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Abstract: 

Organ-on-a-chip development is an application that will benefit from advances in cell heterogeneity 

characterization because these culture models are intended to mimic in vivo microenvironments, which are 

complex and dynamic. Due in no small part to advances in microfluidic single cell analysis methods, cell-to-

cell variability is an increasingly understood feature of physiological tissues, with cell types from as common 

as 1 out of every 2 cells to as rare as 1 out of every 100,000 cells having important roles in the biochemical 

and biological makeup of tissues and organs. Variability between neighboring cells can be transient or 

maintained, and ordered or stochastic. This review covers three areas of well-studied cell heterogeneity that 

are informative for organ-on-a-chip development efforts: tumors, the lung, and the intestine. Then we look at 

how recent single cell analysis strategies have enabled better understanding of heterogeneity within in vitro and 

in vivo tissues. Finally, we provide a few work-arounds for adapting current on-chip culture methods to better 

mimic physiological cell heterogeneity including accounting for crucial rare cell types and events.  

1. Introduction 

 How many types and sub-types of cells should be used in an organ-on-a-chip to provide a sufficiently 

physiological representation of their macroscopic human organ counterpart from a functional perspective? 

This article addresses the question by looking to recent advances in characterization of cell heterogeneity and 

cell plasticity and how it impacts tissue and organ function. Incorporation of sufficient cell-to-cell variability 

in on-chip culture devices is important because lack of it can hamper disease understanding, drug evaluation 

and cures. To mention cancer as an example, organs-on-a-chip which incorporate a patient’s tumor cells, but 
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fail to incorporate all the phenotypes, such as excluding the rare but critically important chemotherapy-

resistant sub-populations of cells, could fail to predict the clinical result, as a prescribed therapy may not 

disrupt all diseased cells to the same effect due to heterogeneity within the tumor. Not only will such cells 

express a phenotype that may render the treatment ineffective in killing them, but such persister cells may 

then re-configure the entire tumor to be more difficult to destroy after initial therapy.1 

Just as the makeup of cells in most healthy and diseased human tissues is heterogeneous, so it may 

need to be in the tools used to study them. Microfluidic devices designed as organs-on-a-chip have gained 

complexity since early concepts were first conceived, and it is starting to become standard procedure to use 

tissue-specific primary cells instead of cell lines to create a better on-chip model that will provide useful 

readouts for researchers and drug developers.2 Thorough characterization of cell makeup and cell-to-cell 

variability is important to validate the next generation of devices and systems. Additionally, understanding the 

frequency of so-called “rare cells” in vivo and in a modeled tissue may prove useful for establishing the lower 

limit in tissue size when designing an in vitro device or system. This review discusses the numerous categories 

of cell-to-cell variability within tissues, a spectrum of which are highlighted in Figure 1, ranging from near 1-

to-2 ratios of lung epithelial cell sub-types to rare tumorigenic cells within leukocyte tumors. Strategies for 

characterizing cell type and organ-on-a-chip device variability to confirm that a design adequately mimics in 

vivo cell heterogeneity are also highlighted, as are strategies to achieve more realistic cell heterogeneity within 

organ-on-a-chip design constraints. 

2. Cell-to-cell differences 

 Before we can think about constructing organ-on-a-chip systems with physiologically-relevant cell 

heterogeneity, we need to know what degree of heterogeneity there may be in vivo. This section scans the 

cellular landscape from a high-level viewpoint of species-based differences all the way down to a high-

resolution analysis of variability that arises within cell types traditionally considered as a single type (see 

Figure 2). This last area of heterogeneity amongst cells traditionally considered to be one type is being 

mapped out only recently through advances in single cell analysis techniques, including some which use a 

microfluidic platform.3–5 The Human Cell Atlas project was launched in 2016 to obtain and catalog 
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information about every type of cell in the body with the vision of using such a database to improve study of 

biology and to more quickly translate our knowledge into real treatments.6 Beyond the inherent biological 

significance of the topic, these technological and scientific advances highlight the timeliness of engineering 

cell heterogeneity into organ-on-a-chip development. 

2.1 Species-level differences 

Many protein-coding genes are conserved among mammals, making it possible to translate biological 

results from a model species to humans. Yet failures in pre-clinical screening of therapeutics in animal models 

to translate to the clinic highlight important differences. Recent molecular analysis of functionally important 

non-coding DNA also reveals that species differences are much larger than appreciated based on previous 

comparison focused on protein-coding genes.7 Thus, based on both industry experience and molecular 

understanding of species differences, human cells are the preferred species. The ability to use primary human 

cells is one of the recognized advantages of organ-on-a-chip systems over animal models. That said, proof-of-

concept studies benefit from comparing animal models with organ-on-a-chip systems comprised of primary 

animal cells for concept validation. 

2.2 Variability between individuals 

The in vitro workspace is a difficult setting for replicating the genotypic and phenotypic variability of a 

target human population. Diagnostics such as CYP 450 screens and biomarker testing are currently used by 

physicians to gather data about patients before prescribing already approved and marketed drugs to prevent 

adverse reactions and to maximize benefit through personalized treatment. Experimental technologies for 

pre-clinical population screening are limited, one successful example being the use of liver microsomes, 

enzymes isolated and pooled from multiple donors, for drug metabolism assays. Organ/human-on-a-chip 

developers have envisioned generalizable platforms where the device is applicable for screening any number 

of agents that have relevance at the studied tissue or disease site.8 Whether such a generalized platform 

translates to a generalized human is debatable, however. For basic applications, where key gene expression 

patterns are conserved across the entire population, a generalized device might have efficacy, but variability 
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among individuals could be accounted for in early-stage efficacy and toxicity studies to increase research and 

development efficiency.  

Whether further person-to-person variability will be ultimately addressed by a chip array with 

replicates representing known genetic or phenotypic variants remains to be seen.9 The numbers of unique 

organ chips required to represent the human population based on the number of pooled donors for typical 

liver microsome drug metabolism studies would suggest 40-50,10 or as many as 12,000 based on the number 

of unique HLA Class I alleles when considering immune responses.11 Discussions with colleagues and 

comparison with clinical trial subject numbers suggest an ideal number of distinct organs-on-a-chip to be in 

the order of thousands constructed using primary human cells from across a broad demographic range in 

terms of age, sex and ethnicity to capture the human population. Already, a cutting-edge impact breast cancer 

organoid research article has created a living biobank with over 100 breast cancer organoids generated from 

over 150 different breast cancer patients.12 For organ-on-a-chip experiments, it is starting to become 

important to test devices using cells from multiple donors to determine whether results correlate with the 

donor’s condition or pre-dispositions. On the other hand, for many diseases there is already significant effort 

to stratify patients into distinct sub-populations based on molecular and cellular phenotypes, and disease 

severity. These efforts make construction of clinically-relevant patient populations-on-a-chip more feasible 

and meaningful. For example, rather than constructing a general intestinal cancer in vitro model, one can 

construct a library of tumors cultured in vitro from less harmful primary adenomas to the most harmful 

metastatic carcinomas.13 It is relevant to note that the National Institutes of Health now requires 

consideration of biological variables such as age, weight, underlying health conditions, and particularly sex, in 

grant applications.14,15 

2.3 Organ-to-organ differences 

Before considering human-to-human variability, the organ-on-a-chip field faces considerable 

challenges even in construction of one specific individual. Micro-physiological system developers interested in 

linking multiple organ compartments together have already started to explore the feasibility of working with 

cells from multiple organs and connecting them by a single fluid compartment to enable cross-talk. This 
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pursuit of a human/body-on-a-chip homeostasis or disease model is exciting, but well-recognized, with many 

existing reviews on the topic to which interested readers are referred.8,16–19 The ability to use primary human 

cells in a physiological microenvironment, with organ-to-organ connectivity is one of the well-regarded 

advantages of organ-on-a-chip systems and is not explored in depth in this review. 

2.4 Cell type heterogeneity 

Knowing the cellular makeup of the target organ may be critical for determining how to combine 

multiple cell types. The human body features a plethora of microenvironments which may be modeled on-

chip, each with its own diversity of cellular players. Additionally, each organ contains a diversity of cell types 

to carry out their function. The human lung serves as a robust example, and a relevant one for organ-on-a-

chip development, as many publications have emerged on lung-mimicking devices.20–23 The lung is a large 

organ, containing approximately 230 billion cells.24 The alveolus alone, arguably the minimal functional unit 

of the lung, contains two epithelial subtypes, macrophages, endothelial cells and fibroblasts, to name several. 

Among the large airways, small airways and alveoli, researchers have identified at least 40 different cell types 

that exist within this single organ.25 Organ-on-a-chip technologies have reached the complexity of utilizing 

co-culture of multiple cell types in devices and have already reproduced interesting phenomena. A deeper 

layer of cell heterogeneity exists, however, which must be better characterized to maximize the predictive 

capabilities of these devices. 

2.5 Intra-cell type heterogeneity 

 The construction of minimal functional units of tissues and organs, such as a lung alveolus or tumor 

gland in colorectal cancer, is a common goal of the organ-on-a-chip and organoid fields.9 The underlying 

assumption is that by creating such a construct and analyzing its function, the response of an entire tissue or 

organ can be extrapolated as long as the miniature construct contains all the necessary primary human cell 

types. As our understanding of intra-cell type heterogeneity increases, however, this assumption becomes 

questioned. No matter how faithfully a minimal functional tissue unit is constructed, could it possibly 

represent the intra-cell type heterogeneity that exists across an entire organ? Heterogeneity of this kind is only 

beginning to be understood, but its ramifications are critical for tissue function and disease response. Among 
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the same cell types within the same in vivo tissue bulk, variability may arise from multiple factors, genetic and 

non-genetic.  

 A clinically important example is the cell heterogeneity present in colorectal cancer. In studying the 

“big bang” model of human colorectal tumor growth, investigators analyzed 349 individual tumor glands 

from 15 colorectal carcinomas and large adenomas.26 Despite their likely monoclonal origin from a single 

aberrant colon crypt, the investigators found that tumor heterogeneity arises relatively early and persists 

throughout the course of the disease. Particularly challenging from the perspective of constructing minimal 

functional units of colorectal tumors is the finding that aggressive subclones with a high fitness advantage can 

remain rare, even undetectable, in primary tumors until there is a selective pressure applied onto the tissue 

such as surgery or chemotherapy. Yet, such rare subclones of tumor cells would need to be represented 

somehow in a miniature model. 

Genetic variability can also arise within the same cell type also in normal physiological processes such 

as X-chromosome imprinting in female organisms, where one of the chromosome pair is expressed in some 

cells and the second is expressed in others, seemingly at random, making a mosaic of cells.27 Genetic 

variability can also arise through coexistence of uniquely-mutated cell clones, which may have consequences 

like differential resistance to chemotherapy. There are multiple documented examples of intra-cell type 

variability not attributed to genetic mutation as well. These include sensitivity to directed apoptosis based on 

internal protein availability in mammalian cell lines28 and apparently stochastic variability which, when the cell 

reaches its restriction point, results in lineage commitment during hematopoiesis.29 Transcriptional variability 

in cancer cells, when under drug-induced selective pressure, leads to drug-tolerant persister cell clones.1,30 

Worth mentioning, for practical reasons, is the implications of in vitro-cultured cell properties: passage 

number, doublings and culture time on intra-cell type heterogeneity. The largest differences exist between 

primary cells, those directly isolated from a mammalian tissue, and immortalized cell lines. Primary cells will 

undergo senescence after a high number of doublings or passages whereas immortal cell lines show greater 

tendency towards continuous proliferation.  
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Primary cells may exhibit the greatest heterogeneity during in vitro culture in early passages, containing 

many of the physiological phenotypes found within the isolation constraints. Expansion of a cell population 

is a process itself that selects for individuals that proliferate well on the 2D surface, which leads to some 

phenotypic drift from the original primary cell population. As cells approach the Hayflick limit for cell 

doublings, however, and senescence begins to creep in, functional heterogeneity may also arise where 

metabolism or response to stimulation show greater deviation. This would reflect what has recently been 

shown in vivo: cells isolated from older individuals show greater heterogeneity in their epigenetic signatures 

and functional capacity compared to cells isolated from younger individuals.31,32 Limits on culture time and 

evidence of intrinsic aging for primary cells from older donors has long been known.33 Hayflick, himself, 

found that fibroblast cells from an adult lung underwent less than half as many doublings on average as 

fibroblasts isolated from a fetal lung.34 

For immortalized cell lines, cell-to-cell uniformity is expected in early stages of culture at lower 

passage number, particularly if the phenotype is fully differentiated.35 A hallmark feature of cell lines is high 

doubling capacity. Nevertheless, use of exceedingly high-passage cell lines is not recommended, due to 

observance of diverging phenotypes at late culture stages36 as well as more general phenotypic drift.37 The 

process of transfecting cell lines may generate a phenotypically heterogenous population also, unless 

individual clones are isolated and their progeny are used exclusively.38 The next sections of this paper will 

provide instructive examples of documented heterogeneity within a population of cells of a similar type and 

discuss its implications on organs-on-a-chip experiments. 

3. Tumor heterogeneity 

Tumors are an important area for studying intra-cell type heterogeneity. Although often arising from 

the proliferation of a single diseased cell, there is a surprising amount of cellular heterogeneity that is a critical 

obstacle to developing cures for the disease. Often the tumor bulk is distinguishable from healthy tissue 

through known biomarkers, but targeted therapies for that biomarker will encounter resistance from rare 

cells. Circulating tumor cells (CTCs) have been projected as a possible minimally-invasive source of key 

information for tumor characterization and personalized treatment,39 but in the case of a heterogeneous 
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tumor, CTCs may not tell the whole story.40,41 For more comprehensive reading, multiple reviews of 

heterogeneity found in the tumor microenvironment are available.42,43 

The study of cancer on-chip is one clear application where consideration of cell-to-cell variability is 

paramount. A recent review of cancer-on-a-chip projects can be found by Portillo-Lara and colleagues.44 

Notable classes include devices to simulate metastatic invasion into target tissues,45,46 extravasation from a 

tumor site into the vasculature,47–49 and tumor angiogenesis.50,51 Cancer-on-a-chip studies often do not 

consider tumor cell heterogeneity in detail. Clinical and biomedical researchers, however, have actively studied 

intra-tumoral heterogeneity in tumors of the breast, intestines, skin and brain among others. For researchers 

interested in specific tumor to recapitulate on-chip we list some representative characterization studies of 

intra-tumoral heterogeneity with emphasis on rare and stem-like tumorigenic cells (summarized in Table 1). 

Some tumors carry greater heterogeneity than others, and some cellular heterogeneities are easier to engineer 

than others. For example, if one can isolate and use breast cancer stem cells, much of the tumor heterogeneity 

found in the disease can be recreated starting from just a few cancer stem cells.52 Conversely, the 

heterogeneity of other tumors, such as colorectal cancer, is less organized and potentially harder to re-

engineer.26 For organ-on-a-chip applications where patient tumor samples or biopsies are used to predict 

outcomes or drug sensitivity, intra-tumoral heterogeneity is a substantial hurdle as it is difficult to ensure a 

complete sampling of the entire tumor heterogeneity on-chip. 

3.1 Breast cancer 

Not all breast cancer cells can re-establish a tumor on their own when removed from a primary 

tumor and seeded elsewhere, even under optimal conditions. The few special tumor cells that can re-create 

entire tumors are often referred to as cancer stem cells (CSCs). Breast cancer is the first solid tumor for which 

CSCs were identified.52 Breast CSCs were first identified as CD44+CD24-/low in about 2.5-5% of tumor cells, 

while a newer marker, ALDH1, has been identified in breast cancer as well to classify a tumorigenic cell 

population that was associated with poor clinical response to treatments.53 The ability to identify and isolate 

CSCs is important because it potentially means that one can theoretically generate the heterogeneity of a 

tumor-on-a-chip starting from a single cell. Although one must be careful, as these stem cells can exhibit 
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stochasticity in their differentiation and drawing out their plasticity potential may be difficult.54 Genetic 

variability of breast cancer cells has also been described, suggesting additional challenges for re-engineering 

the full heterogeneity of a breast tumor.55,56 

3.2 Intestinal cancer 

Colorectal cancer is the second leading cause of cancer death, despite mechanistic understanding of 

its origin.57,58 We now know there are several markers for colonic CSCs. CD133, a marker common for CSCs 

across tissues, was first identified as being the marker represented on tumorigenic cells in the colon – 

tumorigenic cells existed at only 1 in 5.7 × 104 total tumor cells, but at 1 in 262 CD133-expressing tumor 

cells.59,60 Further work has discovered several other stem cell markers. Dalerba and colleagues identified three 

important markers: EpCAM, CD144 and CD166. Tumorigenic cells either co-expressed EpCAM and CD44 

(found on 1 in 18 primary colorectal tumor cells), or co-expressed EpCAM and CD166 (found on 1 in 16 

cells).61 Other discovered stem cell markers include CD29, CD24, Lgr5, and β-catenin.62 A more recent study 

utilizing single-cell transcriptional analysis of colonic tumor cells reported the discovery of a system to classify 

tumor cells by lineage maturity and clinical outcome, headlined by the marker KRT20.63 In this work, cells 

with progenitor-stage gene expression profiles (Lgr5+ and KRT20-) corresponded to unfavorable clinical 

outcomes. 

Lgr5 has emerged as the dominant marker for colonic CSCs.62,64–66 Despite this, the multiple markers 

for tumorigenic colorectal cells should still be considered for cancer-on-a-chip applications because of the 

“big bang” model described previously. This is because while Lgr5+ cells dominate, cells expressing the other 

markers may still also exist. A recent report considered the heterogeneity of patient-derived organoids, as cells 

were examined for the markers Lgr5 and KRT20. The work found that heterogeneity is maintained, such that 

the Lgr5+ stem cells were replenished after ablation.67 Studying diversity of colorectal cancers across patient 

cases also has had impact. Fujii and colleagues established a colorectal tumor library of 55 samples from 43 

patients, engineering tumor organoids that can mimic the heterogeneity of the tumor of origin, including 

showing how metastasis-sourced cells could undergo metastasis, where primary tumor-sourced cells failed.13 

Obtaining sufficient primary cell biopsies from patients to represent the entire tumor heterogeneity, however, 
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is a challenge. These two accounts are good examples of the importance of incorporating heterogeneity into 

in vitro models of intestinal cancer. 

The architectures, functions, and maintenance of the small intestine are different than the large 

intestine, however some key elements of colonic tumor heterogeneity and biomarkers of CSCs also apply. 

Small intestinal epithelium self-renews the most of all human tissues,68 which makes adenomas of the small 

intestine difficult to control and malignancy hard to prevent. So far, Dclk1 has been shown to differentiate 

tumor stem cell populations in the small intestine from normal stem cells. However, both normal stem cells 

and tumor stem cells have been shown to have multiple biomarkers in common: Lgr5,64,69,70 Bmi1,71 and 

CD133.72 Lgr5+ adenoma cells have been shown using lineage tracing to compose 5-10% of the adenoma cell 

population and were crucial in adenoma growth.70 One point of consideration is that Bmi1+ intestinal stem 

cells can regenerate the Lgr5+ pool and thus suggest that a hierarchical structure exists and may need to be 

considered in establishing both intestinal organoids and in vitro cancer models (as some Bmi1+ cells may also 

be cancer stem cells).73 CSCs of the intestine might also need to be sub-grouped,74 with multiple CSC 

subgroups incorporated, if a “big bang”-modeled tumor on-chip is to be replicated.  

3.3 Melanoma 

Melanoma is another aggressive form of cancer, typically arising from the skin epithelium.75 One 

advancement in the understanding of melanoma tumor heterogeneity is the characterization of a melanoma 

tumorigenic cell.76,77 Cells expressing ABCB5, which also confers melanoma chemoresistance, were found to 

initiate tumors in immunocompromised mice, yet present at a rarity as great as 1 in 106 tumor cells.78 

However, examination into the protocols and mouse models behind discovery of these rare, tumor-initiating 

cells found that these cells may exist with greater frequency, as much as 1 in 4 unsorted tumor cells, refuting 

the rare cancer stem cell paradigm for melanoma.79 Having melanoma-initiating cells at such a high frequency 

suggests it would be easier to grow an accurate melanoma on-chip from such cells. Therapeutically, it makes 

eradication of all melanoma-initiating cells difficult.  

Chemo-resistance in melanoma is a classic example where clonal heterogeneity leads to ineffective 

treatments. A well-studied example is rare secondary genetic mutations which impart resistance in melanoma 
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cells to chemotherapy targeting the primary melanoma mutation, BRAF V600E,80,81 but non-genetic, 

transcriptional mechanisms have been reported as well.82 Such rare cells can be positively-selected for by 

factors such as drug treatment and form new resistant cell colonies. 

3.4 Glioblastoma 

Glioblastoma is one of the most aggressive and difficult-to-treat forms of cancer, largely due to its 

spatial heterogeneity with niches containing self-renewing tumor cells. Researchers have worked extensively 

to characterize these cells, and their classification has evolved through time,83–86 leaving us still uncertain of 

whether a definitive marker of tumor cell stemness in glioblastoma exists. More early-on, prominin-1 

(CD133) was believed to be a critical indicator of cell capacity for self-renewal within the glioblastoma. It was 

found that human brain tumors contained down to 3.5% cells expressing CD133 on the surface of pilocytic 

astrocytoma and 6.1% cells in medulloblastoma when sorted with flow cytometry.83 However, later studies 

indicate that CD133 is not essential for tumor cell renewal as was studied ex vivo in the capability of explanted 

cells to form neurospheres when the gene PTEN was deficient in the lineage.87 These experiments have 

shown that tumor cell proliferation in vivo and in vitro will differ depending on the presence or absence of 

these PTEN-deficient, self-renewing cells. Because of these evolving hypotheses about the source of 

malignant tumor growth, researchers hoping to study glioblastoma on-chip will need to stay current with 

future reporting and make use of primary tumor cells when possible to account for these tumor cell sub-types 

found in vivo. 

3.5 A note on cancer cell lines 

 The use of cancer cell lines for on-chip experiments is well-recognized among organ-on-a-chip 

developers, and their usefulness for proof-of-concept testing affords them an important place in the 

development process. As with all cells, researchers should be well-informed of their characteristics when 

using them. As stated in section 2.5, cell lines are usually considered to be homogenous populations of 

terminally-differentiated cells and may be tumor-derived or transformed to be immortalized.88 There are 

exceptions, however, which the reader should be made aware of. Multiple mammalian cancer cell lines have 

been shown to include heterogeneity at the single cell level, including identified sub-populations, often 
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referred to as “side-populations” showing exclusive colony-forming potential.89–92 Prostate cancer cell lines, 

such as PC3, feature a nomenclature for three sub-populations of cells: holoclones, which have high colony-

forming potential; paraclones, which rarely proliferate; and meroclones, which have unique morphology with 

proliferative characteristics in-between.93,94 Microfluidic-based single-cell analysis devices have successfully 

distinguished these cell line sub-populations more recently.95 

For on-chip cancer models, researchers must consider the suitability of a cancer cell line for their 

research: the surface marker signature for the disease they intend to model, how rapidly the cells proliferate, 

or the cells’ ability to form tumor-mimicking spheroids. The characteristic of cancer cell stemness varies 

between cell lines, such as with ALDH1 activity in breast cancer cell lines.96 Single cells from the same breast 

cancer cell line, including MDA-MB-231 and MDA-MB-468, have been sorted based on ALDH1 activity; 

positively-selected individuals display higher activity in proliferation, migration and invasion assays.97 To 

further increase translational value, however, organ-on-a-chip developers may require incorporation of 

primary human cells, such as from several patients within the population intended for treatment.12,13 To 

replicate the microenvironment that properly suits the use of primary tumor cells may require even further 

refinement and engineering of the device platform. 

4.  Physiological heterogeneity 

Healthy tissues in the body also contain high levels of intra-cell type heterogeneity that are only 

recently gaining appreciation through projects such as the Human Cell Atlas. While organs-on-a-chip using 

multiple cell types are being constructed, none have yet to capture, in a well-characterized manner, the full 

diversity of cell types or intra-cell type phenotypic variants. In the near future, it is probably unrealistic to 

expect organs-on-a-chip that represent the full cellular variability of intact organs. However, it is still 

important to survey the vast field of cellular heterogeneity of target organs so that one can identify the best 

subset of cells that will enable analysis of the questions of interest (e.g. epithelial cells plus endothelial cells 

plus neutrophils to study edema).23 Another point is to appreciate the heterogeneity that exists among cells 

that we may traditionally have considered as one cell type, such as intestinal epithelial cells, that are comprised 

of stem cells and a variety of differentiated sub-lineages with unique features and functions. How then, can 
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we promote such physiologic intra-cell type heterogeneity in organ-on-a-chip systems?  This section discusses 

two organs in which a significant number of efforts to recapitulate function on-chip have been published: the 

lung and intestine. As stated previously, the lung microenvironment is a classic organ-on-a-chip target, but the 

intestine also distinguishes itself in the amount of attention given to recapitulating the microenvironment as a 

heterogeneous 3-dimensional (3D) organoid. 

4.1 The lung 

 One of the primary difficulties in creating a lung-on-a-chip that accurately models the human lung is 

that there are at least 40 cell types to consider.25 The list is not exhaustive as new cell types and even new lung 

functions, such as platelet biogenesis, have been discovered in recent years.98 Some cell types may be present 

or missing depending on factors such as age, sex, or disease. Nevertheless, increasing heterogeneity among 

lung cells on-a-chip remains seen as a crucial milestone for advancing these devices into more prominent drug 

discovery roles.2 As such, rational selection of heterogeneous cells, rare and common, is crucial to establishing 

an accurate and predictive in vitro lung. 

 Compared to the 40 types of cells and significant intra-cell type heterogeneity characterized in the 

human lung, on-chip models have incorporated as few as a single cell type derived from a cell line and 

generally no more than three cell types (epithelial, endothelial and occasionally a circulating immune cell). 

Suppose we were to narrow down cells from the list of 40 to make a relatively simple lung-on-a-chip. How 

might we construct a lung epithelium on-chip that would better represent physiological cellular heterogeneity? 

Lung epithelial cells, endothelial cells and macrophages are the most common cell types.24 Epithelial cells in 

the airway consist of several cell types, such as goblet and club cells, which are not characterized in most 

models, with an exception.99 A recent study using single cell RNA sequencing (scRNA-seq) to profile 

epithelial cells in the developing lung identified specific progenitors that may provide insight into selecting 

primary cell progenitors which are capable of producing all the necessary epithelial lineages for a lung-on-a-

chip.100 Increased cellular diversity has been shown in vitro by initiating cultures with multipotent stem cells in 

an organoid platform. With careful attention to engineering the microenvironment of the developing 

organoid, Miller and colleagues identified multiple lineages including goblet cells, club cells, neuroendocrine 
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cells and both types of alveolar epithelial cells derived from the original stem cell population.101 For on-chip 

models of lung bronchi, submucosal glands may also be useful to include for infection and inflammation 

research. These glands produce most of the mucus in the airway, which protects the airway epithelium from 

microbes.102 The gland is divided into approximately 60 percent serous cells, which secrete immunoglobulins, 

and 40 percent mucus cells. Incorporation of such a specialized structure in a lung-on-a-chip could prove 

useful for specialized models of epithelial defense and pathogen clearance. 

 What may be of greatest interest is the inclusion of immune cells, even though some may be harder 

to incorporate into a lung-on-a-chip at the correct numbers. The airways are a major entry point for many 

pathogens, causing sicknesses like influenza and pneumonia, which bear significant adult and child morbidity 

and mortality.103 As such, immune system presence in the lung is important and should be examined. At any 

given moment, many types of immune cells reside within the lung (Figure 3A). Many remain on a more 

permanent basis, like alveolar macrophages, which exist to clean away microscopic debris that is continuously 

inhaled. Intra-epithelial lymphocytes also reside more permanently within the alveolar microenvironment, 

probing for antigens, which may be presented from resident dendritic cells. 

Macrophages are one of the most common immune cell types in the lung, comprising around 9% of 

the total lung by cell number.24 Resident alveolar macrophages (AMs) can be detected in the lungs within a 

few days after birth, and they have the ability to self-renew without contribution from bone marrow-derived 

monocytes.104,105 Their primary role is to clear pathogens and debris that have infiltrated the airway and 

reached the alveolus. Because of their numbers and presence in the alveoli throughout human life, AMs may 

be critical for in vitro models of lung epithelia and the alveolus in general, regardless of whether pathogen and 

cell debris clearance is the object of study. The reader can be referred to a 2014 review for a more detailed 

insight into AM function, in particular, their relationship with lung epithelial cells.106  

Other key lung resident cell types include intra-epithelial lymphocytes (IELs) and lymphocytes found 

in bronchus-associated lymphoid tissue (BALT). Lymphocytes are present in similar numbers; they make up 

approximately ten billion cells, or 4% of the total lung cell population in healthy adults.107 IELs are a distinct 

class of T cells that reside in epithelial layers of tissues and initiate adaptive immune responses against 
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pathogens. While originally discovered in the small intestine,108 investigation into the distinct subtypes of 

intestinal IELs spurred research into bronchial IELs. Bronchial IELs are nearly 99.5% αβ T cells.109 A far 

rarer population of T cells in the lung, γδ IELs have yet to reveal a clear role. However, these cells are 

responsible in the intestinal epithelium, for killing epithelial cells under high stress by recognizing MHC-like 

stress marker molecules MICA and MICB.110 Should this role be also observed in the bronchial epithelium, 

then presence of γδ IELs may be necessary to promote healthy formation of a lung organ culture. Other 

reasons to include γδ IELs in a lung-on-a-chip are to study their roles in specific diseases like pulmonary 

fibrosis, autoimmune diseases such as systemic scleroderma, and lung cancer.111 

While the existence of BALT in healthy human upper bronchial tissues remains a controversial topic, 

evidence has suggested the existence of infection-induced (antigen-dependent) BALT (iBALT).112,113 The 

induced lymphoid tissue contains follicles for B and T cell development, and these cells have been shown to 

mediate a response to airway influenza infection.114 Additionally, iBALT could be found in the lungs of mice 

even when not deliberately infected, suggesting that lymphoid tissues in the lung are continually present in 

response to opportunistic pathogens. In the context of developing lung-on-a-chip models, an immune 

component such as iBALT may be needed more often than presumed, as the presence of lymphoid tissue 

may be more critical for development and normal homeostasis than thought (i.e., not just for studying viral 

infections, but preventing them).114 

An important feature of the immune system is its dynamic nature. Neutrophils, the most common 

leukocyte in the body, do not normally reside in lung tissue, but may extravasate into the interstitium and 

adopt a new defense-focused phenotype.115 The healthy lung may have relatively few neutrophils where as an 

injured or diseased lung may contain many. A lung-on-a-chip microfluidic platform could be ideal for 

incorporating the dynamic features of the immune into in vitro models in ways not possible with conventional 

static cultures. In a simplified model of immune response to airway epithelial injury neutrophils may be 

modeled undergoing chemotaxis and extravasation at a wound site (Figure 3B). The model could be easily 

made more complex with the addition of the resident immune system as well to study inflammation onset 

and healing. 
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 To study the roles of rare cell types and sub-types within the lung would require a more involved 

experimental design to achieve the correct scaling. While to study alveolar macrophages and a mixed 

lymphocyte population could be feasible with a miniaturized lung model, studying the adaptive immune 

system with a reduction in scale would be more difficult , especially to study a rare lymphocyte subset like γδ 

T cells, which comprise approximately 1 out of every 100-200 T cells, or B cells, which are far outnumbered 

by their T cell counterparts in the bronchio-alveolar epithelium.116 Such a case might present a limitation of 

organ miniaturization. 

To adapt this diverse microenvironment on-chip, researchers may choose to consider the resident 

immune system and dynamic immune system separately or together (Figure 3B). A chip with a resident 

immune system consisting of macrophages, dendritic cells and lymphocytes would support a more 

generalized approach for screening differential drug effects on the immune system versus the lung epithelium 

and endothelium, or the interplay between those two major lung components. 

4.2 The intestine 

 The epithelium of the intestine is a dynamic microenvironment with continuous self-renewal.117 For 

studying on-chip, it is important to consider the epithelial cell types, which have been the subject of intensive 

research.118 In the intestinal crypt, antimicrobial peptide-secreting Paneth cells are most plentiful, and reside 

next to Lgr5+ stem cells from which they derive. Lgr5+ stem cells also give rise to cell types that exist in the 

villi: mucus-secreting goblet cells, absorptive enterocytes, hormone-secreting enteroendocrine cells, and 

antigen-sampling microfold (M) cells.119 Crypt and villi structures containing these epithelial sub-types can be 

formed in vitro from an Lgr5+ stem cell population without any stroma or mesenchyme present, making 

construction of intestine on-chip or 3D-cultured epithelial tissue (enteroid) feasible.  

One limitation of such an epithelial model, however, is it fails to contain other cells found in the 

intestine, such as those of the intestinal endothelium or the immune system. Co-cultures including immune 

cells have yet to make the jump to 3D platforms but a 2D example has appeared recently. Noel and 

colleagues successfully co-cultured macrophages amongst a 3D culture-derived intestine epithelial monolayer, 

enabling them to show how the addition of immune cells altered the microenvironment, which better 
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modeled gut physiology through improved monolayer integrity and replication of immune response to a 

bacterial pathogen.120 

For a culture model incorporating the immune system into the intestinal microenvironment, 

including Peyer’s patches may be a good start. Peyer’s patches are an important secondary lymphoid tissue in 

the gut epithelium (analogous to BALT discussed in the previous section on lung) responsible for collecting 

antigen from the intestinal lumen and enabling immune responses to invading pathogens.121 Importantly, B 

cells that mature in Peyer’s patches secrete IgA at a level above all other tissues to enhance protection of the 

intestine epithelial layer.122 Since Peyer’s patches are a significant immune component in the intestinal 

epithelium, it is something that may need to be included in future models, especially in future cases should a 

gut microbiome be incorporated as well. 

Technically distinct from all-epithelial enteroids are human intestinal organoids (HIOs) which 

contain epithelial and mesenchymal cells.123 Derived from induced pluripotent stem cells and cultured in a 

carefully-controlled environment of biochemical and matrix signals, HIOs also mature to contain many 

epithelial cell types: Paneth cells and Lgr5+ stem cells in the crypt, goblet cells, enterocytes, and 

enteroendocrine cells in the villus.124–126 To use HIO-cultured cells in an intestinal chip presents an additional 

challenge in comparison to enteroids, as resident mesenchymal cells impede the formation of a continuous 

epithelial monolayer.127 EpCAM-positive selection of epithelial cells using fluorescent-activated cell sorting 

(FACS) circumvents this problem. Using enteroid or organoid-derived cells in organ-on-a-chip micro-

channels could enable greater cell-to-cell variability that better-approximates the in vivo condition. These 

successes have inspired a more general work-around for engineering cell heterogeneity on-chip to be 

discussed later. 

5. Strategies for assessing heterogeneity 

The increasing recent availability of tools to assess cellular heterogeneity makes this topic particularly 

timely to consider and address now in organs-on-a-chip systems.6 Here, we discuss three illustrative examples 

of different strategies for measurement and analysis as depicted in Figure 4. Selection of appropriate 

techniques and computational analysis methods and further technique development will be important for 
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obtaining useful information about cell makeup to evaluate the function and physiological relevance of 

miniaturized organ-on-a-chip model. 

5.1 Mapping lineage commitment using mass cytometry 

Mass cytometry is an emerging technology for single cell analysis. Its predecessor, flow cytometry, is 

useful for fluorescently tagging several protein markers simultaneously, typically anywhere from 1 to 10 

markers with different fluorophores, depending on the instrument used and user protocol. More recently, 

mass cytometry was developed to increase the size of the parameter panel to over 30 markers, though with 

lower throughput.128 When initially developed, mass cytometry used over 30 markers to successfully 

categorize a bone marrow cell population into 29 distinct cell types (including detailing 3 platelet types, 5 T 

cell types and 6 B cell types). With greater numbers of markers, conventional flow cytometry data analysis 

methods become too limiting and advanced computational methods must be employed to analyze and 

visualize data. Setty and colleagues used mass cytometry to gather proteomic data of maturing T cells from 

the thymus then developed an algorithm, which they called “Wishbone”, to determine a cell lineage 

commitment map of T cell progression through the selection of CD4 and CD8 lineages as well as to identify 

the correct lineages and multiple bifurcations in myeloid cell lineage commitment.129 These examples are 

interesting in demonstrating the ability to not only categorize cellular heterogeneity, but in also delineating 

relationships between the different cell sub-populations identified.  

5.2 Identifying rare subtypes of intestinal cells in organoids using scRNA-seq and RaceID 

Single cell sequencing methods along with associated bioinformatics tools, such as principle 

component analysis and clustering are becoming more widely used. 3D organoid cultures, which have also 

been shown in multiple accounts to serve as important models of cell differentiation and heterogeneity, such 

as the brain and liver have been analyzed using single cell sequencing methods.130,131 ScRNA-seq can 

theoretically detect all actively transcribed mRNA. When analyzing multiple sub-populations, including rare 

cells, this method provides the most comprehensive analysis of gene expression. Because scRNA-seq 

experiments provide so much data, the challenge commonly arises at the stage of converting the data into 

biological insights and understanding. 
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 One relevant example of overcoming this challenge as applied to determining cell heterogeneity is 

the development of RaceID by Grün and colleagues. This tool was developed to use scRNA-seq data to 

identify rare cell types and corresponding markers in healthy and diseased organs, and specifically applied to 

the analysis of intra-cell type variability in intestinal organoids.132 While conventional k-means clustering 

yielded a transcriptionally-distinct cluster of secretory cells, the RaceID evolution further sub-divided this 

population into goblet cells, Paneth cells, and enteroendocrine cells, confirming the existence of these rarer 

cells within the organoid epithelium. 

5.3  Measuring melanoma cell heterogeneity using RNA FISH and GiniClust 

While scRNA-seq is powerful in its comprehensive analysis capability, unavoidable random loss of 

transcripts from single cells make analysis of extremely rare cells challenging.82 An alternative method that is 

less comprehensive in coverage of types of RNA analyzed, but is more sensitive, is RNA fluorescent in situ 

hybridization (FISH). RNA FISH enables the spatial visualization of RNA molecules within the fixed cell 

using image processing and quantification methods.133–135 Individual RNA molecules can be counted within 

the cell when bound with a fluorescent probe and multiple iterations of hybridization, de-hybridization, and 

re-hybridization with new probes is possible to analyze nearly 20 different RNAs in the same fixed sample.82 

While RaceID worked well in the intestine organoid cell heterogeneity analysis, in test analyses of 280 

gene transcripts quantified by quantitative polymerase chain reaction (qPCR), the method was shown to be 

computationally taxing and over-segregated cell types, creating misleading cell clusters from only single cells. 

To overcome these problems, Jiang and colleagues developed GiniClust.136 This method determines a Gini 

index for each RNA analyzed, where an index of zero means the cell population expresses it homogenously 

while a score of one means all transcripts are expressed by a single cell. Thus, housekeeping genes trend 

towards lower Gini indices while more variably transcribed genes have higher Gini indices. By performing 

clustering using transcripts above a threshold Gini index, the amount of data used for clustering is 

significantly reduced, accelerating computational analysis. Also, by requiring rare cell clusters to contain more 

than one cell this method limits over-segregation faults identified with RaceID, while also discretizing lineages 

more accurately.  
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RNA FISH and Gini indices were used by Shaffer and colleagues to identify rare cells within a 2D-

cultured melanoma population.82 Nineteen mRNAs were probed from the same sample with multiple 

iterations of hybridization and imaging. From this data set, cells expressing RNA with high Gini indices were 

identified. RNAs associated with chemotherapy resistance like NGRF, Serpine and AXL received high Gini 

indices, indicating significant transcriptional rarity. 

6. Work-arounds 

 Because miniaturization and physiological relevance through accurate cell heterogeneity 

representation do not often lead to similar design requirements, we propose some short-term solutions to 

achieve physiologically-relevant cellular heterogeneity, at both the cell type and sub-cell type levels, including 

the representation of rare cell events. This is not a cure-all list, but focuses on simple microfluidic device-

oriented strategies as starting points for the organ-on-a-chip developer considering the study of cell-to-cell 

variability. 

6.1 Avoid over-miniaturization 

Organ-on-a-chip devices are regarded for replicating a single organ microenvironment in vitro, but to 

ensure the inclusion of rare cells this may not make the most sense. Organs can be thought of as containing 

many adjacent microenvironments. By miniaturizing an organ by too great a scale, rare cells would likely be 

lost (Figure 5A). By increasing the cell number or “organ size” of the culture model, better heterogeneity 

may already be achieved through natural fluctuation of culture condition from cell to cell and 

microenvironment to microenvironment in the same culture system. This may be particularly important when 

trying to take advantage of naturally-occurring cellular heterogeneity such as may exist in biopsy-derived cell 

populations and low passage primary cells. 

6.2 Increase replicates 

If increasing organ compartment size to increase the likelihood of rare cell existence is not feasible 

within other design constraints, increasing the number of culture system replicates studied in parallel may 

have use, especially in comparing data from individual devices instead of merely taking averages (Figure 5B). 

What might be considered experimental noise or error could instead be attributed to actual differences from 
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one device to another. By looking at multiple separate device experiments together, variability in 

characteristics like cell metabolism and secretion levels may resemble what is encountered in vivo within a 

single organ. 

6.3 Increase experiment duration to capture rare events 

If rare cell phenotypes arise over time in a defined or stochastic manner, on-chip models with a 

desired number of cells may require a longer period of study to capture those events. As evidenced in the 

report by Shaffer and colleagues, non-genetic transcriptional variability can be transient.82 By increasing 

duration of the study and/or increasing time point density, brief or phenotypic events may be captured that 

are useful for validating the characteristics of an organ-on-a-chip (Figure 5C). 

6.4 Organically engineer the microenvironment to create heterogeneity 

We focus on a few examples from the intestine-on-a-chip field to highlight two major strategies for 

engineering devices with increased cellular heterogeneity. One strategy is to engineer biomaterials to promote 

cellular heterogeneity within an organ-on-a-chip. This was recently displayed by Wang, Allbritton and 

colleagues in multiple reports showing the potential to use collagen-based biomaterials to maintain the culture 

heterogeneity and segregation of tissue stem cells and differentiated cells that resembles the colonic and 

intestinal crypt and villi.137,138 Two architectures were validated for maintaining cell heterogeneity from the 

harvested colonic crypts a flat substrate and on a micro-fabricated substrate with molded crypt and villi. 

The other strategy is to first create physiological cell heterogeneity in organoids, then transfer those 

cells into organ-on-a-chip devices. To enable the study of a heterogeneous population of cells on-chip, early 

reports have been published on dissociating cultured organoids and seeding their cell constituents in 

microfluidic channels for controlled study (Figure 5D).127,139 In the account by Kasendra and colleagues, this 

yielded an on-chip cultures with multiple differentiated epithelial cell types including an overall transcriptional 

signature that more closely resembled sampled intestinal tissue from where the primary cells used in the 

experiment were derived.  

Organoids have at least two advantages over conventional 2D culture or organ-on-a-chip cultures: 

the ability to provide a more physiological 3D microenvironment and the ability to mature and be maintained 
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over many months, longer than is currently possible with organ-on-a-chip systems. In this strategy, instead of 

seeding cells in an organ-on-a-chip device to study, multiple research groups have successfully recapitulated 

tissue heterogeneity through growing 3D human organoid cultures. Human intestinal organoids were shown 

by Spence and colleagues to form in vivo-like structures from induced pluripotent stem cells (iPSCs) with 

crypt-like appendages branching off the organoid, where tissue stem cells remained localized with more 

differentiated cells migrating away.124 Furthermore, Miller, Spence and colleagues adapted their strategy for 

applications in studying fetal lung development, by inducing iPSCs to select a lineage reminiscent of lung bud 

progenitor cells, observing similar heterogeneous cell patterning to in vivo development.101 Differentiation of 

stem cells in an organoid enables longer term culture and reliable maturation to create a desired cell 

population for shorter-term microchannel experiments. While organoids can provide a diverse population of 

cells that arise from a stem cell, tissues and tumors have a diversity of stem cells as well. To maintain the stem 

cell diversity of the original tissue as much as possible, it is important to sample tissues from multiple 

different locations, culture all cells from a biopsy or tissue sample without pre-sorting the cells, and study as 

many organoids as possible.140 

7. Conclusions 

 This review considers the emerging field of studying cell heterogeneity as an area of opportunity for 

developing organ-on-a-chip technologies that are more physiological and predictive of human health and 

disease. In addition to well-acknowledged cellular differences between species, demographics, organs, and cell 

types, the latest single cell analysis methods are discerning new sub-types within cell types originally 

considered to be a single type, such as a cancer cell or epithelial cell. Furthermore, there are increasingly 

prominent roles for rare cells that arise from temporary and transient cell-to-cell variabilities, as shown in 

examples where drug treatment can give rise to a population of distinct and stable persister cells resistant to 

cancer therapy from a rare population of cells initially only expressing high levels of drug resistance genes.82 

The latest analysis and insights into cell heterogeneity can provide some mechanistic insights and 

quantifiable parameters to understand outlier results as well as to provide estimates on the capabilities and 

limits of organ-on-a-chip technologies constructed from different cells, biomaterials and culture conditions. 
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For example, on-chip cell heterogeneity and plasticity may be compared with in vivo tissues to identify organs 

or diseases for which the on-chip and in vivo cell types, cell heterogeneity, and cell plasticity match better. 

Experimenting with cells in organ-on-a-chip systems that are sourced from organoids known to have the 

required physiologically-relevant level of cell heterogeneity is a strategy of increasing promise in this regard. 

Analysis of cell heterogeneity can even be a measure of cell and organism aging as demonstrated recently in a 

comparisons of immune cells from young and old mice and humans.31,32 Analysis of cell heterogeneity may 

also provide a benchmark for balancing the conflicting need to pursue higher throughput and miniaturization 

with the need to maintain physiological relevance. 

 While many of the required tools and biological expertise are already available, the next steps require 

more collaboration between organ-on-a-chip developers, single cell analysis experts, biomaterials scientists, 

bioinformaticians and cell biologists. In parallel with further consideration of organ-to-organ scaling,8,16,17 

media optimization, and metabolic control,141 validation of organ-on-a-chip cell heterogeneity may be poised 

to bring improvement to overall generalizable potential and predictive accuracy. 
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Table 1. Ratios for tumorigenic cells in various human cancers. 

Cancer Tumorigenic cell 

marker 

Ratio/percentage Reference 

Breast cancer CD44
+
CD24

-/low
 

 

 

ESA
+
CD44

+
CD24

-/low 

 

 

ALDH1 

 

1:20 – 1:40 

(2.5-5%) 

 

~1:166 

(0.6%) 

 

unknown 

52
 

 

 
52

 

 

 
53

 

Colorectal 

cancer 

 

 

 

 

 

 

 

 

 

 

 

 

 

Small intestinal 

cancer 

CD133/prominin-1 

 

EpCAM
+
CD44

+ 

 

 

EpCAM
+
CD166

+ 

 

 

CD29 

CD24 

Lgr5 

β-catenin 

 

KRT20 

 

Lgr5 

 

 

Bmi1 

 

Dclk1 

 

1:5.7 × 10
4
 

 

~1:18 

(mean: 5.4%) 

 

~1:16 

(mean: 6%) 

 

unknown 

 

 

 

 

unknown  

 

1:10 – 1:20 

(5-10%) 

 

unknown 

 

unknown 

59,60
 

 
61

 

 

 
61

 

 

 
62

 

 

 

 

 
63

 

 
70

 

 

 
71

 

 
74

 

Melanoma ABCB5 

 

 

CD271 

 

JARID1B 

 

 

MITF 

 

1:1 million 

1:4 

 

1:6 

 

1:10 - 1:20 

(5-10%) 

 

Dependent on selection 

method 

 

78
 

79
 

 
142,143

 

 
144,145

 

 

 
146

 

Glioblastoma CD133/prominin-1 

 

~1:16 - 1:28 

(3.5-6.1%) 

 

83
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Figure 1: Cell heterogeneity may be considered on a range of levels in physiology and disease. (A) Lung 

alveolar epithelial cells, or pneumocytes, are classified in two subtypes, which occur, approximately, in a 1:2 

ratio in the lung.24 (B) Among populations of cancer cells, transcriptional heterogeneity may lead to rare drug-

resistant cells as was shown by Shaffer and colleagues in a melanoma cell population.82 (C,D) Additionally, 

tumorigenic cells, when identified by particular markers, can be found across the spectrum of rarity 

depending on the tumor site, but also the patient. Lgr5+ intestinal adenoma cells70 and CD34+CD38- acute 

myeloid leukemia cells147 are such examples. 
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Figure 2: A hierarchy of cell-to-cell variability is illustrated. While much of organ-on-a-chip development has 

considered tissue heterogeneity (co-culturing multiple cell types within the same organ) and body/human-on-

a-chip development has considered organ-to-organ differences and scaling, a deeper level of cell-to-cell 

variability exists that is less-characterized by organ-on-a-chip engineers. This heterogeneity within a single cell 

type may arise through genetic mutations, but also specific epigenetic mechanisms which are largely 

unknown. Phenotypic heterogeneity is characterizable, however, with advancements in the past few years 

using single cell techniques, and these techniques may have application in organ-on-a-chip development by 

assessing cells used in the culture model to the heterogeneity found in the microenvironment to be mimicked. 
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Figure 3: Modeling the immune component of the small airway microenvironment on-chip. (A) Multiple 

immune cell types: alveolar macrophages, intraepithelial T cells and dendritic cells reside within the epithelium 

to defend against pathogens with innate or adaptive immune responses. Neutrophils do not generally leave 

the circulation at homeostasis, but may extravasate to participate in an immune response. (B) Two lung-on-a-

chip adaptations of the lung microenvironment are depicted. Left is a generalized, homeostatic lung with 

immune component consisting of resident immune cells like alveolar macrophages, intraepithelial T cells or 

dendritic cells. Right is a proposed on-chip model of dynamic immunity with airway epithelial injury leading 

to extravasation of chemotactic neutrophils at the wound site. 
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Figure 4: Cell-to-cell variability has been assessed in excised tissues, organoids and in 2D cultures. General 

workflow for cell-to-cell heterogeneity characterization are depicted using three example cases stacked top to 

bottom. Setty and colleagues collected proteomic data from primary thymocytes using mass cytometry and 

developed an algorithm to map cells along lineage progression.129 Grün and colleagues evaluated cell 

heterogeneity in intestinal organoids using scRNA-seq as well, but proposed a more advanced clustering 

algorithm known as RaceID (rare cell identification) to resolve finer cell-to-cell differences, leaving cell type 

clusters with as few as a single cell.132 Even a 2D-cultured cell line was shown by Shaffer and colleagues to 

contain RNA copy-number variability when using RNA FISH. Cell population heterogeneity was quantifiable 

using the Gini index, which for certain genes correlated with chemotherapy resistance.82 Far fewer accounts 

have been published on cell-to-cell heterogeneity within organ-on-a-chip devices, and these approaches may 

provide key insights to advance their predictive accuracy. 
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Figure 5: Visual schematics of workarounds for characterizing cell-to-cell variability and rare cells or events 

are depicted. (A) By miniaturizing too much or by using too few cells, rare phenotypes (indicated by black 

arrowheads) can be lost. (B) Increasing experimental replicates will create microenvironments with rare cells, 

providing a range of outputs. (C) Increasing experimental duration or frequency of data acquisition may 

capture outputs from transient rare phenotypes (indicated by black arrowheads). (D) Beginning an organ-on-

a-chip experiment with multipotent stem cells, in combination with biochemical signals and matrix will create 

a heterogeneous cell population including progenitors and multiple lineages. 

 

Page 41 of 42 Lab on a Chip



Journal (Publisher): Lab on a Chip (Royal Society of Chemistry) 

Title: Engineering cell heterogeneity into organs-on-a-chip  

Authors: David R. Mertz, Tasdiq Ahmed, Shuichi Takayama 

 
Table of Contents entry 
 
 

 
 
To improve predictive efficacy of organ-on-a-chip devices, developers must consider cell 
heterogeneity. 
 

Page 42 of 42Lab on a Chip


