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ABSTRACT: A novel model combined with chaos theory, self-adaptive particle swarm optimization (PSO) algorithm, K-

harmonic means (KHM) clustering and radial basis function artificial neural network (RBF ANN) is proposed, hereafter called 
CSPSO-KHM RBF ANN. Traditional PSO algorithm is modified by chaos theory and self-adaptive inertia weight factor in order 

to reduce premature convergence problem. The modified PSO algorithm is employed to trim the RBF ANN connection weights 

and biases, whereas KHM is used to tune the hidden centers and spreads. The CSPSO-KHM RBF ANN model was employed to 

investigate the solubility of supercritical carbon dioxide in 10 polymers. Compared with other methods, such as RBF ANN, 

adaptive neuro-fuzzy inference system and PSO ANN, the proposed model displays optimal prediction performance. Results 
discover that the CSPSO-KHM RBF ANN model is an effective method for solubility prediction with high accuracy, and is a 

practicable method for chemical process analyzing and designing. 

1. INTRODUCTION 
Supercritical carbon dioxide (SCCO2) has been used 

successfully as solvent, anti-solvent or plasticizer in material 

processing, such as material modification, material 

composites, material blending, microcellular foaming, particle 
production, and material synthesis [1-4]. It is non-toxic, non-

flammable, chemically inert and inexpensive, and its 

supercritical conditions are easily attained (Tc=304 K, 

Pc=7.38 Mpa) [5, 6] . Scrutiny of the literature evinces the 

considerable attention that lots of researchers have given to 
topics related to solubility of SCCO2 in polymers [7-12]. The 

solubility is one of the most important thermophysical 

property that determines the compatibility of components of a 

blending system. To design optimized supercritical processes, 

solubility data of the considered compounds are needed. 
However, experimental studies such as pressure decay, 

gravimetric, phase separation, volumetric and 

chromatographic method are very expensive and time 

consuming [13-17], many researchers have tried to predict the 

thermodynamic properties by theoretical methods [18-21]. 
Because of the nonlinear nature of solubility, the conventional 

theoretical methods cannot predict the solubility of highly 

polar substances correctly and its predictions have a large 

inaccuracy while artificial neural network (ANN) could be 

considered as an alternative tool for solubility prediction [22, 
23]. The ANN models have lower inaccuracy, cost, and time-

consumption [24, 25]. 

Thus far, numerous ANN models for predicting 

physicochemical properties have been proposed [26, 27]. A 

comparison between equations of state and ANN is presented 
by Bakhbakhi, Y [28] and it indicated that the ANN is a 

powerful model with better accuracy. Pahlavanzadeh, H.[29] 

proposed an ANN model for solubility prediction of CO2 in 

AMP (2-amino-2-methyl-1-propanol) and demonstrated that 

the ANN model provides better prediction capability. 
Mehdizadeh, B.[30] and Gharagheizi, F.[31] proposed ANN 

method for solubility prediction of different compounds in 

SCCO2 and discovered that ANN show better performance. 

Currently, Radial basis function artificial neural networks 

(RBF ANN) have received considerable attention due to their 
potential to approximate nonlinear behavior. Khajeh, A.[32] 

proposed both adaptive neuro-fuzzy inference system (ANFIS) 

and RBF ANN method for prediction of gas solubility in 

polystyrene, and indicated that the ANFIS shows the best 

prediction performances. 

As far as the solubility of SCCO2 in polymers is concerned, it 
depends on many factors such as temperature and pressure as 

well as, weak interactions with the chain groups in the 

polymer. Due to the nonlinear nature among these factors, 

RBF ANN without parameter optimization cannot achieve the 

desired performance. To dwarf this problem, many intelligent 
algorithms, such as genetic algorithm [33-36], ant colony 

algorithm, simulated annealing algorithm, cuckoo search[37], 

Tabu Search and particle swarm optimization algorithm (PSO) 

[38-40] have been employed for the parameter optimization 
of ANN. The PSO algorithm is a global and advanced 

algorithm with a strong ability to search the global optimum. 

Compared with the other algorithms, PSO is easy to 

implement and there are few parameters to adjust . Liu, X. G. 

[41] presented a fuzzy ANN model based on PSO algorithm 
and online correction strategy for melt index prediction. 

Lazzus, J. A. [42] introduced a hybrid model based on ANN 

and PSO for estimation of solid vapor pressures of pure 

compounds at different temperatures. Over the past few years, 

researchers have demonstrated that the PSO is a powerful 
approach for ANN training  [43], Although PSO ANN shows 

high performance, it is easily trapped into a local minimum. 

Li, M.S.[44-47] developed a hybrid ANN model for 

prediction of gas solubility in polymers, and demonstrated 

that the performance of the hybrid ANN model is similarly 
excellent.  

Motivated and inspired by the research problems of PSO 

algorithm and RBF ANN mentioned above, greater 

performance of prediction model are still the first-line goal in 

academia and the industrial community. In this study, we 
develop a novel solubility prediction model based on RBF 

ANN, chaos theory, self-adaptive PSO, and K-harmonic 

means (KHM) clustering methods. Then, the model is 

employed to predict the solubility of SCCO2 in 10 polymers 

within a wide range of temperature and pressure. To reveal 
our proposed model outperforms RBF ANN and PSO ANN, a 

comparison among different models is carried out.  

2. COMPUTATIONAL METHODS 
This paper elaborates on the use of a novel model in 

predicting SCCO2 solubility in polymers. To accomplish this 

task, the model consisted of K-harmonic means (KHM) 
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clustering method, chaos theory, PSO algorithm and RBF 
ANN is proposed, hereafter called CSPSO-KHM RBF ANN.  

2.1 KHM clustering 
KHM clustering algorithm is a more recent algorithm. The 

objective in this algorithm is to minimize the harmonic 

average from all points in the data set to all cluster centers. 

The KHM clustering addresses the intrinsic problem by 

replacing the minimum distance from a data point to the 
centers. Its implementation follows below[48] : 

Step 1 Initialize the algorithm. In this work, the cluster 

centers were initialized based on the basis function centers of 

RBF ANN. 

Step 2 Calculate objective function value according to 
equation (1). 
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where X= [x1, … , xn], is the data to be clustered, n is the 
number of the data to be clustered; C = [c1, … , ck] is the set 

of cluster centers, k is the number of the cluster centers. 

Step 3 For each xi, compute its membership ( / )
j i

m c x and 
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w x  according to equations (2) and (3). 
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where p is an input parameter, and set 2p  in this work. 

Step 4 For each center cj, re-compute its location according to 

equation (4).  
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Step 5 Repeat steps 2–4 predefined number of iterations or 

until KHM(X, C) does not change significantly. 

Step 6 Assign data point xi to cluster j with the 

biggest ( / )
j i

m c x . 

2.2 CSPSO algorithm  
Particle swarm optimization (PSO) is a heuristic optimization 
algorithm inspired by social behavior and collective behavior 

of bird flocking or fish schooling. PSO presents some 

interesting characteristics, such as easy implementation 

procedure and high performance which make it widely used. 

In the standard PSO algorithm, the position and velocity are 
updated as follows:  


k + 1 k k k k k

i, d i, d 1 i, d i, d 2 g , d i, d
v = v + c (p - x ) + c (p - x )   (5) 

k + 1 k k + 1

i, d i, d i, d
x = x + v      (6) 

where i=1,…,m (m is the number of particles); 
k

i, d
x  and 

k

i, d
v  

denote the position and velocity of i-th particle at d-
dimensional and the k-th iteration, respectively, ω denotes the 

inertia weight, c1 and c2 are the acceleration coefficients, 
k

i, d
p  

represents the best position of i-th particle in d-dimensional 

while 
k

g , d
p  denotes the global best position.  

However, PSO does not to guarantee that the exact optimum 
solution will be found, and the conventional PSO is easily 

trapped into local minima [49, 50]. In this study, we propose 

an improved PSO algorithm, called CSPSO, to avoid 

premature convergence and accelerate the converging speed. 

Two differences between conventional PSO and CSPSO are 
as follows: one is that the self-adaptive strategy is proposed to 

tune the inertia weight factor for the balance between 

exploration and exploitation; and the other is that the 

acceleration coefficients (c1 and c2) are adapted by chaotic 

sequences generated by chaos theory. The self-adaptive 
inertia weight factor is defined as follow: 

m ax m ax m in m ax
) /k k    

ave
= - P g b e s t(k ) / P lb e s t - (     (7) 

Here, ωmax and ωmin denote the maximum and minimum 

inertial weight, respectively, Pgbest(k) denotes the global best 

fitness at the k-th iteration, Plbestave denotes the average local 

best fitness, kmax denotes the max iterations and k denotes the 

current iteration. 
Furthermore, in CSPSO, the Lorenz chaotic operator is 

employed to generate acceleration coefficients (c1, c2).  The 

Lorenz quations are defined as follows [51] :  
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where a, b, and r are parameters that determine the system’s 

behavior and are set as 10, 8/3 and 28, respectively. Given the 

dynamic properties of ( )x t  and ( )y t , which satisfy both 

ergodicity and randomness, the acceleration coefficients (c1, 
c2) are defined as follows: 
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        (9) 

Table 1 shows the details of the CSPSO algorithm parameters. 
 

Table 1. Details of the CSPSO algorithm parameters 

Parameter Description Value 

m Number of particles 50 

itmax The iteration times  2000 

minerror Minimum error 1.00E-07 
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Parameter Description Value 

w Inertia weight  Self-adaptive 

c1 Cognitive component Generated by Lorenz chaotic operator 

c2 Social component Generated by Lorenz chaotic operator 

2.3 CSPSO-KHM RBF ANN 

RBF ANN is an efficient tool which can be trained with 

experimental information to map input and output data 

despite the complexity of their relation. It is a typical feed-
forward ANN with three layers including input layer, hidden 

layer and output layer. In contrast to existing RBF ANN, we 

develop a specialized learning strategy that combines KHM 

clustering and CSPSO  algorithm in this work, the fitness 

function is mean square error (MSE), the activation function 
is a Gaussian function as follow [52] : 
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where (1 )
k

x k n  is the k-th input vector, 

(1 )
i

c i c   are the centers of the basis functions, 
i

  the 

respective spreads, n the number of samples, and c the 

number of hidden nodes. The estimated output of the network 

is given by equation (11):  

1
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where 
i

w is the connection weights of the i-th hidden node.  

The training process of RBF ANN is accomplished through 

estimation of three kinds of parameters including the hidden 

centers, radial basis function spreads and the connection 
weights. The design process of a RBF ANN aims to 

determine optimal values for the three parameters: 

, ,
i i i

c w . The selection of these parameters can be 

understood as a crucial and challenging problem. While the 

estimation of the connection weights and biases constitutes a 

standard regression problem, the determination of the spreads 
is carried out by specialized formulas that involve the 

distances between the centers. It turns out that the estimation 

of the basis function centers is the most important issue. 

Therefore, an optimization of the three parameters is 

necessary to improve the network’s performance.  
In this study, we employ KHM clustering algorithm to 

optimize the hidden centers and radial basis function spreads 

due to that the KHM clustering algorithm specialize in 

confirming the spreads based on the distance of the data 

centers.  In the process of RBF ANN training, the hidden 
centers coincide with the cluster centers obtained by the 

KHM algorithm, and are updated as follow: 

( , )
b a s is fu n tio n c lu s te r

K H M C C


   (12) 

where 
c lu s te r

C  is the cluster center according to KHM 

method, 
b a s is fu n tio n

C


 is the basis function center. And 

each radial basis function spread is updated according to its 

hidden center.  

The choice of connection weight and bias values for RBF 

ANN is a classical optimization problem, and the PSO 

algorithm has been verified that it has outstanding advantage 

to solve optimization problem. Therefore, we employ CSPSO 
algorithm to establish the connection weight and bias between 

the hidden layer and the output layer. The main objective of 

the proposed algorithm is to calculate optimal values for 

weight and bias. To accomplish this, we developed a 

specialized particle structure including the network weight 
and bias as follow:  

, ,
( ) [ , ]

h o h o
p a r tic le i W B           (13) 

where 
,h o

W  (1 )h c  , (1 )o p  is the weight 

matrix between the h-th hidden note and the o-th output note, 

and 
,h o

B the respective bias matrix, c  is the number of 

hidden note, p is the number of output note. Every particle 

of CSPSO, called a single solution, represents a single RBF 

ANN and flies over the solution space in search for the 

optimal solution. The particles are evaluated using the 
standard MSE to seek the optimal solution. During the 

optimization process, the particles are updated accordingly 

using (5) and (6).  

The procedure for CSPSO-KHM RBF ANN can be 

summarized as follows: 
Step 1: Model initialization. Randomly initialize basis 

function centers, connection weight, bias, the positions and 

velocities of a group of PSO particles.  

Step 2: Input training samples. Set basis function centers 

accordingly using equation (12); set the connection weight 
and bias based on equation (13). 

Step 3: Model training. Apply the KHM to update the basis 

function centers based on equations (1) - (4); apply the 

CSPSO to update the connection weight and bias based on 

equations (5) and (6). 
Step 4: Calculate the network outputs and errors. If network 

converges or the maximum number of iterations occurred 

then stop, else go to step 3. 

3. EXPERIMENTAL MODEL 
3.1 Experimental data and pre-processing 

CSPSO-KHM RBF ANN is designed for solubility prediction 

of SCCO2 in 10 polymers including PS, CPE55, CPE60, 

CPE67, PLLA, PLGA, PBSA, PBS, PP and HDPE. All 

experimental data are collected from literature. After 
comprehensive evaluation of the experimental data, a 

database containing 327 data points is established. Table 2 

shows the sources of statistical experimental solubility data 

used in this work. For each SCCO2/polymer system, the 

database is randomly divided into three subsets including 
training, validation and testing sets. The training set, 

contained about 70% data points, is used to train the ANN 

model. The validation and testing set, contained about 15% 

each, are used to verify and test the prediction capability.
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Table 2. Experimental data in this work 

Polymer T (K) P(Mpa) S (g/g) 
Data 

points 
Reference 

PS
[a]

 338.22-473.15 7.540-44.410 0.02641-0.16056 70 [53-56] 
CPE55

[b]
 306.00-343.00 10.370-31.020 0.09840-0.63660 20 [57] 

CPE60 306.00-344.00 10.150-29.910 0.14210-0.56840 18 [57] 
CPE67 309.00-343.00 10.380-31.000 0.12810-0.58950 18 [57] 

PLLA
 [c]

 308.00-323.00 9.620-31.460 0.16520-0.43010 27 [58] 
PLGA

 [d]
 308.00-323.00 10.140-31.470 0.09030-0.29630 27 [58] 

PBSA
[e]

 323.15-453.15 7.870-20.127 0.04763-0.17410 29 [53, 59] 

PBS 
[f]

 323.15-453.15 8.008-20.144 0.04534-0.17610 31 [53, 59] 
PP 

[g]
 313.20-483.70 7.400-24.910 0.03950-0.26170 67 [53, 60-62] 

HDPE 
[h]

 433.15-473.20 10.731-18.123 0.00551-0.12296 20 [53, 60] 
total 306.00-483.70 7.400-44.410 0.00551-0.63660 327  

[a]Polystyrene. [b]Carboxylated polyesters. [c]Poly(l-lactide). [d]Poly(d,l-lactide-co-glycolide). [e]Poly(butylene succinate-co-adipate). [f]Poly(butylene succinate). [g] 

Polypropylene. [h]High-density polyethylene. 

3.2 Assessment 

The prediction capabilities of different models are evaluated 
in terms of average relative deviation (ARD), root mean 

square error of prediction (RMSEP), and squared correlation 

coefficient (R2). ARD and RMSEP are defined as follows: 
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where N is the number of data samples; the 
i

y  and 
i

y are the 

reference and predicted value for the i-th test sample, 

respectively. 
3.3 Architecture 

In this work, two process variables, temperature T and 

pressure P, have been selected as input parameters, the output 

layer has one neuron that predicts solubility by the model. 

The number of neurons in the hidden layer is unknown and 
needs to be optimized. Therefore, the number of neurons in 

the hidden layer is optimized heuristically . Then, 13 CSPSO-

KHM RBF ANN models are generated assuming the number 

of neurons in the hidden layer from 3 to 15. The optimum 
number is selected based on the minimum ARD value. In 

Figure 1, ARD against different number of neurons in the 

hidden layer is plotted for the training set. It can be seen that 

the ARD has its minimum value when the number of the 

neurons is 8. 

 

Figure 1. Results of topology studies for optimal ANN 
configuration 

4. RESULTS AND DISCUSSION 

In this work, a three-layer RBF ANN trained by the CSPSO 

and KHM (CSPSO-KHM RBF ANN) was developed; the 

optimum architecture is 2-8-1. Then, the CSPSO-KHM RBF 

ANN is employed to investigate solubility of SCCO2 in 10 
polymers. 

4.1 Results of the proposed model 

Table 3 indicates the statistical values of CSPSO-KHM RBF 

ANN for predicting SCCO2 solubility in various polymers. 

The results in Table 3 clearly demonstrate the capability of 
the proposed model in predicting the values of SCCO2 

solubility in polymers accurately. The output of the CSPSO-

KHM RBF ANN model show well agree with the target, 

regardless of the training set, or validation set, or testing set. 

Particularly, for CPE55, CPE60, and PBS, show better 
correlation between the prediction and the experimental, the 

R2 is more than 0.9980. 
Table 3. Values of ARD, R

2
 and RMSEP for the proposed model 

Compounds 
Training set  Validation set  Testing set  

ARD R2 RMSEP ARD R2 RMSEP ARD R2 RMSEP 

PS 0.1080  0.9978  0.0112  0.1066  0.9977  0.0114  0.1058  0.9972  0.0116  
CPE55 0.1068  0.9968  0.0113  0.0981  0.9986  0.0120  0.1066  0.9989  0.0104  
CPE60 0.1020  0.9979  0.0097  0.1050  0.9988  0.0094  0.1040  0.9983  0.0102  
CPE67 0.0968  0.9975  0.0096  0.1041  0.9978  0.0113  0.1047  0.9971  0.0109  

PLLA 0.1037  0.9989  0.0103  0.1051  0.9968  0.0112  0.1034  0.9965  0.0109  
PLGA 0.0978  0.9975  0.0112  0.1102  0.9967  0.0104  0.0972  0.9975  0.0096  
PBSA 0.0984  0.9976  0.0111  0.1049  0.9987  0.0110  0.1104  0.9962  0.0106  

PBS 0.1070  0.9969  0.0104  0.1014  0.9965  0.0098  0.1045  0.9980  0.0104  
PP 0.1054  0.9976  0.0103  0.1039  0.9979  0.0103  0.1064  0.9976  0.0107  
HDPE 0.1105  0.9982  0.0106  0.1031  0.9966  0.0105  0.1081  0.9979  0.0113  
Average 0.1036  0.9977  0.0106  0.1042  0.9976  0.0107  0.1051  0.9975  0.0107  
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In the CSPSO-KHM RBF ANN model, the training set is 
used to fit the parameters, the validation set is used to 

estimate the error rate in order to tune the model parameters, 

and the testing set is used to investigate the prediction 

capability of the proposed model. For the testing set, Figure 2 

and Figure 3 plot the correlations between experimental data 
and prediction value. We can note that the superiority of the 

solubility prediction by CSPSO-KHM RBF ANN. It is 

obvious that the proposed model has excellent prediction 

accuracy and good correlation between experimental data and 

prediction value. 

 
Figure 2. Predicted data by CSPSO-KHM RBF ANN in the 

testing set (a) 

 
 Figure 3. Predicted data by CSPSO-KHM RBF ANN in the testing 

set (b) 

4.2 Comparison of the proposed model against the others 

To verify the efficiency and validity of the proposed 

computational model, two well-known models, RBF ANN 

and PSO ANN, are employed as comparative models. Figure 

4 plots the curves of mean square error (MSE) versus epoch 
of the different models. According to the figure, it is 

noticeable that the CSPSO-KHM RBF ANN is superior in 

terms of converging speed and accuracy and shows the best 

prediction performances.  

 
Figure 4. Curve of MSE VS. Epoch 

Furthermore, to substantiate the proposed model outperforms 

RBF ANN and PSO ANN, another testing database 
containing 60 data points (picked 6 data points each polymer 

at random) is additionally established for comparison among 

the different models. Figure 5 describes the correlation 

between prediction and experimental values. From Figure 5, it 

is evident that the output of the CSPSO-KHM RBF ANN 
model shows better agreement with the target by comparing 

RBF ANN and PSO ANN, the results report the superiority of 

CSPSO-KHM RBF ANN, and indicate that the proposed 

model has better prediction capability.  

 
Figure 5. Predicted data VS. experimental data in the testing 

database 

In particular, a comparative performance is further evaluated 

in terms of ARD, R2, RMSEP,  best fitness, MSE, and 

computation time, respectively. Running every model 

successively five times and then taking the average result is 
performed, Table 4 displays the performance comparison 

among the comparison models based on the testing database. 

Table 4. Statistical parameters of the comparison models 

Model ARD R2 RMSEP Best Fitness MSE Time (S) 

RBF ANN 0.3812 0.9541 0.0644 6.47E-06 9.76 E-04 10.82 
PSO ANN 0.2629 0.9754 0.0418 8.63 E-07 8.63 E-04 18.67 

CSPSO-KHM RBF ANN 0.1051 0.9975 0.0107 4.52 E-07 1.91 E-04 21.76 

What is more, the ARD for Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and RBF ANN proposed by Khajeh and Modarress [32] are 

0.2543 and 0.6498, respectively, whereas the ARD is  0.1051 in this 
work. The ANN trained by unified PSO proposed by Ahmadi, M. A. 

[63] has a R2 of 0.99493, whereas R2 is 0.9975 in this work.  

4.3 Result analysis 

Obviously, from Table 3 and Figures 2-3, it is apparent that the 

proposed model presents the best performances for solubility 
prediction, regardless of the correlation or accuracy. In the uniform 

data set, as shown in Table 4 and Figures 4-5, we can note the 
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superiority of the CSPSO-KHM RBF ANN to RBF ANN, PSO ANN. 
Especially, the ARD and RMSEP values, shown in Table 4, record the 

proposed model could predict SCCO2 solubility in polymers with 

high accuracy, and the good correlations shown by R2 describe that 

the predicted data are observed to mutually agree with experimental 

values.  
The comparison among the different models shows that CSPSO-

KHM RBF ANN has higher accuracy and better agreement than 

ANFIS, RBF ANN and PSO ANN but consumes more computation 

time. By contrast, RBF ANN consumes less computation time with 

lower accuracy. Generally, if the computation time is acceptable, the 
accuracy is of great practical significance. Table 4 shows that the 

computation time is acceptable.  

In terms of efficiency, accuracy and correlation, the results show that 

the performance of the proposed model is better. There are two major 

factors that lead to the superiority of the proposed model, one is that 
the training algorithm based on self-adaptive strategy and chaos 

theory is employed to concentrate on premature convergence; and the 

other is that the KHM clustering method is used to tune the hidden 

centers and radial basis function spreads.  

It is important to note that there are some notable characters for the 
CSPSO-KHM RBF ANN model.  

(1) Compared with the traditional computation methods, such as 

perturbed-hard chain theory, lattice-fluid theories and cubic equation 

of states, the CSPSO-KHM RBF ANN could avoid the PVT 

corrections due to the influence of high pressure and temperature, and 
gives high accuracy. At the same time, it presents excellent prediction 

capability and high accuracy compared with the others algorithms, 

such as ANFIS. 

(2) The solubility prediction trend is concordant with the 

experimental. Take PP for instance, Figure 6 depicts the corrections 
between predicted values and experimental data at different pressure 

form 7.44 (Mpa) to 17.376 (Mpa) and under the different 

temperatures of 453.20 (K), 423.20 (K), 370.20 (K) respectively.  

 
Figure 6. Corrections between predicted values and experimental data 

From our predictive experiments, we can determine that the solubility 

of SCCO2 in PP increased almost linearly with pressure, and 

decreased with increasing temperature. The solubility prediction trend 

is concordant with the experimental trend. Generally, many 
SCCO2/polymer systems have the solubility trend similar to that of 

SCCO2/PP. 

5. CONCLUSION 

Solubility of supercritical carbon dioxide (SCCO2) in many polymers 

is substantial in polymer processing. The present study is conducted 
to seek a novel prediction model so as to replace the costly and time-

consuming measurement in laboratory. For this purpose, we have 

developed a hybrid prediction model based on ANN, self-adaptive 

PSO, chaos theory, and KHM clustering method to predict the 

solubility of SCCO2 solubility in polymers. The conclusion is that the 
proposed CSPSO-KHM RBF ANN model is a reliable and accurate 

method for predicting SCCO2 solubility in polymers, and is a 
practicable method for analyzing and designing polymer processing 

technology. It has a good application prospects, such as system of 

experimental data processing, prediction of material performance and 

properties, optimization, and simulation of material processing 

technology. Meanwhile, in the future, we will use some heuristic 
techniques for the data uncertainty pretreatment to reduce the 

computation cost for higher eff iciency, such as ordering, pruning, etc. 

At the same time, we will follow up on this subject all the time and 

focus on applying the proposed model to solve more realistic 

problems.  
ABBREVIATIONS 

PVT  Pressure, Volume, Temperature 

ANN  Artificial Neural Network 

RBF  Radial Basis Function 

SCCO2  Supercritical carbon dioxide 

PSO  Particle Swarm Optimization 

CSPSO  Chaotic Self-adaptive Particle Swarm Optimization 

KHM   K-harmonic means 

PBS  Poly(butylene succinate).  

PBSA  Poly(butylene succinate-co-adipate).  
PP  Polypropylene. 

PS  Polystyrene. 

CPEs  Carboxylated polyesters  

PLLA  Poly(l-lactide) 

PLGA  Poly(D,l-lactide-co-glycolide)  
HDPE  High-density polyethylene 

ARD   Average Relative Deviation 

R2  Squared Correlation Coefficient 

MSE  Mean Square Error 

RMSEP  Root Mean Square Error of Prediction 
ANFIS  Adaptive Neuro-Fuzzy Inference System 
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