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The identification of the most competent embryos for transfer to the uterus constitutes the main chal-

lenge of in vitro fertilization (IVF). We established a metabolomic-based approach by applying Fourier

transform infrared (FTIR) spectroscopy on 130 samples of 3-day embryo culture supernatants from 26

embryos that implanted and 104 embryos that failed. On examining the internal structure of the data by

unsupervised multivariate analysis, we found that the supernatant spectra of nonimplanted embryos con-

stituted a highly heterogeneous group. Whereas ∼40% of these supernatants were spectroscopically

indistinguishable from those of successfully implanted embryos, ∼60% exhibited diverse, heterogeneous

metabolic fingerprints. This observation proved to be the direct result of pregnancy’s multifactorial nature,

involving both intrinsic embryonic traits and external characteristics. Our data analysis strategy thus

involved one-class modelling techniques employing soft independent modelling of class analogy that

identified deviant fingerprints as unsuitable for implantation. From these findings, we could develop a

noninvasive Fourier-transform-infrared-spectroscopy–based approach that represents a shift in the fun-

damental paradigm for data modelling applied in assisted-fertilization technologies.

1. Introduction

Infertility—a multifactorial disorder that affects around 15%
of the reproductive couples worldwide—is a markedly increas-
ing health problem due to the postponement of parenthood.1

Since the first successful in vitro fertilization (IVF) birth in
1978, more than eight million children have been born with
the help of assisted reproduction techniques.2,3 Although IVF
is widely used to treat infertile couples, in many instances that

approach does not resolve infertility problems because of its
low success rate.4 Several conditions lead to implantation
failure, including reduced endometrial receptivity,5,6 embryo-
nic defects such as genetic abnormalities, the overall clinical
status of the mother, faults in the embryo-transfer technique,
and/or other multifactorial causes.7,8 One of the most crucial
steps for a successful IVF treatment is definitively the selection
of a competent embryo(s) for transfer. The evaluation of
embryos’ development morphology by light microscopy still
represents the usual clinically established method for asses-
sing embryo viability.9,10 This technique constitutes a fast,
easy, and affordable evaluation and has been considered as
the universally accepted method of choice for embryo
selection.9,11 Nevertheless, owing to the significant interobser-
ver variability and subjectivity reported in the literature,
together with the low capability of morphological evaluation
by light microscopy in predicting the implantation rate of an
embryo (i.e., below 30%), that approach represents an ineffi-
cient methodology for embryo selection.12–16 Alternatively,
invasive methods, such as preimplantation genetic testing
(PGT) used to determine the genetic profiling of embryos
before implantation, involve certain risks, since biopsy might
negatively influence further embryo development.17–21 A non-
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invasive and rapid evaluation of the embryo-implantation
potential before transfer, therefore, constitutes one of the
most crucial challenges in IVF treatments.

In the last decade, different techniques have been proposed
as alternative noninvasive technologies to evaluate the embryo
implantation potential.22 Human embryos, while developing
in the culture media, consume available nutrients and release
metabolites, thus modifying culture supernatants. Therefore, a
detailed chemical analysis of the spent supernatant of an
embryo’s culture medium provides information reflecting cel-
lular metabolic activities and the overall developmental status
of the embryo. The relationship between the metabolic para-
meters and embryo viability was reported for the first time in
1980 by Renard and collaborators.23 A number of proof-of-prin-
ciple studies related to the chemical composition of an
embryo’s culture supernatants and the subsequent embryo-
implantation outcome reported that embryos achieving
implantation were different in metabolomic profile from those
that failed in implantation.24,25

The application of several technologies such as vibrational
spectroscopy (near infrared, NIR, and mid-infrared, MIR, plus
Raman spectroscopy), nuclear-magnetic resonance (NMR), and
matrix-assisted laser desorption/ionization-time-of-flight mass
spectrometry (MALDI-TOF) for the assessment of culture super-
natants provides a picture of an embryo’s metabolism and
genetic-expression patterns. Therefore, these methodologies
have been broadly applied for the evaluation of embryo
metabolomics.26,27 In the last decade, studies on metabolomic
profiling in spent culture media and the subsequent embryo
viability were carried out through the use of different spec-
troscopy-based technologies.24,28–34 NIR spectroscopy combined
with supervised mathematical models was established to esti-
mate the reproductive potential of embryos.24,28–34 Different fer-
tility centers were included in those trials, with the number of
recruited patients ranging from 30 to 417. Nevertheless, none of
those NIR-based metabolomics models were able to improve
clinical-pregnancy rates when compared to the results obtained
by analyzing embryo morphology by light microscopy.29,30,32 In
addition, a preliminary MIR-spectroscopy assay demonstrated
the great potential of Fourier transform infrared (FTIR) spec-
troscopy in the screening of the embryonic-implantation poten-
tial. However, only 7 samples of 26-hour-embryo-culture super-
natants from 5 patients were studied and no additional publi-
cations with larger cohorts of patients have appeared so far.35

Finally, Bracewell-Milnes and collaborators (2017), by reviewing
the potential of the metabolomics technologies as applied to
IVF, concluded that the metabolomic profiling of embryo super-
natants, as studied to date, has not evidenced any improvement
in the prediction of embryonic viability in clinical practice.26

FTIR spectroscopy is a noninvasive analytical physico-
chemical technique providing information about the total bio-
chemical composition of the analyzed material and has the
remarkable advantage of involving a straightforward form of
sample preparation and a short spectral-data-acquisition time.
FTIR spectroscopy has been successfully used as an analytical
tool in a wide range of fields including food, biotechnology, and

microbiological and medical diagnostics.36–46,90 The potential of
FTIR analysis of blood components (e.g., serum and plasma)
and other biofluids (e.g., bile, urine and sputum) for diagnostic
purposes has been widely investigated and recognized.47–55 The
great ability of this spectroscopic technology to detect small
changes in different types of samples has led to its application
in other fields such as the study of extracellular and intracellular
metabolites in bacterial,41 fungal,56 and mammalian-cell
cultures.39,40 Furthermore, FTIR spectroscopy has been applied
as a valuable tool in metabolomics studies since it is highly sen-
sitive for the simultaneous detection of carbohydrates, lipids,
proteins, nucleic acids, amino acids, fatty acids, sugars and
many other small molecules.57 In particular, glucose, glycerol,
and acetic acid were measured in Escherichia coli cultures,41

while glucose and lactate concentrations were evaluated in
mammalian cell line culture supernatants.39

In view of this strong background, the aim of the present
study was to test FTIR spectroscopy combined with multi-
variate data analysis as a means for a noninvasive assessment
of human embryo metabolomics. For this purpose, we charac-
terized 3-day-embryo-culture supernatants by FTIR spec-
troscopy and evaluated whether changes in the infrared pat-
terns could be associated with the outcome of IVF. We also
expected to understand how different clinical characteristics of
the mother may impact embryos’ metabolomics and implan-
tation rates.

2. Experimental
2.1. Ethical approval

Participants were recruited and provided written consent
according to section IRB00001745-IORG 0001315 of the proto-
cols approved by a national ethics committee for medical edu-
cation and clinical research [Centro de Educación Médica e
Investigaciones Clínicas Norberto Quirno (CEMIC), Argentina].

2.2. Patients

The patients participating in the study were recruited at the
fertility center “PREGNA-Medicina Reproductiva”, Buenos
Aires, Argentina during a 3-year period. All women below 42
years treated and undergoing IVF treatments were considered
for participation in the study, but patients with more than two
previous IVF attempts were excluded. The diagnosis of the
cause of female or male infertility, the protocol applied for
ovarian-stimulation, and whether conventional IVF or intracy-
toplasmic sperm injection was employed were not considered
as exclusion criteria. The stimulation protocols consisted of
the application of gonadotropins and the gonadotrophin-
releasing–hormone antagonist in combination with recombi-
nant and/or highly purified urinary gonadotropins.

2.3. Construction of a database platform for research-data
management—“OpenClinica”

This research was performed under strict international biosaf-
ety regulations, applying the “Best Practices for Research Data
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Management”. For this purpose, we used an open-source soft-
ware OpenClinica, based on electronic forms and protocols for
storage, classification, analysis, and data visualization.58 For
the construction of this database, information such as
patients’ personal details, hormonal treatments, embryo mor-
phology, pregnancy outcome, and results from the quality tests
of the acquired spectra. This platform is currently operating
effectively on the web site https://www.openclinica.com/. For
data analyses some of the clinical data registered at the
OpenClinica database such as mother’s age, BMI, and
smoking habits were converted from numerical variables into
qualitative ones (see ESI† Converting numerical into qualitat-
ive variables).

2.4. Embryo culture

Upon oocyte retrieval, cumulus–oocyte complexes were placed
in four-well plates containing 500 µL of G-IVF Plus medium
covered with mineral oil (OVOIL-Culture Oil) to avoid evapor-
ation (all the culture media used in this study were from
Vitrolife, Göteborg, Sweden). In parallel, semen samples were
processed through discontinuous 90–50% density gradients
(Spermgrad) and double washed in a sperm preparation
medium. The sperm suspension was adjusted to
200 000 motile sperm per mL in that medium and kept at
room temperature (20–23 °C) until insemination. For conven-
tional IVF, insemination was carried out 4 h after oocyte retrie-
val in the G-IVF Plus culture medium. For intracytoplasmic
sperm injection, cumulus cells and the corona radiata of
oocytes were removed by a brief exposure to 80 IU mL−1 of hya-
luronidase (Hyase-10×) 3–4 h after collection. This fertilization
procedure was performed according to the standard
protocol.59,60

After 18–20 h of insemination, fertilization was checked
and two pronuclei-stage embryos were cultured individually in
40 µL droplets of overnight-equilibrated G-1 Plus medium
covered with culture oil in an IVF Tri-gas Incubator Model
G185 (K-Systems, Birkerød, Denmark). For each cohort of
embryos, a drop of G1 Plus medium was incubated under the
same conditions as a control.

Embryos incubated for 3 days were individually observed by
optical microscopy for morphological grading according to the
Istanbul-consensus criteria (European Society of Human
Reproduction and Embryology and the Alpha Scientists’
Special-Interest Group).9 The embryos were classified as grade
1 (good quality), grade 2 (fair quality), grade 3 (poor quality)
and grade 4 (arrested or undeveloped).

The highest quality embryos from each cohort (one or
two) were selected to be transferred. All the single embryos
were retrieved from their supernatants. In all instances,
only fresh embryos were transferred as described elsewhere
after placing them in G-2 Plus culture medium.61 The
spent supernatants, drops of control culture media,
samples of different batches of the G-1 Plus culture
medium, and samples of the culture oil used were regis-
tered and stored under liquid nitrogen for further FTIR
spectral analyses.

2.5. Sample preparation and FTIR spectral acquisition

The dried-film FTIR technology55,62–64 was applied to analyze
the 3-day-embryo-culture supernatants. For this purpose, a
protocol for sample preparation was optimized. Cryopreserved
supernatants were thawed at room temperature (25 °C) and
centrifuged for 5 min at 1690g to separate possible remnants
of the culture oil in the samples. Different volumes of super-
natants (15, 20, and 30 µL) were then pipetted onto each well
of a ZnSe 96-well microtiter plate. The samples were dried
under moderate vacuum (0.1 bar) or until transparent films
were formed.53,64 FTIR absorption spectra were recorded using
a Vertex 70 FTIR spectrometer coupled to the high-throughput
HTS-XT automatic module under dried-air circulation (Bruker
Optics GmbH, Ettlingen, Germany). The spectra were recorded
in the transmission mode within the spectral range 650 and
4000 cm−1 with a 6 cm−1 spectral resolution by taking 64 scans
that were subsequently averaged. Before each sample measure-
ment, the background spectra of the ZnSe substrate were
recorded in order to account for the variation in water vapor
and CO2, with the OPUS spectroscopy software (version 7.0;
Bruker Optics GmbH, Ettlingen, Germany) being used for
automatic spectral acquisition. The FTIR spectra of both the
different batches of the culture medium and of the culture oil,
used for the different reproducibility studies here performed,
were likewise measured according to the procedure described
above.

2.6. Spectral data analyses

The spectral data analysis flow sheet applied in this study
was specifically developed for the optimized processing of
embryo-supernatant FTIR spectra and comprised the follow-
ing routines: (1) data pretreatment, (2) construction of the
FTIR database, (3) hierarchical-cluster analysis (HCA), (4)
principal-component analysis (PCA), (5) soft independent
modelling of class analogy (SIMCA), and (6) statistical ana-
lysis (see Fig. 1).

2.6.1. Data pretreatment. In order to increase the quality of
the FTIR spectral features, to reduce interference from noise,
and to avoid interfering signals from water vapor and culture
oil that could mask the spectral biomarkers specifically associ-
ated with implantation, a spectral pretreatment was applied.65

Data quality test is an important step in spectral data ana-
lysis and is known to improve data mining and data modelling
results.66 Therefore, as a first step in data analysis, all raw
spectra were subjected to a quality test of our own design
through the use of the OPUS-spectroscopy software version 7.0
(Bruker Optics, Ettlingen, Germany). This test involved check-
ing the following parameters: (i) absorbance in the amide I
region (1600–1700 cm−1) with acceptable values being between
0.125 and 1.20 absorbance units, (ii) the signal-to-noise ratio
(calculated from the first derivatives of the spectra between
2000 and 2100 cm−1) with admissible values being lower than
1.5 × 10−4 and, (iii) water-vapor content (determined from the
first derivatives of the absorbance values between 1837
and 1847 cm−1) with acceptable values being lower than
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3 × 10−4.53,64 Because of the small quantities of culture oil that
were always left in the supernatants after the centrifugation,
which could further interfere with the FTIR spectral signals,
an additional parameter in the quality test, the so-called “λ”,
was defined. Parameter λ indicates the level of contamination
of the supernatant with the culture oil in the infrared-absor-
bance spectra as follows: the rate of the intensity of the peak at
2933 cm−1 assigned as the C–H stretching of >CH2 groups
(lipids)—used as a marker band of oil content (I2933)—and the
intensity of the peak at 1655 cm−1 assigned to amide I—used
as an internal standard of the total biomass (I1655, where λ =
I2933/I1655; ESI Fig. S1†). Only spectra with λ ≤ 0.33 were
included in the FTIR database.

For spectra that passed the quality test, two different types
of spectral preprocessing were developed: one for technical
reproducibility analysis (preprocessing A) which was applied
among (i) the different wells of the ZnSe optical plate, (ii) the
samples of the different culture medium batches, and (iii) the
samples recovered within each culture medium batch. Another
preprocessing (preprocessing B) was applied to the spectra of
the supernatant samples before the PCA and SIMCA analyses.
In the first type, the so-called preprocessing A, the spectra were
preprocessed by calculating the second derivative (Savitzky–
Golay, 17 windows size) in the regions 2800–3000, 1500–1800,
1250–1500, and 900–1200 cm−1; in the second, the so-called
preprocessing B, the data were preprocessed by taking the

Fig. 1 FTIR spectral data analysis flowchart for embryo supernatants.
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second derivatives (Savitzky–Golay, 3rd-degree polynomial, 17
windows size) in the regions 1500–1800 and 730–1280 cm−1,
followed by normalization by extended multiplicative signal
correction (EMSC) with linear term.67,91,92

2.6.2. Construction of the FTIR database. To facilitate sub-
sequent data analysis, an FTIR spectral library was developed
containing normalized derivative spectra of (1) spent super-
natants, (2) samples from different batches of the culture
medium G-1 Plus, and (3) samples from the culture oil used
during the study. All the spectra and the corresponding nor-
malized derivatives were classified into two groups (Fig. 2).
Group A comprised the spectra of the control samples:

culture media, different batches of the culture medium G-1
Plus, and the culture oil. Group B consisted of spectra of the
supernatants of the embryos that were transferred to the
patients, with the IMP group constituting the spectra of
supernatants from embryos that were implanted (100%
implantation) and the NIMP group constituting the spectra
of supernatants from nonimplanting embryos (0%
implantation).

Out of the 186 FTIR-embryo-supernatants acquired, 130
were used for modelling, 20 were discarded due to their high
amount of culture oil content (λ > 0.33), and 36 were purely
used for the optimization of the different experimental pro-

Fig. 2 FTIR spectral database construction. Panel A: scheme illustrating the details of the control samples (group A) analyzed by FTIR spectroscopy
from the embryo-culture media along with the results from quality-testing (QT) criteria and from the culture oil used. Panel B: scheme depicting the
details of the samples analyzed for FTIR spectroscopy from the spent supernatant media from cultures of embryos that were transferred to patients,
indicating the embryos that implanted and those that failed to do so along with the quality-testing results of the corresponding sample groups
(group B). The bottom window of panel B summarizes the spectra of the supernatants associated with the different outcomes of the embryo trans-
fers for implantation, indicated by implantation (IMP) and nonimplantation (NIMP) QT = 1, fulfilled the spectral-quality requirements, QT = 0 did not
meet the spectral-quality requirements. *Only one sample from each batch was measured.

Paper Analyst

6160 | Analyst, 2021, 146, 6156–6169 This journal is © The Royal Society of Chemistry 2021

Pu
bl

is
he

d 
on

 2
5 

A
gu

st
us

 2
02

1.
 D

ow
nl

oa
de

d 
on

 1
2/

11
/2

02
5 

22
.0

2.
13

. 
View Article Online

https://doi.org/10.1039/d1an01191j


cedures (such as sample preparation and the type of drying
process, see Fig. 2).

The supernatant spectra of the IMP group pertained to
embryos whose morphologies were 30.8% grade 1 and 69.2%
grade 2. Whereas embryos of grade 3 were not found, the
supernatants of the NIMP group contained 33.7%, 50.0%, and
16.4% of embryos with morphologies of grades 1, 2, and 3,
respectively.

2.6.3. Hierarchical cluster analysis (HCA). This unsuper-
vised-analysis technique was used for checking the reproduci-
bility of the measurements and to detect the outliers in the
data sets.47 As previously reported, the spectral variances in
the data were determined as the average ± 2 standard devi-
ations of the so-called spectral distance (D).53,68,69 This para-
meter corresponds to a dissimilarity measurement equal to (1
− r) × 1000, with r being Pearson’s product-moment–corre-
lation coefficient. For estimating the reproducibility of
measurements among samples within the same batch and
among different batches of G1 Plus culture medium, the spec-
tral distances were calculated by using the prepossessing pro-
cedure A (cf. section Data pretreatment; ESI Fig. S2–S4†). The
fusion values in dendrograms were obtained by using the
average linkage (OPUS version 7.0 Bruker Optics GmbH,
Ettlingen, Germany).

2.6.4. Principal component analysis (PCA). To study the
underlying pattern in the data, a PCA analysis of the FTIR
metabolomic fingerprints of the 3-day-embryo supernatants
was performed. For this purpose, the data were analyzed by
applying the prepossessing procedure B (cf. section Data pre-
treatment). This analysis was carried out by using Matlab-
based in-house algorithms (Matlab R2019a, The MathWorks
Inc., Natick, MA).

2.6.5. Soft independent modelling of class analogy
(SIMCA). For separating the embryo supernatant with implan-
tation-fingerprint spectra from those with nonimplantation
spectral fingerprints, the SIMCA70 pattern-recognition method
was employed. The model was established by using the class-
IMP data only. The spectra were preprocessed by procedure B
(cf. section Data pretreatment). To perform SIMCA analysis,
the Matlab GUI tool DD-SIMCA was used.71 SIMCA relies on
PCA and enables the creation of a border—a hyperplane—
around a class of objects (class IMP in this instance) with the
type of confidence interval that can be constructed by using
different significance levels. The number of components for
the PCA model was fixed to 3 and corresponds to a ∼90%
explained variance. The significance level was set at 0.01. After
the model was established, preprocessed spectra from the
class NIMP (nonimplanted embryo spectra) were used to dis-
criminate embryos that fell within the model’s borders (i.e.,
with an IF-class implantation fingerprint in this instance)
from those outside the model exhibiting no implantation fin-
gerprinting (the NIF class).

2.7. Statistical analysis

An one-way analysis of variance (ANOVA) was performed on the
maternal metadata, with the IF class being considered separ-

ately, and on the IF versus the NIF class obtained by SIMCA
modelling. The different parameters, such as the maternal
age, body-mass index (BMI), and smoking habits, were ana-
lyzed as a single parameter both separately by ANOVA and
altogether by the multivariate analysis of variance (MANOVA).

Chi2 analysis was performed to evaluate the embryo distri-
bution within the IF and NIF classes.

3. Results & discussion
3.1. A robust FTIR experimental approach for the
metabolomics analysis of 3-day-embryo-culture supernatants

In the development of a novel method for the evaluation and
selection of embryo-implantation potential based on FTIR
vibrational spectroscopy, we established a 3 h protocol for
sample preparation and spectral acquisition (Fig. 3). The pro-
tocol stated in brief is as follows: supernatants are recovered
from individual embryo cultures and centrifuged to remove
the culture oil. Then 30 µL is transferred to a 96-multiwell
ZnSe optical plate. Next, the samples are dried under moderate

Fig. 3 Flow sheet of the standardized approach for the FTIR spectral
measurements of embryo supernatants.
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vacuum (0.1 bar) for 45 min until transparent films are
obtained.53,64 Finally, FTIR transmission measurements are
carried out in the spectral range 650–4000 cm−1 at a 6 cm−1

spectral resolution.
Because FTIR is an extremely sensitive analytical technique,

a strict reproducibility analysis was performed to assure the
construction of a robust infrared spectral database for further
data analysis (Methods). We studied the reproducibility level of
the measurements obtained for the 96 positions of the ZnSe
optical plate using the same batch of fresh culture medium.
This analysis demonstrated that the spectral quality was not
affected by the desiccation of the samples observed during the
lengthy time required for the measurement of 96 samples (ESI
Fig. S2†). A high level of reproducibility was also observed
among the samples from each batch and among different
batches of the G1 Plus culture medium (ESI Fig. S3 and S4†).

The selected spectral pretreatment approaches carried out
here provided an increase in the resolution and an easier
interpretation of the spectra. It allowed the detection of out-
liers and helped to deal with the interference from the culture
oil in the FTIR spectra. Overall, the experimental protocol pro-
posed here improved the FTIR-based method previously
reported,35 facilitated the subsequent data analyses and
allowed achieving robust and reliable classification models.

3.2. FTIR spectral characterization of spent embryo-culture
medium

As the vibrational spectra provide the biochemical information
of embryo-culture supernatants, they provide a picture of
embryonic metabolomics. Particularly, NIR spectroscopy has
represented a widespread analytical technique for carrying out
a direct study of embryo supernatants.24,29,30,32–34,72 The NIR
technology produces wide bands due to the absorption of few
signals from the molecular overtones along with a combi-
nation of the stretching-bending vibrations of atomic groups
such as O–H, C–H, and N–H.73 In contrast, MIR spectroscopy
provides much more information about the biochemical com-
position of the biological materials.64 The MIR spectra arise
from the stretching and bending vibrations resulting from all
bonds that exhibit a transition dipole moment, such as C–H,
CvO, C–O, O–H, N–H, and C–N, among others. Fig. 4, panel
A, depicts a representative and exemplary FTIR absorption
spectrum of a 3-day-embryo-culture supernatant recovered
from a successfully implanted embryo (class IMP in this
study), while Fig. 4, panel B lists the assigned spectral bands
and their respective functional groups. The main spectral
windows (W1–W5) associated with the molecular building
blocks of complex biological samples64 could be identified:
the spectral region associated preferentially with lipids (W1)
between 2800 and 3000 cm−1 exhibits bands assigned to the
symmetric and antisymmetric C–H stretching modes of the
methyl groups (–CH3) detected at 2874 and 2969 cm−1, respect-
ively, and the antisymmetric C–H stretching mode of methyl-
ene residues (>CH2) at 2933 cm−1. The infrared spectral region
associated with protein absorptions (W2) evidenced the typical
amide-I and amide-II bands at 1655 and 1545 cm−1, respect-

ively. The mixed region (W3) between 1200 and 1500 cm−1 rep-
resents the absorptions of the stretching and bending
vibrations from fatty acids, polysaccharides, nucleic acids, and
proteins. A characteristic band is observed around 1400 cm−1,
the absorbance of which may be attributed to the symmetric
stretching vibrations of the –COO− functional groups of
amino-acid side chains or free fatty acids. In this region, a
typical amide-III band at 1315 cm−1 was also observed along
with bands of different >PvO asymmetric stretching
vibrations at around 1230 cm−1. The vibrational modes of the
carbohydrate region (W4) between 900 and 1200 cm−1 is gener-
ally dominated by the symmetric stretching vibrations of the
PO2

− groups (1090 cm−1) in nucleic acids and a complex
sequence of peaks mainly attributed to the C–O–C and C–O–P
stretching vibrations of various oligo- and polysaccharides.64

That region also contains bands assigned to the C–O stretch-
ing vibrations in carboxylic groups. Finally, the region between
650 and 900 cm−1 (W5) contains weakly expressed bands
arising from the aromatic-ring vibrations of phenylalanine,
tyrosine, tryptophan, and the various nucleotides. With the
exception of only a few peaks (e.g., a band near 720 cm−1,
resulting from the >CH2-rocking modes of the fatty-acid
chains), valid assignments can hardly be achieved. W5 exhibits
a variety of extremely characteristic features superimposed on
an underlying broad spectral contour. Therefore, we refer to
this spectral domain as the true fingerprint region.64

The dried-film FTIR spectroscopy approach proposed here
for the analyses of embryo supernatants improves the sensi-
tivity of metabolomics analyses by providing much more infor-
mation about the biochemical composition than other spectro-
scopic methodologies such as NIR. Moreover, it guarantees
that the strong spectroscopic features of water absorption that
interfere in FTIR spectra are avoided.55,62–64 This approach
increases the benefits of the vibrational spectroscopy techno-
logies that are simple, rapid, and inexpensive for assessing bio-
logical samples.

3.3. Development of a predictive embryo-implantation model
based on the FTIR metabolomic profile of embryo-
supernatants

Although depending on many different parameters,54 the
crucial step of the IVF process is clearly the selection of fully
competent embryo(s) for transfer. Accordingly, obtaining and
selecting an embryo with the highest implantation potential is
still the key objective within the state of the art in IVF labora-
tories. In this respect, different noninvasive proteomics and
metabolomics technologies have constantly been proposed
allowing differentiation between the embryos that appear mor-
phologically identical and have the potential to identify the
embryo ploidy status.11,26,27 Nevertheless, we are convinced
that the limited success of the discrimination results is not
due to the technologies but rather the modelling approach
selected to perform the task. We believe that the statistical
models for embryo differentiation can be improved if the
embryo data are reconsidered (restructured) and the modelling
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approach is selected appropriately to solve the classification
problem.

We first studied the internal structure of the spectral data
by the unsupervised multivariate method PCA. This analysis
aims at transforming the original variables, which here in
infrared spectroscopy referred to wavenumbers, into smaller
numbers of new variables or principal components that
describe the main variation patterns.67 The PCA-score plot
obtained (Fig. 5, panel A) revealed that the spectral finger-
prints of the supernatants from the implanted embryos (IMP,

black squares) were quite similar among themselves and
formed a relatively homogeneous cluster in the principal-com-
ponent space. In contrast, the spectra recorded from the super-
natants of the NIMP embryos (green squares) were distributed
over a much wider range, did not follow any specific pattern,
thus exhibiting a larger spectral heterogeneity (see also ESI
Heterogeneity analysis and ESI Fig. S5†). However, within this
context, we also need to mention that a significant fraction of
spectral fingerprints from the NIMP embryos were indistin-
guishable from the footprints of the supernatants of the

Fig. 4 Spectral description of embryo-culture supernatants. Panel A: FTIR spectrum of a 3-day-embryo supernatant recovered from the culture of
an embryo of class IMP. The main spectral windows (W1 to W5) indicated above the figure correspond to: W1 aliphatic chains, (2800–3000 cm−1),
W2 the region assigned to protein absorptions (1500–1800 cm−1), W3 the mixed region (1200–1500 cm−1), W4 the region assigned to carbo-
hydrate-absorption bands (900–1200 cm−1), and W5 the fingerprint region (650–900 cm−1). υ = stretching vibrations, s = symmetric vibrations, and
as = antisymmetric vibrations, δ = bending. Panel B: spectral windows associated with functional groups in biomolecules and the band assignments
for the 3-day-embryo supernatants.
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Fig. 5 Metabolomics study of embryos based on FTIR spectroscopy in combination with multivariate analyses. Panel A: PCA-score plot based on
FTIR metabolic fingerprinting of embryo-culture supernatants. Black squares, class IMP, (spectra of supernatants from embryos that implanted at
100%); green squares, class NIMP (spectra of supernatants for embryos that did not implant at 0% implantation). Panel B: classification of the results
of class-NIMP data by SIMCA modelling. Orange dots, class IF (implantation fingerprinting); blue dots, class NIF (nonimplantation fingerprinting).
Panel C: logic diagram indicating the distribution of samples according to the implantation outcomes (IMP versus NIMP) and their assignment to the
IF or NIF groups according to the results obtained by the PCA and SIMCA analyses. The IF group comprises all the IMP spectra (26 samples) and a
fraction of the NIMP spectra with features of the metabolic implantation fingerprint (40 samples), while the NIF group contains nonimplantation
fingerprints from the NIMP spectra (64 samples). Panel D: distribution of embryo-morphology qualities as determined by the Istanbul consensus
within the IF and NIF groups (morphology grade 1, morphology grade 2, and morphology grade 3). The percent distribution of the different morpho-
logical grades is plotted on the ordinate for the two metabolomic classes indicated on the abscissa. The statistical analysis revealed no significant
differences between the embryo morphology grades observed with the IF and the NIF patterns (p = 0.125).
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implanted embryos (see NIMP fingerprints overlapping with
IMP footprints in Fig. 5, panel A). This observation and the
higher heterogeneity level of the NIMP fingerprints suggested
the presence of altered metabolic states in the embryos that
did not implant. We were thus tempted to speculate that some
of those altered states may be responsible for the nonimplan-
tation. In contrast, among the NIMP group of samples, a sig-
nificant number of embryos with biochemical implantation
fingerprints similar to or overlapping with those of IMP might
belong to embryos that could be good candidates on the basis
of their metabolomic patterns but failed to implant owing to
the other parameters not associated with metabolomics and
thus were not reflected in the spectroscopic methods (e.g.,
maternal features like overweight, age, and smoking habits,
among other). Those samples were therefore falsely grouped in
the wrong class from the metabolomics point of view.

In most of the metabolomic-based investigations carried
out thus far, the available data are first preclassified according
to the implantation outcomes in two classes: (i) samples
belonging to embryos that implanted or resulted in a live birth
and (ii) samples belonging to embryos that failed to do either.
Then, these two classes serve as reference data for training
different supervised learning algorithms.55,64 Supervised data
processing methods such as genetic algorithms or least-
squares regressions use these spectra a priori assigned to
classes such as teaching information data to build models that
are later used to predict the outcomes of unknown
samples.24,28–33,35 Under our working hypothesis, there is a
certain group of NIMP embryos that express metabolomic bio-
markers for embryo implantation but fail to implant for other
reasons. Consequently, the use of the fingerprints of nonim-
planted embryos as one of the references to establish a model
disregards the reality that implantation is a multifactorial
event.

To test our hypothesis, we employed the SIMCA method,70

a one-class modelling technique that involves only a single
class of objects to establish a discrimination model. The
model can then be used to classify any new subject as to either
belonging to the class or being outside of the class. This
approach is particularly well suited for the example of embryo-
supernatant data as embryos with implantation results (IMP)
are quite similar among themselves and can be used to estab-
lish such a model, whereas the embryos with nonimplantation
results (NIMP) are more disparate. Thus, a SIMCA model was
established with the spectra of the IMP group. The SIMCA
model is represented by a class border (see Fig. 5, panel B,
curved line) that separates samples that belong to the class
from those falling outside the class. The model then, upon
challenged with the NIMP samples, separated that class into
two groups. The first contained the so-called “implantation
fingerprints” (IF)—i.e., comprising spectra from samples with
a metabolic fingerprint similar to IMP (Fig. 5, panel B, orange
dots). The second class, formed by putative “nonimplantation
fingerprints” (NIF), contained spectra from supernatants with
altered metabolic states (Fig. 5, panel B, blue dots). We need to
note here that the NIMP spectra are exclusively—but no IMP

samples—plotted in Fig. 5, panel B. From this plot, we can
clearly recognize that some NIMP fingerprints belong to the
model space characterized by implanted-embryo fingerprints
(IF, orange dots) while others fall outside that model space
(NIF, blue dots). This situation is also reflected in the logic
diagram in Fig. 5, panel C; which illustrates that the class IF
was composed of all 26 of the IMP spectra along with 40 of the
NIMP spectra having features of the metabolic-implantation
fingerprints (the 40 orange dots in Fig. 5, panel B), altogether
totalling 66 samples. The NIF class contained the remaining
64 fingerprints from the NIMP spectra (blue dots in Fig. 5,
panel B). Interestingly, the classification by the SIMCA model
provided an almost perfect balance between the IF and NIF
classes (i.e., 66 versus 64). This observation suggested that,
according to our hypothesis, roughly half of the embryos had
implantation potential. As the restructuring of data involved
redistributing the NIMP group into two classes according to
the implantation metabolomic fingerprint (IF and NIF), it was
also worthy to study whether the spectral data heterogeneity
was modified (ESI Heterogeneity analysis†). As expected, we
found that the IF spectra were quite homogeneous yielding a D
value and a standard deviation similar to the ones obtained
for the IMP group (D ± SD = 10.88 ± 7.24 for IF group vs. D ±
SD = 11.70 ± 7.00 for IMP). Interestingly, the NIF group was
highly heterogeneous, giving even higher D and standard devi-
ation values than the NIMP class (D ± SD = 33.35 ± 25.72 for
NIF class vs. D ± SD = 21.98 ± 16.97 for NIMP group). This high
deviation or variation in the NIF class might indicate the diver-
sity of the abnormal metabolic profiles and/or cellular pro-
cesses that may occur in abnormal embryo development in
contrast to the IF class characterized by a defined metabolic
pathway.

An in-depth analysis of the second derivatives of the spectra
belonging to the NIF and IF groups revealed certain spectral
differences mainly in the spectral regions W2 and W3 (ESI
Fig. S6†). A decrease in the intensities of the 1530 and
1515 cm−1 peaks associated with amino acids was observed in
the IF spectra in comparison with those of the NIF spectra. In
addition, in accordance with a Raman based study,74 these
spectra exhibited differences in the region 1330–1440 cm−1

(W3) that could be attributed to the symmetric stretching
vibrations of the –COO− functional groups of amino-acid side
chains. These spectral variances could be indicative of a differ-
ence in the amino-acid turnover between the two groups of
embryos, as previously inferred by other technologies.
Moreover, these changes in the spent culture medium are in
accord with previous studies indicating that amino acid turn-
over could be used to evaluate embryonic viability.22,75,76

Particularly, the turnover of three amino acids, Asn, Gly and
Leu, was previously reported to be significantly correlated with
clinical pregnancy and live birth.77,78 Furthermore, impor-
tantly it was demonstrated that those correlations were inde-
pendent of known predictors, such as female age and embryo
morphological grade.77 These results revealed that SIMCA ana-
lysis could in fact discriminate between embryos presenting
different metabolomic profiles.
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Another important finding was that among the spectra in
IF class, we encountered a proportion of samples that
although presenting metabolomic fingerprints (IF class) did
not implant (green squares in IF group, Fig. 5, panel C).
Aiming to identify the potential causes for those embryos with
IF to have failed to implant, different statistical analyses were
performed using the patients’ clinical data registered in the
OpenClinica database (cf. the Methods section and ESI† for
converting numerical into qualitative variables). This database
contained certain parameters obtained from patients that are
known to be associated with implantation outcomes such as
women’s age (between 27 to 42 years classified into three cat-
egories, <35, from 35 to 40, and >40), women’s BMI, divided
into 4 classes from normal weight to obesity, and smoking
habits (categorized into 5 groups, from nonsmoker to smoker
at more than 20 cigarettes per day). Each of these parameters
was analyzed independently (ANOVA) and in combination
(MANOVA). Through this approach, we could confirm that
woman’s age was the main factor significantly associated (p <
0.05) with the nonimplantation of embryos within the class
NIMP classified by SIMCA as the IF class (comprising those
having implantation potential; ESI Fig. S7, panel A†).
Accordingly, upon analyzing the distribution of the mothers’
ages, we found that within the IF class the IMP group (those
same 26 samples) did not contain women older than 40 years,
while the NIMP group (40 samples) included women of all
three age-categories (age groups 1, 2 and 3; ESI Fig. S8, panel
A†).

Another question that we wanted to address was if any of
the external parameters analyzed here could have triggered the
embryos to express either IF or NIF metabolomics. In an
ANOVA comparison of the classes IF (26 + 40 samples) and NIF
(64 samples), we found that the samples predicted as NIF were
typical of women of a statistically relevant higher age (ESI
Fig. S7, panel B†). In fact, a comparison of the distribution of
the mothers’ ages within IF and NIF revealed that the NIF
class contained a higher number of women older than 40
years (ESI Fig. S8, panel B†). It is well known that age has the
strongest influence on a woman’s chance to become
pregnant,79–85 with advanced age causing a reduction in the
ovarian follicular pool, perturbations in ovulation, and an
increase in meiotic errors within the oocyte.86,87 This example
is one among several different clinical predispositions that
could induce an embryo to express an implantation or nonim-
plantation metabolomic fingerprint. Another element to con-
sider at this point is that in the last decades it has widely been
studied that the metabolic profile of biological specimens is
affected by numerous factors, such as age, ethnicity, environ-
ment, lifestyle and other factors.88 In our study, the metabolo-
mic fingerprinting of embryo supernatants may present the
contribution of biological markers associated with mothers’
age together with the signatures owing to embryos implan-
tation potential. Nevertheless, the classification model by
SIMCA has been built using only IMP class which happened to
be just young mothers (age 0–2 grade). However, when the
model was applied to the rest of the data (NIMP class), we

observed that the implantation fingerprint (IF samples) was
detected for mothers of the older group too (grade 3) (ESI
Fig. S7, panel B†). This demonstrated that the model does not
depend on the mother’s age but rather focuses on the
embryo’s differences to detect whether the embryos are of
good quality to be implanted. Besides, we also showed that
amino acid turnover represents one of those metabolomic
markers that contribute to the discrimination between IF and
NIF (ESI Fig. S6†). We can therefore address that the discrimi-
native signatures between IF and NIF are dominated by fea-
tures emerging from implantation potential and not from
women’s age.

By combining patients’ clinical data stored at OpenClinica
and the results of our SIMCA model, we could show how the
successful implantation of an embryo relies on intricate and
multiple contributions. As it has been previously reported,
embryo implantation depends not only on eggs and sperm,
which determine the quality of resulting embryos, but also on
the endometrium, ovarian-stimulation regimes, laboratory
conditions, and many other external parameters.89

Of further interest to us was to compare embryo mor-
phology within the IF and NIF classes (Fig. 5, panel D). A stat-
istical analysis (Chi2) demonstrated that the morphological
distribution of the embryos (grades 1, 2, and 3) observed
within the IF and the NIF classes was not significantly
different (p = 0.125). In accordance with this result, previous
studies have demonstrated that other technique grading
systems based on the embryo-cleavage rate and morphological
features were found not to be correlated with the different
metabolomic patterns.75 Thus, embryo morphology seems not
to be correlated with its phenotypic traits.

In a retrospective analysis examining the combined results
of FTIR and SIMCA, we observed that within the NIMP group
more than 50% (64 out of 104 embryos) presented an NIF
pattern (Fig. 5, panel C). Thus, these NIMP-NIF embryos would
not have been transferred to mothers if they had first been
analyzed by the approach employing both FTIR and SIMCA.
We need, however, to remark that the criterion for selecting
the embryos for transfer was based largely on their morpho-
logical appearance (86% of these embryos presented the
highest morphology grade according to the Istanbul consen-
sus). Our results indicate, therefore, that reconstruction of the
data including SIMCA in the IF and NIF will certainly be
helpful as a practical adjunct since this additional information
would decrease the implantation rate failures and significantly
improve the overall IVF outcome. Nonetheless, these results
definitely have to be verified experimentally in a follow-up
study.

Different strategies can be described for the process of
selecting the embryo with the highest probability of implan-
tation within an embryo cohort. The first represents the devel-
opment of models that identify embryo biomarkers associated
with embryo “quality”. In this regard, we can apply different
approaches—namely, those based on embryonic morphology
(microscopic morphological analysis and time-lapse imaging
techniques), on the quality of the embryo’s genetic material
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(noninvasive PGT), or on embryo metabolomics (NIR, FTIR,
Raman, and proteomics methods). Then, if a large cohort of
patients were available, by combining more than one of these
different approaches to assess embryonic viability, a further
improvement in developing robust multifactorial implantation
models for selecting the best embryo for transfer would also be
possible. Nevertheless, even then, we still could not ensure that
such embryos with the best “score” would implant. We have
demonstrated here that suitable candidates from the metabolo-
mic point of view may fail in their implantation owing to other
parameters, of equal consequence, associated with patients’ life-
style, habits, and/or external characteristics such as smoking
habits, BMI, age, and stress—in addition to the embryo-transfer
quality—just to mention a few. Consequently, a margin of uncer-
tainty involving the patients’ profile and external conditions will
always exist, the elements of which are often difficult to be
included in a model. Therefore, we believe that to enhance the
efficiency of IVF procedures, efforts should focus particularly on
two aspects (i) combining different approaches for embryo
assessment (morphokinetics, genetics, proteomics, and metabo-
lomics) and (ii) improving dataset classification and data ana-
lysis. The combination of different embryo-assessment methods
could enable the evaluation of an embryo’s complete status with
respect to implantation outcome. We have here established the
basis for how embryo data should be analyzed in order to
develop novel models for embryo selection in IVF treatments.
This research, therefore, constitutes a significant contribution
in the area of assisted fertilization by offering a novel approach
for embryo assessment and data treatment in IVF.

4. Conclusions

In this work, we have demonstrated for the first time the poten-
tial of FTIR spectroscopy combined with multivariate analysis
for gaining insights into the fundamental aspects associated
with embryo metabolomics and for improving implantation out-
comes. Our findings have significant implications for the
understanding of how embryo data should be classified and
analyzed in order to develop new models for embryo selection
in IVF treatments. This research has also allowed us to under-
stand the impact of the different clinical characteristics of the
mother—such as mother’s age—on embryonic metabolomics
and implantation rates, demonstrating the importance of
assuming that implantation represents a highly complex multi-
factorial process when developing novel IVF models. Although
this study was focused on FTIR spectroscopy of 3-day embryo
culture supernatants, the data analysis strategy proposed here
can be applied to future research analyzing data from 5 or 6-day
embryo culture as well as different kinds of data obtained from
genetics, proteomics, or metabolomics.
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