPR is shown in
Fig. 10. Y- and X-axes represent enantioselectivity (ΔΔG‡) and
descriptor. The black and blue lines are a true function and
regression model, respectively. Red dots and red stars are train-
ing samples and a target molecule, respectively. One of the
purposes of regression analysis is the functional approxi-
mation of the true function using training samples. In the
case of Type II QSPR, molecules are designed based on pre-
dicted values, meaning that the target sample should be
included in the region in which the constructed regression
model can accurately predict the enantioselectivity values as
shown in Fig. 10a (such a region is known as an applicability
domain). Thus, a large amount of training data and/or care-
fully selected training samples should be required, which was
recently demonstrated by the Denmark group.17 As shown in
Fig. 11, the Denmark group selected chiral catalysts for train-
ing samples from their virtual library using the Kennard–
Stones algorithm. Then, they collected more than 700 training
samples by screening catalysts and substrates combinations
and performed machine learning analysis using deep feed-
forward neural network regression. As shown in Fig. 11E, the
authors succeeded in predicting higher selective catalysts
based on the constructed regression model. In other words,
the authors generated the regression model so that higher-
selectivity catalysts have existed in the applicability domain of
the constructed regression model. This is a situation shown in
Fig. 10a (a target sample represented by the star mark exists in
the applicability domain of the model shown in pale red).
Later, the authors demonstrated the prediction of higher selec-
tive catalysts using a smaller size of training samples selected
by k-means clustering.50 On the other hand, molecular design
using the MFA that belongs to Type I QSPR is based on visual-
ized structural information/mechanistic insights as shown in
Fig. 10b. We can estimate the region where higher selective
catalysts would exist based on the combination of extracted
information and researchers’ intuition. As the design is not
based on predicted values, the narrow region of the applica-
bility domain (the pale red region in Fig. 10b) is not a
problem, thus allowing rough sample selection with small
sample sizes as long as we can extract the information that
leads to the design of molecules and as long as the quality of
the constructed regression models is high enough based on
statistical metrics.

Regarding the statistical metrics, there have been long
debates on the evaluation of regression models in QSAR/
QSPR.51 One of the widely employed indices for the evaluation
of the quality of QSAR/QSPR models is Golbraikh–Tropsha cri-
teria.51 These criteria specify that leave-one-out cross-validated
coefficient of determination q2, by itself, is insufficient for
evaluating the model and that external validation is necessary.
The following criteria must be satisfied to validate the model:
(1) high q2 and R2pred (coefficient of determination calculated
from a test set) values must be obtained; (2) one of the coeffi-
cients of determination for the regressions of a test set

Fig. 10 Schematic representation of (a) Type II vs. (b) Type I QSPR in
molecular design. Black and blue lines are true functions and regression
models, respectively. Red points and red stars are training samples and
target molecule, respectively. The pale red region is the applicability
domain of regression models.
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through the origin (either predicted vs. observed values R0
2
pred

or observed vs. predicted values R0′
2
pred) should be close to

R2pred; (3) the slope of a regression line of the predicted vs.
observed (k) or observed vs. predicted (k′) values of a test set
through the origin should be close to 1. These are described in
greater detail below and an example to explain condition 3 is
shown in Fig. 12.

1. Coefficient of determination for a test set R2pred > 0.6.
2. Leave-one-out cross-validated coefficient of determi-

nation q2 > 0.5.
3. (R2pred − R0

2
pred)/R

2
pred or (R2

pred − R′0
2
pred)/R

2
pred < 0.1

and 0.85 < k or k′ < 1.15.
Our studies employed the above criteria to evaluate the

regression models and test sets for the evaluations were
selected based on PCA (principal component analysis) so that
the test samples cover the entire descriptor space.43,46

We also employed k-fold cross-validation (k = 4 or 5 in our
previous analysis) and y-randomization for the evaluation as
well. In the case of the MFA in NHC–Cu catalysis (section 3.2),
the regression models used for the design showed q2 > 0.5 for
18 training samples and R2, q2, Q2, >0.5, and R2yrandom < 0.1 for
30 training samples. In the case of the MFA in Ir/B dual cataly-
sis (section 3.3), the regression models showed R2, q2, Q2 > 0.6,
and R2yrandom < 0.2. Thus, at this stage, R2, q2, Q2, >0.5, and
R2yrandom < 0.2 seems to be one of the useful criteria to evalu-

ate the MFA-based regression models, while further accumu-
lation and discussion of examples should be required regard-
ing which criteria should be used to evaluate regression
models in the MFA framework.

4.2. How to calculate descriptors

MFA has been originally developed for ligand-based drug
design.19 MFA employs molecular (interaction) fields as
descriptors instead of explicit consideration of protein struc-
tures. For calculations of molecular fields, a set of small mole-
cules/ligands are placed into the grid space. Interaction ener-
gies such as Lennard-Jones and coulombic potentials between
probe atoms placed at each intersection and the small mole-
cules/ligands are calculated and used as molecular fields.
Regression analysis between biological activities such as IC50

and molecular fields extracts and visualizes the important
region around ligands for the biological activities.19 In the
case of asymmetric catalysis, however, the molecular structures
(i.e., sizes, shapes, and positions/geometries) of catalysts and
substrates themselves are important for selectivity. Thus, we
employ indicator fields composed of indicator variables,
which can be regarded as digitized molecular structures
(Fig. 4b). The MFA using indicator fields can extract and visu-
alize which parts of the molecular structures are important for
selectivity.

Fig. 11 Chemoinformatics-guided optimization protocol. (A) Generation of a large in silico library of catalyst candidates. (B) Calculation of robust
chemical descriptors. (C) Selection of a universal training set (UTS). (D) Acquisition of experimental selectivity data. (E) Application of ML to use mod-
erate- to low-selectivity reactions to predict high-selectivity reactions. Reproduced with permission from ref. 17. Copyright 2019 American
Association for the Advancement of Science.
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We designed the molecules based on mechanistic insights
obtained from the structural information visualized by MFA,
meaning we utilize the researchers’ intuition as well. This MFA
framework also uses the researchers’ intuition not only for the
molecular design but also for the calculations of the descrip-
tors/molecular fields. In all the cases that successfully
designed the molecules showing improved selectivity, the
molecular structures around the reaction centre were used for
the calculation of the molecular fields. We explain the details
regarding this point using the MFA described in section 3.1. In
the MFA of section 3.1, molecular fields were calculated from
the structure around the reaction centre as shown in Fig. 4b
(III). The extracted structural information by the MFA is shown
in Fig. 4c. The same intermediate structure shown in Fig. 4c is
again shown in Fig. 13 along with the information visualized
by MFA that employed the molecular field calculated from the
whole Pd-enolate structures. The important structural infor-
mation was observed far from the reactive site as marked by
red arrows, which is not in accordance with our intuition.
Moreover, it is difficult to understand the asymmetric induc-
tion mechanism, based on the structural information in con-
trast to the result of the MFA shown in Fig. 4c. Thus, dimen-
sion reduction of descriptors/molecular fields based on
researchers’ intuition is required to extract meaningful infor-
mation for mechanistic interpretation and molecular design.

4.3. Key points enabling extraction and visualization of the
structural information that leads to the molecular design with
improved selectivity

This section describes key points about why the MFA using
intermediate and transition-state structures enables the extrac-
tion of the structural information that leads to the molecular
design showing improved selectivity.

The first key point is the reduction of conformational flexi-
bility. The Pd-enolate structures shown in Fig. 4b(I) are com-
posed of BINAP–Pd catalysts and β-ketoesters. Their structures
themselves have conformational flexibility to some degree. For
example, the ester moiety of the β-ketoesters can be freely
rotated. The complexation of catalysts and substrates reduces
this conformational flexibility. Steric interactions with the Ar-
group of BINAP derivatives hinder the rotation of the ester
moiety on the substrates. This facilitates the determination of
conformers that could be employed for the calculations of
molecular fields.

The second point is alignment. Alignment of the molecules
is required for the calculations of molecular fields as shown in
Fig. 4b. MFA in medicinal chemistry is a ligand-based drug
design and thus protein structures are not considered expli-
citly. Which parts of molecular structures are used as the stan-
dard for the alignment is one of the biggest problems in evalu-
ating biological activities using MFA. On the other hand, in
the MFA of asymmetric catalysis, intermediate and transition-
state structures usually involve reactive sites. Thus, molecules
can be easily aligned based on the reactive sites. Even when
the reactive sites are flexible and are not suitable for the stan-
dard of alignment, the molecular structures can be aligned
based on the chiral catalyst skeleton. MFA using a set of
molecular structures aligned based on the reactive sites or
chiral catalyst skeleton allows for the comparison of subtle
structural differences that are important for selectivity out-
comes and are difficult to capture only by researchers’ intui-
tion (vide infra).

The third point is the structural change induced by inter-
actions between catalysts and substrates. Most of the structural

Fig. 12 An example of regression between observed vs. predicted (a) and predicted vs. observed (b) activities for compounds from an external test
set. Despite the high R2

pred value and both k and k’ close to 1, the model is not highly predictive, because the regressions through the origin of the
coordinate system are not close to the optimal regressions. Note that R0

2
pred and R’0

2
pred are substantially different from each other. Adapted with

permission from ref. 51. Copyright 2002 ELSEVIER.

Fig. 13 A result of the MFA using the whole structures of the Pd-
enolate complexes for the calculations of molecular fields.
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information used for the molecular design shown in section 3
is derived from the structural change. We explain the details
about this point using Fig. 14. In Fig. 14, examples of the tem-
plate molecules for the molecular design and the molecular
structures that are the origins of the structural information
used for the molecular design in the three MFAs described in
section 3 are shown (origins of structural information means
that the information disappears when removing the molecules
from training samples).

In the case of the Pd-catalysed asymmetric fluorination
reactions, the blue point used for the catalyst design is derived
from the Pd-enolate structure bearing a tBu substituent on the
β-ketoesters (e.g., 2PdtBu shown in Fig. 14a). Due to steric
repulsion between the tBu group and the Ar group on the
BINAP derivatives, the Ar group on the ligand in the Si face
gets closer to the reactive site as shown in Fig. 14a (i.e., the
pocket on the Si face explained in section 3.1 becomes
narrow). On the other hand, the Pd-enolate structure bearing
an iPr group instead of the tBu group does not overlap with
the blue point. Thus, we can design the molecule based on Pd-

enolate by introducing the substituents to overlap the blue
point as shown in Fig. 5a.

In the case of the NHC–Cu-catalysed asymmetric carbonyl
addition reactions, the blue point used for the catalyst design
is derived from the transition-state structure bearing an iPr-
substituent on the NHC ligand (e.g., 3CuS1 shown in Fig. 14b).
Due to steric repulsion between the iPr group and the silyl sub-
stituent, the phenylene group on the ligand shows positional
change, thereby inducting steric crush with the substrate in
the transition-state of the minor pathway (Fig. 14c). On the
other hand, the transition-state structures in the major
pathway do not show such interactions between the NHC
ligands and the substrate as shown in Fig. 14c. The visualized
structural information provides this mechanistic insight. We
can design molecules by introducing the substituents into the
template molecules to overlap the blue point as shown in
Fig. 7.

In the case of the Ir-catalysed reactions, the blue point used
for the catalyst design to improve regioselectivity is derived
from the Ir–π-allyl intermediate structures of 5IrPr bearing a

Fig. 14 Template molecules for the molecular design, the origin of the important structural information used for the molecular design, and the
obtained mechanistic insights for (a) the Pd-catalyzed reaction (section 3.1), (b) and (c) asymmetric NHC–Cu catalysis (section 3.2), and (d) Ir/B asym-
metric hybrid catalysis (section 3.3).
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fluorene moiety (Fig. 14d). Due to steric repulsion between the
binaphthyl skeleton and the fluorene moiety, the binaphthyl
skeleton gets closer to the terminal allyl carbon, hindering the
reaction that affords the undesired linear products. Thus, we
can design molecules based on the Ir–π-allyl intermediate
structure 1IrPr by introducing the substituents to overlap the
blue point as shown in Fig. 9c and 14d.

5. Outlook

Our MFA framework enables the design of molecules showing
improved selectivity. The key point is the use of intermediate
or transition-state structures in enantio-determining steps for
the calculations of descriptors. Moreover, whole molecular
structures have not been employed for the calculations of
molecular fields. Instead, the structures around the reactive
site are used for the calculations of descriptors to reduce
descriptor dimensions and suppress overfitting. The molecular
design is performed based on the combination of the visual-
ized structural information and researchers’ intuition. The
close collaboration between machine learning/data science
and researchers’ intuition in the whole processes of MFA facili-
tates the molecular design in asymmetric catalysis.

The research regarding the Type I MFA-based data-driven
catalyst design enabling the improvement of reaction out-
comes is just starting and there are many issues that should
be tackled. Some of them are introduced below as outlook.

The molecular fields used for the molecular design so far
are the steric indicator fields. It should be possible to extract
further information by using, for example, molecular fields
representing electronic effects such as hydrogen bonding
interactions. It should also be interesting to evaluate weak
attractive non-covalent interactions by MFA using the steric
indicator fields described in this review article. The weak non-
covalent interactions such as London dispersion effects have
been recently recognized as important enantioselectivity-con-
trolling factors in asymmetric catalysis.52 The Sigman group
demonstrated that interatomic distances between probe mole-
cules (benzene) and substrates can be used as descriptors that
represent CH–π and π–π interactions in asymmetric catalysis as
shown in Fig. 15 (Dπ is the distance between probe molecules
and substrates).53 The indicator fields include positional infor-
mation (3D coordinate), meaning the MFA using the indicator
fields can consider interatomic distances. Therefore, it should
be worth examining whether or not our MFA framework
enables the analysis of asymmetric catalysis in which non-
covalent weak attractive interactions significantly affect
enantioselectivity.

Another important future task is the MFA in molecular cata-
lysis using reaction rates (e.g., TOF [turnover frequency]) as
target variables. As described in section 2.1, target variables
for the regression analysis in asymmetric catalysis are the log-
arithms of enantiomeric ratios, which correspond to free
energy differences in the pathways that lead to each isomer
(Curtin–Hammett principle11). Therefore, the target variables

in asymmetric catalysis are physically meaningful and high-
quality values. Moreover, enantioselectivity values can be col-
lected by single-point measurements using HPLC or GC. Thus,
regression analysis in asymmetric catalysis has been recently
actively investigated.1 In contrast, MFAs using reaction rates,
which are important target variables for evaluating molecular
catalysis, have been still scarce probably because of the
difficulty of collecting training samples. To measure reaction
rates such as TOF, reactions should be monitored periodically.
This process is time-consuming. Moreover, catalytic reactions
are typically composed of a combination of elementary reac-
tions, such as oxidative addition and reductive elimination,
while only one step (i.e., an enantio-determining step) is
usually considered for the analysis in asymmetric catalysis.
Although there are examples of the use of TOF/reaction rates
as target variables for regression analysis in molecular
catalysis,2,54 enhancing reaction rates by MFA-based data-
driven catalyst design should be also tackled.

The MFA using intermediate or transition-state structures
are useful analytical techniques that provide highly interpret-
able information on reactions, leading to the design of mole-
cules showing improved selectivity. Analytical methods that
enable the investigation of the details of molecular structures/
properties (e.g., NMR and single crystal X-ray diffraction ana-
lysis) accelerate molecular science research. We have success-
fully controlled the complicated organic reactions, stereodiver-
gent asymmetric synthesis, through MFA-based data-driven
catalyst design as described in this review article. We expect
that further trials to control challenging/complicated organic
reactions by the MFA will open new avenues in the field of
molecular catalysis/organic synthesis.

Fig. 15 Parametrization of non-covalent interactions in enantiodiver-
gent fluorination of allylic alcohols reported by Toste and Sigman et al.
(A) Reaction scheme and substituent effects of boronic acids and chiral
phosphate anions on the enantioselectivity. (B) Multivariate model cor-
relating the stereoselectivities from catalysts 5–8 and 18 different
boronic acids. Adapted with permission from J. Am. Chem. Soc., 2017,
139, 6803. Copyright 2017 American Chemical Society.
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