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Optical deformation potential and self-trapped exci-
tons in 2D hybrid perovskites†

Zhi-Gang Yu∗

Self-trapped excitons (STEs) in two-dimensional (2D) hybrid organic-inorganic perovskites
(HOIPs) emit broadband white light, suggesting a great potential of 2D HOIPs in low-cost lighting
and display applications. A prerequisite for understanding STEs’ properties is a correct identifica-
tion of the underlying interaction that leads to the STEs. Here we show that the long-range polar
coupling between electrons and optical phonons is quenched in 2D HOIPs’ tightly bound excitons
and cannot effect STEs. Rather, the STEs are induced by a short-range optical deformation po-
tential (ODP) arising from phonon-modulated Pb-X quantum-well thickness. Interaction between
transition dipoles in adjacent PbX6 (X= Br or I) octahedra gives rise to highly anisotropic intra-
and inter-layer exciton bandwidths. In flat (001) 2D HOIPs, both the ODP and the exciton band-
widths are susceptible to out-of-plane PbX6 tilting but not in-plane one, and their interplay can
quantitatively account for the observed temperature and structure dependences of luminescence
associated with STEs. In corrugated (011) 2D HOIPs, the exciton bandwidth is further reduced
and the resultant STEs have a stronger lattice distortion and broader luminescence spectrum. Our
results reveal the mechanism of STE formation and suggest ways of tuning STEs and associated
broadband luminescence in 2D HOIPs.

1 Introduction
Hybrid organic-inorganic perovskites (HOIPs) like CH3NH3PbI3,
with an unprecedented photovoltaic efficiency exceeding 20%
from solution-processed samples, represent a revolutionary
breakthrough in low-cost solar cells1–3. When CH3NH3

+ is
replaced by a long organic ion like C10H21NH3

+, the three-
dimensional (3D) HOIP is sliced into two-dimensional (2D) lay-
ers4. Depending on the organic ligands’ arrangement, the 2D
sheets are either flat when slicing the 3D HOIPs along the (001)
surface, or corrugated when slicing along the (011) surface5. The
quasi 2D HOIPs, which can be viewed as perfect quantum-well
(QW) superlattices of alternating organic and inorganic layers
without interfacial roughness4, have shown a great promise in
optoelectronic applications. Solar cells based on 2D HOIPs have
attained high photovoltaic efficiency6 with a much improved en-
vironmental stability and photostability under operating condi-
tions7,8. The weakened Coulomb screenings in 2D transforms
loosely bound Wannier excitons in 3D HOIPs into highly con-
fined Frenkel-like excitons with a large binding energy, as demon-
strated both experimentally and theoretically9,10. The strong ex-
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citon binding in 2D HOIPs results in exceptional light-emitting
performance11, which can be further improved by reducing the
electron-phonon coupling12. Acoustic and optical phonon scat-
tering, particularly those via deformation potentials, are found to
influence transport of free excitons in 2D HOIPs13.

Compared to their 3D counterpart, 2D HOIPs7,8,14–20 have an-
other distinct feature: easy formation of self-trapped excitons
(STEs). The concept of self-trapping can be traced to Landau21,
who showed that under a strong electron-phonon interaction, an
otherwise free and delocalized electron can be trapped by the lat-
tice, forming an immobile and highly localized low-energy state.
Self-trapped particles, which can be electrons, holes, and exci-
tons22,23, are qualitatively different from the free ones and can-
not be achieved from the latter by treating the electron-phonon
coupling perturbatively (via phonon scattering). In 2D HOIPs,
STEs give rise to broadband white luminescence7,14,15,19,20. This
outstanding property, together with the increased material sta-
bility7,8, promises a bright future of 2D HOIPs in optoelectronic
applications such as display and single-component light-emitting
devices, stimulating extensive studies of the STEs19,20,24,25. One
particularly intriguing observation is that an out-of-plane PbX6 (X
is halogen element Br or I) octahedral tilt strongly facilitates the
formation of STEs whereas an in-plane one does not19. Another
puzzling observation is that corrugated 2D HOIPs tend to exhibit
broader luminescence than flat ones25. To understand these sur-
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prising and useful properties of STEs, one must first identify the
underlying interaction that leads to STEs in 2D HOIPs.

The ionic character of HOIPs suggests a significant long-range
polar coupling, Hp, between electrons and electric polarization
generated by longitudinal optical (LO) phonons, especially those
associated with Pb-X stretching. The matrix elements of Hp be-
tween electronic states are 〈kkk|Hp|kkk−qqq〉= iV e

p (qqq)(bqqq +b†
−qqq), where

b†
qqq creates an LO phonon with wavevector qqq, kkk and kkk±qqq are elec-

tron wavevectors, and coupling V e
p (qqq)∼ 1/|qqq|26,27. The polar cou-

pling is the primary source of carrier scattering for temperatures
T > 100 K in 3D CH3NH3PbI3

27 and responsible for formation of
large27,28 or small29 electron and hole polarons. It has been tac-
itly assumed in literature that it would be responsible for STEs
in 2D HOIPs as well. Close examination (see below), however,
indicates that the polar coupling to the oppositely charged elec-
tron and hole is essentially canceled out in tightly bound excitons
of 2D HOIPs. Hence the long-range polar coupling cannot effect
STEs.

Here we show that the microscopic driving force of STEs is a
deformation potential engendered by X-Pb-X stretching that mod-
ulates the thickness of individual 2D layers. This thickness mod-
ulation simultaneously increases or decreases the quantized elec-
tron and hole energies in the Pb-X QW, leading to strong exciton-
phonon coupling. Using this optical defromation potential (ODP)
and optical selection rules associated with excitons30, we con-
struct a microscopic model to describe STEs in 2D HOIPs. The
observed STE properties are consistently unraveled by the inter-
play of the ODP and anisotropic exciton bandwidths, which can
be systematically tailored via PbX6 octahedral tilting, layer corru-
gation, and layer-thickness variation.

2 Exciton-phonon interactions

2.1 Phonons and electron-phonon interactions

Phonon calculations in 2D HOIPs based on first principles have
been reported in literature31. Vibrational modes that strongly
couple to conduction- and valence-band electrons in 2D HOIPs
are confined in Pb-X inorganic network and have similar frequen-
cies as in their 3D counterpart32. Among them are the Pb-X bend-
ing and stretching modes, which give optical branches in phonon
spectra. The bending modes have an energy of h̄Ωb = 3− 6
meV and the stretching modes h̄Ωs = 11− 16 meV for bromides
and iodides31,32. Because of the ionic character in Pb and X,
these modes usually generate a dynamic longitudinal electric
field along the ions’ motion direction, which then interacts with
charged electrons and holes, giving rise to a long-range polar cou-
pling between electrons (holes) and LO phonons. In HOIPs, the
Pb-X stretching mode has a much stronger polar coupling than the
bending one27. In addition to optical phonons, acoustic phonons,
or equivalently, elastic waves, are always present in HOIPs. Elastic
waves introduce strain, ∇u, with u being the lattice distortion, and
interact with electrons via a strain-induced deformation poten-
tial Ec(v)∇u with Ec(v) being the deformation-potential strength
associated with the conduction (valence) band. In HOIPs and
many compound semiconductors, the polar coupling is the domi-
nant electron-phonon coupling that limits carrier transport. Only

at low temperatures with few LO phonons present, does the de-
formation potential between electrons and low-energy acoustic
phonons manifest itself in carrier mobility27. It has been implic-
itly assumed in literature that the polar coupling is responsible for
the formation of STEs in 2D HOIPs. Here we show that the polar
coupling to excitons in 2D HOIPs becomes ineffective.

2.2 Quench of polar coupling to excitons

A quasi 2D HOIP, as illustrated in Fig. 1a, consists of alternat-
ing inorganic Pb-X layers with thickness of la and organic lay-
ers with thickness of lb. Their corresponding dielectric constants
are εa and εb with εa > εb. The ineffectiveness of polar coupling,
Hp, to excitons in 2D HOIPs is clearly seen from the hydrogenic
model of excitons. The hydrogenic model, while oversimplified
as compared to more elaborated works for 2D HOIPs10, accen-
tuates the essence of polar coupling to a tightly bound exciton.
In this model, the size and binding energy of the lowest exciton
are a0 = h̄2

ε/e2µ and Z∗ = µe4/2ε2h̄2, with µ being the reduced
mass of electron-hole pair, µ−1 =m−1

e +m−1
h , me (mh) the effective

electron (hole) mass, and ε ≡ (laεa + lbεb)/(la + lb) the volume-
averaged dielectric constant33. For a typical value of µ = 0.15m
(m is the free-electron mass) in 2D HOIPs17, the large binding
energy Z∗ ≥ 200 meV4 indicates that the size of exciton a0 < 10
Å [a0 ' 5 Å and Z∗ = 470 meV in (C4H9NH3)2PbI4)10] is compa-
rable to the size of PbX6 octahedra, about 6 Å. The wavefunction
for such an exciton with center-of-mass wavevector kkk is34

|Φkkk〉=
1√
V

eikkk·RRR 1
πa3

0
e−r/a0 , (1)

where RRR = (merrre +mhrrrh)/mex is the center-of-mass coordinates,
mex = me +mh, rrre (rrrh) is the electron (hole) location, rrr≡ rrre− rrrh is
the relative coordinates, and V is the volume. The polar coupling
of such an exciton is 〈Φkkk|Hp|Φkkk−qqq〉 = iV ex

p (qqq)(bqqq + b†
−qqq) with (see

the Supplementary Information)34

V ex
p (qqq) =

(4παe

V

)1/2( h̄
2meΩs

)1/4 h̄Ωs

q

( 1
[1+(pea0q/2)2]2

− 1
[1+(pha0q/2)2]2

)
, (2)

where αe is the dimensionless polar-coupling strength of Pb-X
stretching for electron26 and pe(h) = mh(e)/mex. This coupling, as
plotted in Fig. 1b, reduces to zero for long-wave phonons (small
q) and reaches maximum around q ∼ 1/a0. For an exciton with
me = mh, contributions from oppositely charged electron and hole
would exactly cancel out. The similar values of me and mh to-
gether with the small a0 in 2D HOIPs make V ex

p (qqq) weak over the
entire range of q. It should be noted that for disparate electron
and hole masses, as illustrated by the magenta line in Fig. 1b,
the polar coupling remains sizable even if the exciton is highly
confined, and is indeed the driving force of STEs in 3D alkali
halides35.
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Fig. 1 ODP and polar coupling of excitons in quasi 2D HOIPs. (a) Schematic diagram illustrating the ODP. (b) Polar coupling and ODP of excitons
in 2D HOIPs as a function of qa0. In (a), alternating inorganic and organic layers form wells and walls of QWs. Cyan and brown diamonds represent
PbX6 inorganic octahedra with and without phonon-induced QW dilation or compression, which is described by red arrows. Shaded ovals represent
organic ligands with NH3 groups depicted by dark green circles. The displayed molecular structure is for a representative organic ligand, C10H21NH3.
The phonon-modulated width of QWs shifts the quantized electron (magenta lines) and hole (green lines) levels from their equilibrium values (solid
lines). In (b), solid black and red lines describe the polar coupling and the ODP of an exciton with me = 0.291m and mh = 0.321m while dashed black and
red line describe those of a conduction electron with me = 0.291m. The magenta line describes the ODP of an exciton for disparate electron and hole
effective masses, me = 0.291m and mh = m. Orange and brown lines describe acoustic-phonon coupling of an exciton with phonons polarized along and
across the Pb-X layers (see the Supplementary Information for details). Other parameters are h̄Ωs = 14 meV, αe = 1.1, la = 6 Å, and ε = 3.

2.3 Optical deformation potential

With polar coupling to excitons in 2D HOIPs quenched, STEs
must be driven by an alternative coupling between excitons and
phonons. Since the lattice distortion of STEs in 2D HOIPs is essen-
tially confined to a single PbX6 octahedron, this coupling is likely
to arise from optical phonons. We notice that inorganic Pb-X lay-
ers in 2D HOIPs, as shown in Fig. 1a, can be described by perfect
QWs4 with their thickness la determined by the distance between
the two apical X atoms in a PbX6 octahedron. In such a QW, the
electron motion in the inter-layer direction (z-axis) is confined,
resulting in quantized energies for both conduction electrons and
valence holes. For an electron (hole), the lowest energy level is
Ee(h) = π2h̄2/(2me(h)l

2
a )−We(h) with We(h) being the depth of QWs

for the electron (hole). Consider the three-atom X-Pb-X chain in
a PbX6 octahedron normal to the Pb-X layer. Of the three eigen
modes of the X-Pb-X chain, one has the central Pb stationary and
the two X atoms moving out-of-phase, i.e., the B1g mode32. The
frequency of this mode (see the Supplementary Information) is
determined by the spring constant of the Pb-X bond stretching
and the mass of X atom and is set h̄Ωs = 14 meV36 throughout
the paper. While stretching (contracting) of X-Pb-X in this mode
does not induce an electric field because of the symmetry (ho-
mopolar)13,37,38, it swells (reduces) the QW thickness, which de-
creases (increases) the quantized electron and hole energies38 to
Ee(h) = π2h̄2/[2me(h)(la +δ z)2]−We(h) with δ z/2 being the stretch-
ing amplitude of the B1g mode. For an exciton, whose energy can
be expressed as E0

ex = Ee +Eh−Z∗, the changes in electron and
hole energies influence E0

ex, leading to a coupling between exci-
tons and the X-Pb-X vibration. Since this coupling is caused by
an optical-phonon-induced deformation in the Pb-X QW, it is re-
ferred to as optical deformation potential (ODP). The ODP to an
exciton is strong because contributions from the electron and the

hole reinforce each other. This is in stark contrast with the polar
coupling in Eq. (2), where contributions from the electron and
the hole negate each other. For a change in the QW thickness, δ z,
along the z-axis, the ODP can be expressed as Hod = Aδ z with the
coupling strength

A =
∂E0

ex
∂ z
≡ ∂ (Ee +Eh−Z∗)

∂ z
=−π h̄2

l3
a

( 1
me

+
1

mh

)
+Z∗

εa− εb

ε(la + lb)
.

(3)
Here in evaluating ∂Z∗/∂ z, which arises from the variation of ε

in the presence of fluctuations in QW thickness la, we keep the
lattice constant along the z-axis, c ≡ la + lb, a constant. In 2D
HOIPs, ∂Z∗/∂ z is usually much smaller than ∂ (Ee +Eh)/∂ z (See
the Supplementary Information).

The matrix element of ODP between free exci-
ton states is 〈Φkkk|Hod|Φkkk−qqq〉 = V ex

od (qqq)(bqqq + b†
−qqq), where

V ex
od (qqq) = A(h̄/2MNΩ)1/2, M is the mass of X ion, and N the

number density of PbX6 octahedra. From Fig. 1b, we see that
V ex

od (qqq) is orders-of-magnitude stronger than V ex
p (qqq) of Eq. (2).

We have also considered coupling between acoustic phonons
and tightly bound excitons in 2D HOIPs (See the Supplementary
Information). Acoustic phonons do not change the QW thickness
which controls the quantized electron and hole energies, but
rather, interact with excitons by modifying distances between
adjacent PbX6 octahedra. The calculated coupling between
acoustic phonons and excitons, as plotted in Fig. 1b, is orders-
of-magnitude weaker than the ODP and can thus be neglected
in studying STEs. We emphasize that the ODP described here is
unique in 2D systems and distinct from the deformation potential
caused by acoustic phonons in that the former is proportional to
lattice distortion, while the latter to strain.
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3 STEs and their signatures in lumines-
cence

3.1 Exciton band structure

In 2D HOIPs both free excitons (FEs) and STEs can exist, as mani-
fested in sharp and broad peaks in luminescent spectra. If we tem-
porarily neglect the ODP, all excitons would be FEs, i.e., electron-
hole pairs bound by the Coulomb interaction. FEs are delocal-
ized Bloch waves, whose energies with different center-of-mass
wavevectors kkk form a band. Since in 2D HOIPs excitons have a
size comparable to that of a PbX6 octahedron, they can be re-
garded as Frenkel excitons in individual PbX6 octahedra, with the
band structure conveniently described by a real-space Hamilto-
nian,

Hex = ∑
i

E0c†
i ci +∑

〈i j〉
ti jc

†
i c j. (4)

Here c†
i creates an exciton centered at the PbX6 octahedron of

site i, |Φ̃i〉, with energy E0 = Eg−Z∗, where Eg is the energy gap
between conduction and valence bands. The neighboring cou-
pling ti j, which facilitates exciton motion (hopping) from site
j to an adjacent site i (denoted by 〈i j〉), originates from the
interaction between transition dipoles associated with excitons,
ti j =

1
|RRRi j |5 [(dddi · ddd∗j)2|RRRi j|2 − 3(dddi ·RRRi j)(ddd∗j ·RRRi j)]

39, where RRRi is the

coordinate of site i, RRRi j = RRRi−RRR j, and dddi is the transition dipole
moment from the ground state |G〉 to |Φ̃i〉, dddi = 〈Φ̃i|errr|G〉. If we
approximate the lattice structure of a 2D HOIP as simple tetrag-
onal, with intra- and inter-layer lattice constants being a and
c, the Hamiltonian (4) can be diagonalized in the momentum
space, Hex = ∑kkk E0

kkk c†
kkkckkk, where c†

kkk creates a FE with wave vector kkk,
|Φkkk〉= N−1/2

∑i eikkk·RRRi |Φ̃i〉, with exciton dispersion

E0
kkk =

B⊥
4

[2− cos(kxa)− cos(kya)]+
1
2

Bz[1+ cos(kzc)]. (5)

Here the smallest E0
kkk is set zero and B⊥ and Bz are the intra- and

inter-layer bandwidths, which characterize the kinetic energies of
exciton’s motion within and across Pb-X layers.

The bandwidths B⊥ and Bz are proportional to ti j between
neighboring dipoles dddi, whose magnitude and orientation are
controlled by the exciton’s optical selection rules. In HOIPs the
conduction and valence bands have angular momenta jc = jv =

1/2, resulting in four kinds of excitons30, where Γ1 is dark,
Γ2 is linearly polarized along the z-axis, and doublet Γ

±
5 are

circularly polarized in the x-y plane. Using the effective-mass
model18,30, we can express dddi in terms of intra- and inter-layer
oscillator strengths f⊥ and fz, 〈Γ±5 |errr|G〉 = d0eee± and 〈Γ2|errr|G〉 =
d0
√

fz/ f⊥eeez with d0 = eh̄
√

f⊥/(2mEg), where eee±=∓(eeex± ieeey)/
√

2
with eeeq (q = x,y,z) being the unit vector along the q-axis. In
2D HOIPs, f⊥ � fz, for example, f⊥ = 0.7 and fz = 0.01 in
(C10H21NH3)2PbI4

40, and dddi is due virtually to Γ
±
5 . For a left-

circularly polarized excitation, dddi = d0eee+, the intra- and inter-
layer bandwidths are

B⊥ =
2e2h̄2 f⊥
mEga3 , Bz =

2e2h̄2 f⊥
mEgc3 = B⊥

a3

c3 , (6)

are highly anisotropic in 2D HOIPs because c� a.

3.2 Formation of STEs

When the ODP of an exciton is turned on, the exciton eignstate
|ψ〉 and its energy Eex satisfy the Schrödingier equation

[Hex +Hod({Qi})]|ψ〉= Eex({Qi})|ψ〉, (7)

where Qi is a dimensionless lattice distortion at site i, Qi ≡
(h̄/MΩs)

−1/2(δ z)i. We have adopted the adiabatic approximation
and neglected in Eq. (7) the lattice’s kinetic energy. This is rea-
sonable as we are concerned with the ground state of an STE,
whose wave function is essentially determined by the potential
arising from lattice distortion. Non-adiabatic effect becomes im-
portant and should be taken into account in transitions between
an STE and an FE or between different STEs. Equation (7) is a
self-consistent equation of lattice and exciton because the ODP,
Hod({Qi}) = −γ ∑i Qi|ψ(RRRi)|2 ≡ A∑i(δ z)i|ψ(RRRi)|2, depends on the
exciton wave function ψ(RRRi) to be solved. The energy, Eex, of an
STE, a localized exciton state induced by the ODP, can be effi-
ciently obtained from the poles of the T-matrix associated with
the scattering potential Hod

39,41,

det[Iδi j +∑
l

G0(RRRil ;Eex)γQl |ψ(RRRl j)|2] = 0, (8)

where G0(RRR,E) is the Green’s function of FEs, G0(RRR;E) =

N−1
∑kkk eikkk·RRR/(E−E0

kkk ). We have applied this method, which is par-
ticularly effective for a short-range scattering potential, to exci-
tons in organics42 and to native point defects in strained layer
superlattices43. For tightly bound excitons in 2D HOIPs, whose
size is comparable to that of PbX6 octahedra, it is reasonable
to assume that STEs are localized within a unit cell. With the
potential Hod({Qi}) = −γQδi0, Eq. (8) reduces to a simple self-
consistent equation of lattice distortion Q and localized exciton
energy Eex(Q)< 041,

Q−1 =−γG0(0;Eex). (9)

For the anisotropic exciton dispersion in Eq. (5), we evaluate the
Green’s function,

G0(0;E) = − 4
π2

∫
π/2c

0
dkz

{ 1
B⊥+Bz[1− cos(kzc)]−2E

× K
( B⊥

B⊥+Bz[1− cos(kzc)]−2E

)
+

1
B⊥+Bz[1+ cos(kzc)]−2E

× K
( B⊥

B⊥+Bz[1+ cos(kzc)]−2E

)}
,

where K(x) is the complete elliptic integral of the first kind. Using
Eq. (9) we obtain for a given lattice distortion Q, the excitonic en-
ergy, Eex(Q), and the total energy U(Q) = 1

2 h̄ΩQ2 +Eex(Q), which
contains also the elastic energy due to the lattice distortion. As
illustrated in Fig. 2a, potential energy surfaces (PESs) U(Q) gen-
erally have three extrema: a minimum at Q = 0 corresponding
to the FE, a minimum at Q = QS corresponding to the STE, and
a maximum at Q = QB corresponding to the energy barrier that
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separates the FE from the STE. The energies at these extrema are
U(0) = 0, U(QB) = EB, and U(QS) = ES. When ES < 0, the STE
has a lower energy than the FE.

Figures 2b and 2c plot the calculated PES U(Q) for Bz = B⊥ and
Bz = 10−2B⊥, which mimic 3D and 2D structures. We see that
when the ODP is too weak, a localized state with Eex < 0 does
not exist, for to form STEs, the potential due to the ODP must
be deep enough to overwhelm the kinetic energy associated with
the exciton bandwidth. As the ODP strength increases, localized
states with Eex < 0 emerge, but U(QS) may still be positive, i.e.,
the STE has a higher energy than the FE. In this case excitons are
unlikely to populate around QS because photoexcited FEs do not
have enough energy to reach STEs. A further increase of the ODP
strength pushes U(QS) negative and it becomes energetically pos-
sible for FEs at Q = 0 to move to QS, forming STEs. The energy
barrier between the FE and the STE ensures that they both are
stable and can luminesce. The dependence of −ES and EB on the
ODP strength γ are shown in Figs. 2d and 2e for Bz = B⊥ and
Bz = 10−2B⊥, respectively. Comparing the 3D and 2D structures,
we see that in 2D structures the onset of STEs with ES < 0 oc-
curs at a smaller ODP strength, and for a given ODP strength, the
STE energy gain −ES is larger and the barrier height EB is smaller
than in 3D structures. Figures 2f and 2g display the increase of
−ES and decrease of EB with bandwidth anisotropy B⊥/Bz, re-
spectively. When the ODP is not too strong, STEs can be present
when B⊥/Bz is large but absent when B⊥/Bz is small. Thus, the
confluence of strong ODP and large anisotropy in exciton band-
widths results in prevalent STEs in 2D HOIPs. Conversely, the
small bandwidth anisotropy and weak ODP in 3D HOIPs suggest
that STEs are difficult to form there.

3.3 Luminescence of STEs and FEs

Experimentally, FEs and STEs manifest themselves with narrow
and broad peaks in photoluminescence. The integrated intensities
of broad and narrow luminescence, denoted IB and IN, are related
to the FE and STE densities, nF and nS, via IB/IN = k′rnS/krnF ∝

nS/nF, where the radiative recombination rate of STE (FE), k′r (kr),
is insensitive to temperature. According to Ref.19, the dynamics
nF and nS can be expressed as

dnF

dt
= g− (kt + kr)nF + k′tnS, (10)

dnS

dt
= −(k′t + k′r + k′nr)nS + ktnF. (11)

Here g is generation rate of FEs, kt (k′t) is the transfer rate
from FEs (STEs) to STEs (FEs), and k′nr is the nonradiative re-
combination rate of STEs. Since kt involves overcoming an en-
ergy barrier EB, kt = k0

t e−EB/kBT , where k0
t is independent of

temperature and kB is the Boltzmann constant. Detailed bal-
ance of transfers between FEs and STEs requires kt/k′t = e−ES/kBT .
In the steady state, dnF/dt = dnS/dt = 0, and we obtain from
Eqs. (10) and (11) nF = g(k′t + k′r + k′nr)/Z and nS = gkt/Z with
Z = kt(k′r + k′nr)+ kr(k′t + k′r + k′nr).

Figure 3b plots nS and nF as a function of reciprocal tempera-
ture. At low temperatures, nS (nF) increases (decreases) with T ,

which is reversed at high temperatures, where nS (nF) decreases
(increases) with T . Temperature dependence of nS/nF is shown
in Fig. 3c. These temperature dependences can be readily un-
derstood from nS/nF = kt/(k′t + k′r + k′nr). At low temperatures,
both k′t and k′nr are negligible, and consequently nS/nF ' kt/k′r =
(k0

t /k′r)e
−EB/kBT . At high temperatures, k′t can dominate over k′r

and k′nr, and nS/nF ' kt/k′t = e−ES/kBT 20, i.e., FEs and STEs are in
equilibrium. Hence from the measured temperature dependence
of IB/IN in the low- and high-temperature regimes, one can ex-
tract ES and EB. For example, the temperature dependence of
IB/IN of (HIS)PbBr4 reported in Ref.20 can be quantitatively ex-
plained by ES =−50 meV and EB = 7 meV, as shown in Fig. 3d.

The luminescence spectrum from STEs and FEs can be calcu-
lated from the obtained U(Q) by using the Franck-Condon princi-
ple,

I(ω) ∝

∫ QB

0
dQe−(U(Q)−µF)/kBT

δ

(
U(Q)−UG(Q)− h̄ω

)
+

∫
∞

QB

dQe−(U(Q)−µS)/kBT
δ

(
U(Q)−UG(Q)− h̄ω

)
,(12)

where h̄ω is the photon energy and UG(Q) is the PES of the
ground state. For generality, we regard the STE and the FE
as two species with respective chemical potentials µS and µF.
At high temperatures when FEs and STEs are in equilibrium,
µF− µS = 0; whereas at low temperatures, µF− µS can be fixed
by nF/nS = (k0

t /k′r)e
EB/kBT . The calculated luminescence, as delin-

eated in Figs. 3e and 3f, contains a broad low-energy peak due to
the STEs and narrow high-energy peak due to the FEs. The width
of the broad peak, ∆, can be estimated by the thermal distribution
of lattice distortion around QS of STEs, [QS− δQ,QS− δQ], with
δQ = kBT/2h̄Ω. Consequently, ∆ = (∂UG/∂QS)(kBT/h̄Ω). The
broad ∆, which increases with T , is due to the large ∂UG/∂QS,
as shown in Figs. 3e and 3f. On the other hand, luminescence
from FEs is narrow because at Q = 0, ∂UG/∂Q = ∂U/∂Q = 0. At
low temperatures, the significant luminescence from FEs is due to
the large nF, which is not in thermal equilibrium with nS.

4 Structural effects on STEs

4.1 Effects of PbX6 Tilting

Besides the interesting temperature dependence, IB/IN in 2D
HOIPs exhibits a strong correlation with an out-of-plane tilt of
PbX6 octahedra but not an in-plane one. This puzzle, which
has implications in tuning STE properties, can be naturally ex-
plained by the tilting effects on the exciton bandwidths and the
ODP strength. As we have shown, the transition dipole in 2D
HOIPs is dddi = d0eee+, which can be represented by spherical har-
monics Y1+(eeez). After a tilt of PbX6 octahedron, the symmetry
axis changes from eeez to eee′z at spherical polar angles (θ ,φ), and the
corresponding transition dipole ddd′i can be obtained from the finite
rotation matrix, D(1)

m′m(φ ,θ ,0) with its three arguments being the

Euler angles, Y1m(θ ,φ) = ∑m′m D(1)
m′m(φ ,θ ,0)Y1m′(eeez)

33, yielding

ddd′i(θ ,φ) = d0

(1+ cosθ

2
eiφ eee++

1− cosθ

2
e−iφ eee−+

1√
2

sinθeeez

)
.

(13)
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An in-plane tilt has θ = 0 and ddd′i(θ ,φ) = d0eiφ eee+, which remains
circularly polarized, and thus does not affect dipole-dipole cou-
pling or the bandwidths in Eq. (6). Nor does it alter the ODP
strength due to both the QW thickness la and the relevant X-Pb-X
vibration direction remaining unchanged.

By contrast, an out-of-plane tilt has θ 6= 0, and ddd′i(θ ,φ), accord-
ing to Eq. (13), is no longer circular polarized along eee+ but a
mixture of polarizations along eee+, eee− and eeez. With such a tilt,
two adjacent PbX6 octahedra within a layer have θ1 = −θ2 = θ ,
φ1 = −φ2 = φ , while those across layers have θ1 = θ2 = θ , φ1 =

φ2 = φ , as illustrated in Fig. 4a, and as a result, the intra- and
inter-layer bandwidths for small θ become

B⊥ '
2e2h̄2 f⊥
mEga3 cos2

θ , Bz =
2e2h̄2 f⊥
mEgc3

(
1− 3

2
sin2

θ

)
. (14)

Thus out-of-plane tilting reduces both intra- and inter-layer band-
widths, with a more pronounced effect on the latter, as delineated
in Fig. 4c.

An out-of-plane tilt also modifies the ODP strength. Such a tilt
would reduce the thickness of Pb-X layers from la to l′a = la cosθ .
Moreover, a dilation or compression of X-Pb-X bond length δu
contributes only partially to the variation in the Pb-X layer thick-
ness, δ z = δucosθ , as illustrated in Fig. 4b. Consequently, the ef-
fective ODP strength becomes γ/cos2 θ according to Eq. (3). Both
the reduction in bandwidths and the increase of ODP strength, as
discussed earlier, will enhance formation of STEs. We see in Fig.
4b that the STE energy gain −ES rapidly increases with the out-
of-plane tilting angle θ , which satisfactorily explains the observed
θ -dependence of ln(IB/IN) for several 2D HOIPs20. To account for
the experimental data, the tilting effects on both the exciton band-
widths and the ODP strength are important, as indicated by the
significant difference between the solid and dashed lines in Fig.
4d. We note that while the experimental data in Fig. 4d appear to
be linearly dependent on θ , the theoretical curves are parabolic at
small θ because both the ODP and exciton bandwidths are even
function of θ , which are consistent with the fact that θ and −θ

correspond to the same torsion.

4.2 Corrugated 2D HOIPs

While the STE model presented above was developed with flat 2D
HOIPs in mind, the quintessence of the model, namely, the inter-
play of the exciton bandwidths and the ODP, is in fact more gen-
eral and can be applied to corrugated 2D HOIPs as well. Corru-
gated 2D HOIPs, while less common than flat ones, possess highly
desirable attributes for optoelectronic applications. In fact, the
broadband white-light luminescence was first discovered in corru-
gated 2D HOIPs14. In addition, the depth n of a corrugated struc-
ture can be systematically varied, introducing another degree of
freedom for tailoring 2D HOIPs25. A recent study shows that a
corrugated n = 3 2D bromide emits a much broader luminescence
as compared to a flat one25. In such a corrugated 2D structure,
as illustrated in Fig. 5, the quantum confinement and associated
ODP resemble those of a flat structure. The major difference lies
in the arrangement of adjacent PbX6 octahedra: In the flat struc-
ture, each octahedron is surrounded by four adjacent octahedra in

the x-y plane, whereas in the corrugated one, only two adjacent
octahedra (along the x-axis) are in the x-y plane and the other
two having an angle of π/4 against the plane. Consequently, the
dipole-dipole coupling strengths along the x- and y-axes, tx and ty,
are different, |ty| = |tx|/2, indicating that the exciton bandwidth
along the y-axis is only half of that in a flat structure. With a de-
crease in the exciton bandwidth under a same ODP strength, STEs
would have a larger lattice distortion and greater energy gain
−ES, as shown in Fig. 5b, where PESs for different B⊥ are plotted.
Here to apply our modeling results for isotropic intralayer exciton
bandwidth, B⊥ = 8|tx| = 8|ty| = B0, to the corrugated structure,
we consider two cases with B⊥ = 8

√
|txty| = B0/

√
2 in one and

B⊥ = 8|ty| = B0/2 in the other. The two cases set the upper and
lower limits for the STE energy in the corrugated structure, as the
smaller one of |tx| and |ty| controls the onset of STE formation.
The computed luminescence spectra for B⊥ = B0/

√
2 and B0/2,

as displayed in Fig. 5b, are much broader than that for the flat
structure with B⊥ = B0, consistent with experiment. This agree-
ment on corrugated structures further supports the notion that
STEs in 2D HOIPs are determined by the interplay of the exciton
bandwidths and the ODP.

5 Conclusions
We have shown that the driving force of the STEs in 2D HOIPs is
the strong ODP arising from fluctuation in Pb-X QW’s thickness.
Many unusual properties of STEs in 2D HOIPs observed experi-
mentally can be unravelled by the interplay of the ODP and the
exciton bandwidth. Since broadband luminescence is largely dic-
tated by the STE’s PES, to achieve a white luminescence, one can
reduce the exciton bandwidth and/or enhance the ODP strength.
To have a strong ODP, according to Eq. (3), it is desirable to have
a small Pb-X QW thickness. Hence single layered QW structures
is more preferable than thicker 2D HOIPs such as those in high-
order Ruddlesden-Popper series. In addition, out-of-plane octahe-
dral tilting can reduce the effective QW thickness and therefore
enhance the ODP strength. Furthermore, a small reduced mass
of exciton, µ, would make excitons more susceptible to the quan-
tum confinement, leading to an increase in the ODP. To achieve a
narrow exciton bandwidth along the z-axis, Bz, one can use a long
organic ion to increase the interlayer distance. The intra-layer ex-
citon bandwidth B⊥ can be reduced by introducing out-of-plane
octahedral tilting in flat structures or employing corrugated struc-
tures. The high tunability afforded by the 2D HOIPs indicate the
STEs properties can be systematically tailored for broad applica-
tions in optoelectronics.

Since the ODP in 2D HOIPs originates from thickness fluctua-
tions of Pb-X QWs, it strongly couples to not only excitons but also
electrons and holes, as shown in Fig. 1b, and would contribute
to carrier scattering. Moreover, a strong ODP may trap electrons
and holes, resulting in small electron and hole polarons44. Note
that the small polarons in 2D HOIPs, which originates from
the unique ODP in 2D systems, are distinct from those in 3D
HOIPs29, which may arise when the polar coupling is strong. The
ODP-induced carrier scattering and small polaron formation can
drastically influence charge transport, particularly across layers.
Transport of small polarons is usually via hopping45, which is
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a thermal activation process and qualitatively different from
band-like transport of large polarons46 in 3D HOIPs. Hence 2D
HOIPs are expected to have distinct carrier transport properties,
in addition to disparate luminescence features, than 3D HOIPs,
and may be exploited for novel electronic and thermoelectric
applications47.
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