Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages

Abstract

Cholesterol, as a major component of cell membranes, is closely related to the metabolic regulation of cells and organisms; tumor-associated macrophages play an important push role in tumor progression. We know that tumor-associated macrophages are polarized from macrophages, and the abnormalities of cholesterol metabolism that may be induced during their polarization are worth discussing. This manuscript focuses on metabolic abnormalities in tumor-associated macrophages, and first provides a basic summary of the regulatory mechanisms of abnormal macrophage polarization. Subsequently, it comprehensively describes the features of abnormal glucose, lipid and cholesterol metabolism in TAMs as well as the different regulatory pathways. Then, the paper also discusses the link between abnormal cholesterol metabolism in TAMs and tumors, chronic diseases and aging. Finally, the paper summarizes cancer therapeutic strategies targeting cholesterol metabolism that are already in clinical trials, as well as nanomaterials capable of targeting cholesterol metabolism that are in the research stage, in the hope of providing value for the design of targeting materials. Overall, elucidating metabolic abnormalities in tumor-associated macrophages, particularly cholesterol metabolism, could provide assistance in tumor therapy and the design of targeted drugs.

Graphical abstract: Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
04 Feb 2025
Accepted
01 Apr 2025
First published
01 Apr 2025

J. Mater. Chem. B, 2025, Advance Article

Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages

Q. Ma, Y. Zhu, D. Zhang, X. Su, C. Jiang, Y. Zhang, X. Zhang, N. Han, G. Shu, G. Yin and M. Wang, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D5TB00236B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements