ORGANIC CHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

http://rsc.li/frontiers-organic

Organic Chemistry Frontiers

Method

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Stereoselective Formation of Chiral *trans*-4-Hydroxy-5-Substituted 2-Pyrrolidinones: Syntheses of Streptopyrrolidine and 3-*epi*-Epohelmin A

Chang-Mei Si,^a Zhuo-Ya Mao,^a Yi-Wen Liu,^a Zhen-Ting Du,^c Bang-Guo Wei*^a and Guo-Qiang Lin^b

A highly diastereoselective approach for synthesis of *trans*-4-hydroxy-5-substituted 2-pyrrolidinones has been developed through an intramolecular cascade process of α -chiral aldimines using alkyl, aryl, alkynyl, and alkenyl Grignard reagents. Stereochemistry at the C-5 position of 2-pyrrolidinone after reaction with alkyl, aryl, and alkenyl Grignards was solely controlled by α -alkoxy substitution. For alkynyl Grignards, stereochemistry was controlled by coordination of the α -alkoxy substitution and stereochemistry of the sulfinamide. The utility of this one-pot cascade protocol is demonstrated by the asymmetric synthesis of streptopyrrolidine **5** and 3-*epi*-epohelmin A 3-*epi*-**6**.

Introduction

The development of efficient and stereoselective reactions and methodologies for carbon-carbon bond formation is one of the major pursuits in organic synthesis and medicinal chemistry.¹ Ellman and Davis reported, respectively, an effective method to prepare chiral amines through the addition reaction of imines bearing chiral auxiliaries (e.g., Ntert-butanesulfinamide and N-toluenesulfinamide) with nucleophilic reagents.^{2,3} Nowadays, the addition of corresponding Grignard reagents to chiral N-tertbutanesulfinyl imines is widely applied in organic synthesis.⁴ Our group has also explored the utility of chiral N-tertbutanesulfinyl imines, and successfully accomplished the divergent synthesis of several bioactive natural products.⁵ In addition, we observed an interesting stereoselective tert-butyl migration from sulfur to carbon when N-tert-butanesulfinyl iminoacetate was treated with various benzylzinc bromides.⁶

Figure 1. Formation of chiral 2-piperidinones and 2- pyrrolidinones.

^a Department of Natural Products Chemistry, School of Pharmacy Fudan University 826 Zhangheng Road, Shanghai 201203, China mail: bgwei1974@fudan.edu.cn

- ^{b.}Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345
- Lingling Road, Shanghai 200032, China

More recently, we discovered an intramolecular cascade process for highly diastereoselective synthesis of versatile *trans*-5-hydroxy-6-substituted 2-piperidinones **2**.⁷ In this case, the stereoselectivity of C-5 and C-6 strongly favored the *trans* form and the new stereogenic center at the C-6 position was solely controlled by the *tert*-butyldimethylsilyl ether (α -OTBS) group of imine **1**. Encouraged by this highly stereoselective imine addition and the subsequent in situ formation of 2-piperidinones **2**, as a continuous work, we became interested in a similar imine substrate **3** with one less carbon, which would potentially produce *trans*-4-hydroxy-5-substituted 2-pyrrolidinones **4** (Figure 1).

Chiral functionalized *trans*-4-hydroxy-5-substituted 2pyrrolidinones and the ring-opened form *y*-amino-*β*hydroxybutyric acids are present as a core structure or subfeature in many biologically relevant alkaloids^{8,9} isolated from marine and terrestrial plants and animals, as well as in pharmaceutical agents.¹⁰ For example, streptopyrrolidine **5**, isolated from the fermentation broth of marine *Streptomyces* sp. KORDI-3973,¹¹ could significantly block the capillary tube formation of cells at the same potency as the known angiogenesis inhibitor SU11248, whereas epohelmin A **6**, isolated from an unidentified fungus (strain FKI-0929), could

Figure 2. The structure of several bioactive molecules.

^{c-}College of Science Northwest Agriculture and Forestry University Shaanxi, Yangling, 712100, China

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/x0xx00000x

Method

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

inhibit recombinant lanosterol synthase $(IC_{50} = 10 \ \mu M)$.¹² Ringopened form, (3R,4S)- γ -amino- θ -hydroxybutyric acid unit,¹³ exists in hapalosin **7** and symplocin A **8**. The former showed multi-drug resistance reversing activity in cancer cells,¹⁴ and the latter displayed very potent cathepsin E inhibition $(IC_{50} =$ 300 pM)¹⁵ (Figure 2).

In past decades, a wide range of synthetic methods for the stereoselective construction of *trans*-4-hydroxyl-5-substituted 2-pyrrolidinones **4** and the ring-opened form have been developed.⁹ The common approaches among them are based on reductive alkylation^{9d-f,9k} and nucleophilic substitution,^{9c} which usually require multiple steps and lead to an unsatisfactory overall yield. Therefore, an efficient and stereoselective approach for direct preparation of **4** remains a challenge.¹⁶ Herein we report our results of the one-pot cascade process starting from α -chiral aldimine **3** and Grignard reagents to generate chiral 2-pyrrolidinones **4**, as well as the application in asymmetric syntheses of streptopyrrolidine **5** and 3-*epi*-epohelmin A (3-*epi*-**6**).

Results and Discussion

The synthesis of aldimine **3** is demonstrated in Scheme 1. D-Malic acid was conveniently converted to ester **9** according to the known procedure in 74% overall yield.¹⁷ The subsequent regioselective desilylation from the primary hydroxyl group was achieved by controlling the reaction temperature at -40 °C in the presence of camphorsulfonic acid (CSA) to produce alcohol **10** in 65% yield. Oxidation of **10** with Dess-Martin periodinane (DMP)¹⁸ and subsequent condensation with 2-methylpropane-2-sulfinamide in the presence of anhydrous copper sulfate¹⁹ led to *N-tert*-butanesulfinyl imines **3** in 84% overall yield (Scheme 1).

Scheme 1. Preparation of *N-tert*-butanesulfinyl aldimines 3. Reagents and conditions: a. CSA, MeOH/DCM, −40 °C, 8 h, 65%; b. DMP, DCM, room temperature (rt), 0.5 h, quantitative yield; c. 2-methylpropane-2-sulfinamide, CuSO₄, pyridinium *p*-toluenesulfonate, DCM, 24 h, 84%.

With the desired precusor **3** in hand, we started to investigate the intramolecular tandem sequence by reacting with Grignard reagents. When optically pure (R, S_R)-**3** was treated with phenyl magnesium bromide at -78 °C, the desired product **12a** was obtained. Because of its co-elution with the sulfoxide by-product **13a** in silica gel chromatography, the lactam-NH was protected as the *N-tert*-butoxycarbonyl (*N*-Boc) form, and the pure imide **4a** was obtained with high diastereoselectivity (dr = 99:1) in spite of low yield (40%, Table 1, entry 1). Like the tandem process involving imine **1**,⁷ the yield of **4a** was greatly improved to 74% when the

Organic Chemistry Frontiers

reaction was conducted at -78 °C to room temperature and maintained at room temperature overnight; the diastereoselectivity remained unchanged (dr = 99:1, Table 1, entry 2). Regardless of the chirality of sulfur in the imine substrate, both (R,S_s) -3 and (R,S_R) -3, as well as (R,S_{RS})-3, led to the same product 4a with high diastereoselectivities (dr = 99:1, Table 1, entries 2-4), indicating that the stereochemistry of the new chiral center at C-5 was solely controlled by the α -OTBS group. Use of different solvents was also investigated for the reaction with (R, S_{RS}) -3, and the results are summarized in Table 1 (entries 5–7). The reaction in tetrahydrofuran (THF) offered better conversion than in tetrahydrofuran/dichloromethane (Table 1, entries 4 and 5). Different amounts of Grignard reagent were also assessed. The use of less than three equivalents of phenylmagnesium bromide also produced the desired product 4a with high diastereoselectivity, albeit in much lower yields (Table 1, entries 8 and 9).

Table 1. Optimization of the tandem process.

a. The reactions were performed with α -chiral substituted aldimines **3** (1.0 mmol), phenyl magnesium bromide (3 mL, 1.0 M in THF) at -78 °C to rt overnight, crude product was treated with Boc₂O (2.0 mmol), DMAP (1.0 mmol), and triethylamine (5.0 mmol) in DMF for 24 h. b. Isolated yield. c. Determined by HPLC or ¹H NMR. d. Phenyl magnesium bromide (1 mL, 1.0 M in THF). e. Phenyl magnesium bromide (2 mL, 1.0 M in THF).

Next, we turned our attention to investigate the scope and limitation of this method in the preparation of trans-4-hydroxy-5substituted 2-pyrrolidinones. A survey of different Grignard reagents were conducted by reaction with (R, S_{RS}) -3 under the established optimal conditions, as summarized in Table 2. When substituted phenyl Grignard reagents were used, the intramolecular tandem addition-cyclization proceeded smoothly with high diastereoselectivities and in excellent yields (Table 2, entries 2-9) except that *m*-fluoro-phenylmagnesium reagent led to a slightly lower diastereoselectivity in desired product 4f (Table 2, entry 6). Bicyclic Grignard reagents, including α - and β -naphthyl magnesium bromides, also afforded the desired lactams 4j,k, and the less hindered β -naphthyl magnesium bromide provided better diastereoselectivity and higher yield for this tandem process (Table 2, entries 10 and 11). Several alkyl-chain Grignard reagents were also investigated, and the yields of products 4l-p were slightly lower than those of substituted phenyl Grignard reagents (Table 2, entries 12-16). It is noteworthy that saturated cyclic Grignard reagents also gave the desired lactams 4q,r in 66-68% yield (Table 2, entries 17 and 18). Although benzylmagnesium bromide could give

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name

the corresponding product **4s** in 70% yield (Table 2, entry 19), the reaction with allyIMgBr was very messy (Table 2, entry 20). All the above-mentioned results indicated that the tandem sequence of α -chiral aldimine **3** was quite suitable for different substituted alkyl and aryl Grignard reagents and the stereogenic center at C-5 was solely controlled by the α -OTBS group.

Table 2. Reactions of different Grignard reagents with (R, S_{RS}) -3.

MeO U O		$\frac{1. \text{ RMgBr}}{2. \text{ Boc}_2 \text{O}}$		OTBS +	
	3		4	1	13
Entry ^a	R	4a—s	Yield %) ^b	trans:cis ^c	_
1	C ₆ H ₅	4a	71	99:1	_
2	o-CH ₃ C ₆ H ₄	4b	62	99:1	
3	m-CH ₃ C ₆ H ₄	4c	73	98:2	
4	p-CH ₃ C ₆ H ₄	4d	68	99:1	
5	$p-CH_3OC_6H_4$	4e	74	99:1	
6	$m-FC_6H_4$	4f	80	96:4	
7	$p-FC_6H_4$	4g	81	90:10	
8	m-CF ₃ C ₆ H ₄	4h	59	99:1	
9	<i>p</i> -PhC ₆ H ₄	4i	81	94:6	
10	α -Naphthyl	4j	59	96:4	
11	β-Naphthyl	4k	70	99:1	
12	Ethyl	41	65	99:1	
13	$CH_2 = CHCH_2CH_2$	4m	69	94:6	
14	Isopropyl	4n	52	99:1	
15	Isobutyl	4o	61	99:1	
16	$CH_3(CH_2)_4$	4р	72	99:1	
17	Cyclopropyl	4q	68	99:1	
18	Cyclohexyl	4r	66	99:1	
19	Bn	4s	70	97:3	
20	A11./	A+			

a. Reactions were performed with (R, S_{RS})-**3** (1.0 mmol), Grignard reagents (3 mL, 1.0 M in THF) in dry THF (5 mL) at -78 °C to rt overnight, crude product was treated with Boc₂O (2.0 mmol), DMAP (1.0 mmol), and triethylamine (5.0 mmol) in DMF for 24 h. b. Isolated yield. c. Determined by HPLC or ¹H NMR.

The stereochemistry of product **4a** was unambiguously determined as the *trans* form by X-ray crystallography.²⁶ Other compounds **4b-s** were accordingly assigned as the *trans* forms based on the similar coupling constant (*J*) between protons C4-H (C<u>H</u>-OTBS) and C5-H (C<u>H</u>-alkyl or aryl).

We previously demonstrated that the reactions of α -chiral aldimines 1 with alkynyl Grignard reagents could lead to 2piperidinones 2 with different stereoselectivities depending on the chirality of sulfur.^{7b} The α -chiral aldimine **3**, with one less carbon in the chain, also performed in a similar way. When (R, S_R) -**3** was treated with (2-phenylethynyl)magnesium bromide and followed by N-Boc protection, the desired imide 14a was produced in 76% yield with high diastereoselectivity (dr = 99:1) (Table 3, entry 1). Other aryl- and alkyl-substituted alkynyl Grignard reagents were also investigated for the reaction with (R, S_R) -3, and the desired imides 14b-e were produced with high diastereoselectivities (dr = 99:1) (Table 3, entries 2–5). The reactions of α -chiral aldimine (R,S_S)-**3** with alkynyl Grignard reagents also afforded the desired products in comparable combined yields of both trans and cis isomers, but with significantly lower diastereoselectivities. When (R, S_s) -3 was treated with (2-phenylethynyl)magnesium bromide, the desired imide 14a was obtained in 73% combined yield with ARTICLE

low diastereoselectivity (dr = 38:62), favoring the *cis* form (Table 3 entry 6). Both (2-m-tolylethynyl)magnesium bromide and [2-(4-fluorophenyl)ethynyl]magnesium bromide also yielded the imides 14b and 14c with low diastereoselectivities, predominantly in the cis forms (Table 3, entries 7 and 8). Interestingly, when (3,3-dimethylbut-1-ynyl)magnesium bromide and hept-1-ynylmagnesium bromide were subjected to the reaction sequence, the major isomer of resulting imides 14d and 14e were the trans forms (Table 3, entries 9 and 10). Our results indicate that the stereochemistry outcome for the reactions with alkynyl Grignard reagents was controlled by both the α -alkoxy substitution and the chiral sulfinamide. When α -chiral aldimine (R, S_R) -3 was used, imide 14 was obtained with high diastereoselectivity (dr = 99:1) for the trans form. However, the reactions with α -chiral aldimine (R,S_s)-3 gave poor diastereoselectivities, with the aryl-substituted alkynyl Grignard reagents producing the major imides 14 in the cis forms and alkyl-substituted alkynyl Grignard reagents favoring trans products.

 Table 3. Reactions of different alkynyl Grignard reagents with 3.

	-05	() - N/			
2	3-Me-C ₆ H ₄	(R, S_R)	(<i>2S,3R</i>)- 14b	80	99:1
3	$4-F-C_6H_4$	(R, S_R)	(2S,3R)- 14c	77	99:1
4	$CH_3(CH_2)_3CH_2$	(R, S_R)	(<i>2S,3R</i>)- 14d	79	99:1
5	C(CH ₃) ₃	(R, S _R)	(2S,3R)- 14e	70	99:1
6	C_6H_5	(<i>R,S</i> _s)	(2R,3R)- 14a	73	38:62
7	3-Me-C ₆ H ₄	(R,S _s)	(2R,3R)- 14b	75	35:65
8	$4-F-C_6H_4$	(<i>R,S</i> _s)	(2R,3R)- 14c	72	34:66
9	$CH_3(CH_2)_3CH_2$	(<i>R,S</i> _s)	(2R,3R)- 14d	71	61:39
10	C(CH ₃) ₃	(R, S_S)	(2R,3R)- 14e	63	68:32

a. Reactions were performed with **3** (1.0 mmol), Grignard reagents (3 mL, 1.0 M in THF) in dry THF (5 mL) at -78 °C to rt overnight, crude product was treated with Boc₂O (2.0 mmol), DMAP (1.0 mmol), and triethylamine (5.0 mmol) in DMF for 24 h. b. Isolated yield. c. Determined by ¹H NMR.

The tandem process of reacting α -chiral aldimine **3** with alkenyl Grignard reagents was also investigated. Like the reaction with imine substrate **1**,^{7b} the generation of the stereogenic center at C-5 was solely controlled by the α -OTBS group (Table 4, entries 1–5)

Table 4. Reactions of different alkenyl Grignard reagents with 3.

(R,S _S)- 3	1.CH ₂ =	CR₁MgBr		ОТВС	0 		
(<i>R</i> , <i>S_R</i>)- 3	2. Boc ₂	2. Boc ₂ O, DMF		N			
(R.Sps)-3				R R ₁			
() - ((3) -				15: R = H	16		
			trai	ns-17: R = Boc	10		
Entry ^a	3	R ₁	17	Yield (%) ^b	trans:cis ^c		
1	(R, S_{RS})	н	17a	69	99:1		
2	(R, S_R)	н	17a	74	99:1		
3	(R,S _s)	н	17a	65	99:1		
4	(R, S_R)	Et-	17b	68	98:2		
5	$(R.S_{s})$	Et-	17b	59	96:4		

a. Reactions were performed with α -chiral substituted aldimines ${\bf 3}$ (1.0 mmol), alkenyl Grignard reagents (3 mL, 1.0 M in THF) in dry THF (5 mL) at –78 °C to rt

Page 4 of 14

Organic Chemistry Frontiers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57

58

59

60

Method

overnight, crude product was treated with Boc_2O (2.0 mmol), DMAP (1.0 mmol), and triethylamine (5.0 mmol) in DMF for 24 h. b. Isolated yield. c. Determined by HPLC or ¹H NMR

With this effective method for the preparation of *trans*-4-hydroxy-5-substituted 2-pyrrolidinones in hand, we decided to use it in the total syntheses of natural products. The synthesis of streptopyrrolidine **5** only requires a chiral inversion at the C-4 positon of **4s**. After the deprotection (*tetra*-*n*-butylammonium fluoride, TBAF) of **4s**, oxidation (DMP) and subsequent reduction (NaBH₄) generated **18** in 89% overall yield, which was treated with trifluoroacetic acid (TFA) to afford streptopyrrolidine **5** in 83% yield (Scheme 2) $\{[\alpha]_D^{25} = -44.5 (c \ 0.15, MeOH); lit.^{9j} <math>[\alpha]_D^{25} = -44.6 (c \ 0.05, MeOH); lit.^{11}$ $[\alpha]_D^{25} = -12 (c \ 0.05, MeOH); lit.^{20a} <math>[\alpha]_D^{20} = -44 (c \ 1.0, MeOH);$ lit.^{20b} $[\alpha]_D^{20} = -43.5 (c \ 1.0, MeOH)$. The spectroscopic and physical data of the synthetic streptopyrrolidine **5** were identical to the reported data.^{9j,11,20}

Scheme 2. Asymmetric synthesis of streptopyrrolidine 5. Reagents and conditions: a. (1) TBAF, THF, 3 h; (2) DMP, DCM, 30 min; (3) NaBH₄, MeOH, 0 °C~rt, 2 h, 89% (3 steps); b. TFA, 0 °C~rt, 4 h, 83%.

Next, we focused on the total synthesis of epohelmin A **6**, a novel lanosterol synthase inhibitor that was isolated from fungal strain FKI-0929.^{12a} The chemical structure of **6** was revised from the originally proposed monocyclic core to a bicyclic skeleton by Snider after their asymmetric synthesis in 2005.^{12b,c} Our retrosynthetic analysis is shown in Figure 3, hoping to introduce the C-3 chiral center through nucleophilic addition of lactam by allylmagnesium chloride and subsequent stereoselective reduction sequence.

Thus, the intramolecular cascade reaction of α -chiral aldimines (R, $S_{R,S}$)-**3** with [3-(benzyloxy)propyl]magnesium bromide was initially considered. To our disappointment, the yield of **19a**

Figure 3. Retrosyntheyic analysis of epohelmin A 6.

was very low and the diastereoselectivity was very low (38:62) (Table 5, entry 1). Moreover, the major imide **19a** was the *cis* form (Table 5, entry 1). Although several conditions including (R, S_R) -**3** and (R, S_S) -**3** were investigated, the stereochemistry was still low (Table 5, entries 2 and 3). The use of (3-[(*tert*-

butyl)dimethylsilyloxy]propyl)magnesium bromide was also investigated, but the intramolecular tandem process did not proceed (Table 5, entry 4). To further investigate this abnormal result, different [(benzyloxy)alkyl]magnesium bromides were studied. When (*R*,*S*_{*R*,*S*})-**3** was treated with [2-(benzyloxy)ethyl]magnesium bromide, no desired product was produced (Table 5, entry 5). Using [4-(benzyloxy)butyl]magnesium bromide, the yield of desired imide 19d was improved to 53%, and the ratio of diastereoselectivity for trans to cis changed to 50:50 (Table 5, entry 6). Interestingly, when (R, S_R, s) -3 was treated with [6-(benzyloxy)hexyl]magnesium bromide, desired product 19e was generated in 60% yield and the diastereoselectivity returned to normal, with 90:10 ratio favoring the trans (Table 5, entry 7).

Table 5. Reactions of (benzyloxy) or (silaneoxy) Grignard reagents with 3

Entry ^a	3	n	Р	19	Yield (%) ^b	trans:cis ^c	
1	(R, S_{RS})	3	Bn	19a	32	38: 62	
2	(R, S_R)	3	Bn	19a	35	41:59	
3	(<i>R,S</i> _s)	3	Bn	19a	29	35:65	
4	(R, S_{RS})	3	TBS	19b	NR^{d}		
5	(R, S_{RS})	2	Bn	19c	NR^{d}		
6	(R, S_{RS})	4	Bn	19d	53	50:50	
7	(R, S_{RS})	6	Bn	19e	60	90:10	

a. Reactions were performed with α -chiral substituted aldimines **3** (1.0 mmol), Grignard reagents (3 mL, 1.0 M in THF) in dry THF (5 mL) at -78 °C to rt overnight, crude product was treated with Boc₂O (2.0 mmol), DMAP (1.0 mmol), and TEA (5.0 mmol) in DMF for 24 h. b.Isolated yield. c. Determined by HPLC or ¹H NMR. d. No reaction.

In understanding why the intramolecular cascade reaction of (R, S_{RS}) -3 with [3-(benzyloxy) propyl]magnesium bromide gave different results, we considered that strong coordination of magnesium with oxygen produced the cyclic form as stable intermediates (Figure 4, structures **A**)²¹ that weakly produced B to attack the C=N bond. It is likely that steric hindrance caused the abnormal result. For (3-[(tertbutyl)dimethylsilyloxy]propyl)magnesium bromide D, we think that the steric hindrance of more stable structure C is predominant. Thus it could not attach the C=N bond. However, there is balance between the coordination structure E and [4-(benzyloxy)butyl]magnesium bromide F, and the steric hindrance of E caused the cis- result. Thus, the ratio of diastereoselectivity for imine 19d is near 50:50. For [6-(benzyloxy)hexyl]magnesium bromide H, the coordination structure G is very weak, so the intramolecular cascade reaction of $(R, S_{R,S})$ -**3** gave the normal *trans* product.

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Figure 4. The prososed coordination structures of magnesium with oxygen.

To obtain **19b**, lactam **4m** was selected as a key intermediate for synthesis of epohelmin A **6**. Thus, the dihydroxylation of alkene **4m** with 4-methylmorpholine 4-oxide (NMO) in the presence of 0.1 equivalents of $K_2Os_2O_2(OH)_4^{22}$ and continuous oxidation with $NalO_4^{23}$ as well as subsequent reduction with $NaBH_4$ gave desired alcohol **20** in 87% overall yield (Scheme 3). The hydroxyl group in **20** was then converted to TBS ether in 93% yield.

Scheme 3. Synthesis of 19b. Reagents and conditions: a. (1) NMO, K_2OsO_4 , *t*-BuOH/H₂O, overnight; (2) NaIO₄, THF/H₂O, 1.5 h; (3) NaBH₄, MeOH, 0 °C, 87% (3 steps); b. TBSCl, DMAP, imidazole, DMF, 24 h, 93%.

Imine **19b** was treated with a solution of allylmagnesium chloride in dichloromethane at -20 °C; additive product **21** and the tautomeric amidoketone **22** were generated²⁴(Scheme 4). Without further purification, the crude mixture of compounds **21** and **22** was treated with sodium borohydride (ethanol/NaBH₄) in the presence of cerous chloride to afford the crude alcohol **23**, which was directly treated with methanesulfonyl chloride and potassium *tert*-butoxide to give **25** in 70% overall yield with diastereoselectivity (*dr* = 50:50). Methanol was also used as solvent, but the result remained the same (*dr* = 50:50). To obtain diastereoselectivity in **25**, the diastereoselective nucleophilic addition of organic boronic ester to *N*-acyliminium ions^{24b} was investigated. Reduction of **19b** with lithium triethylhydridoborate

gave *N*,*O*-acetals **24** in quantitative yield, which was directly treated with 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane to afford desired product 2,5-*cis*-**25** in 69% overall yield with high diastereoselectivity (*dr* > 99:1). The stereochemistry of **25** prepared by the addition–reduction–cyclization process was assigned as the 2,5-*trans* form by comparing data with 2,5-*cis*-**25**.^{24b}

With the 2,5-cis-25 in hand, the asymmetric synthesis of 3-epiepohelmin A (3-epi-6) was considered as shown in Scheme 5. The carbon chain extension of 2,5-cis-25 through Grubbs' secondgeneration catalyst²⁵ successfully afforded olefin **26** in 95% yield with excellent selectivity (E:Z = 95:5). Reduction (Pd/C, H_2) of 26 gave ester 27 in 92% yield. Compound 27 was treated with a large excess of LiCH₂PO(OMe)₂ in THF at -78 °C to -50 °C to obtain keto phosphonate 28 in 97% isolated yield.^{12b} Treatment of 28 with NaH in THF, followed by addition of hexanal gave enone 29 in 88% yield with good selectivity (E:Z = 98:2).^{12b} Selective deprotection of 29 with CSA in a mixture of DCM and methanol at -50 °C for 8 h gave alcohol 30 in 93% yield. Finally, mesylation of compound 30 with methanesulfonyl chloride in the presence of triethylamine and subsequent treatment with triethylsilyl triflate (TESOTf)/2,6-lutidine generated the bicyclic product, which was subjected to desilylation with HCl/methanol in one pot, affording 3-epi-epohelmin A (3-epi-6) in 49% yield { $[\alpha]_D^{25}$ = +7.8 (*c* 0.80, CHCl₃)}. The structure of synthetic 3-epi-6 was further confirmed by the spectroscopic and physical data.

Scheme 5. Asymmetric synthesis of 3-*epi*-epohelmin A (3-*epi*-6). Reagents and conditions: a. Methyl acrylate, Grubbs^{2nd}, DCM, reflux, 7 h, 95%; b. Pd/C, H₂, MeOH, 92%; c. dimethyl methylphosphonate, *n*-BuLi, THF, –78 °C, 1 h, then (*5R*)-27, –50 °C, 2 h, 97%; d. NaH, (*5R*)-28, THF, 1 h, then caproaldehyde, 0 °C, 3 h, 88%; e. CSA, DCM/MeOH, –50 °C, 8 h, 93%; f. (1) MsCl, TEA, DCM, 100%; (2) 2,6-lutidine, TESOTf, DCM, -78 °C~rt, overnight; (3) HCl/MeOH, 24 h, 49% (2 steps).

J. Name., 2013, 00, 1-3 | 5

Organic Chemistry Frontiers

Conclusions

We established a convenient one-pot method for highly diastereoselective synthesis of *trans*-4-hydroxy-5-substituted 2-pyrrolidinones **4a–s**, **14a–e**, and **17a,b** by an intramolecular cascade process of (R, S_{RS})-**3** with alkyl, aryl, alkynyl, and alkenyl Grignard reagents. For the reaction of (R, S_{RS})-**3** with alkyl, aryl, and alkenyl Grignard reagents, the stereochemistry at the C-5 stereogenic center of the *trans*-4-hydroxy-5-substituted 2-pyrrolidinones was solely controlled by α -alkoxy substitution. In contrast, in reactions of (R, S_{RS})-**3** with alkynyl Grignard reagents, the stereochemistry at the C-5 stereogenic center of the *trans*-4-hydroxy-5-substituted 2-pyrrolidinones was solely controlled by α -alkoxy substitution. In contrast, in reactions of (R, S_{RS})-**3** with alkynyl Grignard reagents, the stereochemistry at the C-5 stereogenic center was controlled by coordination of the α -alkoxy substitution and the stereochemistry of the sulfinamide. The synthetic application of this methodology was demonstrated by the asymmetric syntheses of streptopyrrolidine **5** and 3-*epi*-epohelmin A (3-*epi*-**6**).

Experimental Section

General: THF was distilled from sodium/benzophenone. Reactions were monitored by thin layer chromatography (TLC) on glass plates coated with silica gel with fluorescent indicator. Flash chromatography was performed on silica gel (300–400) with Petroleum / EtOAc as eluent. Optical rotations were measured on a polarimeter with a sodium lamp. HRMS were measured on a LCMS-IT-TOF apparatus. IR spectra were recorded using film on a Fourier Transform Infrared Spectrometer. NMR spectra were recorded at 400 MHz or 500 MHz, and chemical shifts are reported in δ (ppm) referenced to an internal TMS standard for ¹H NMR and CDCl₃ (77.0 ppm) for ¹³C NMR.

(R)-Methyl 3-(tert-butyldimethylsilyloxy)-4hydroxybutanoate 10 To a solution of 9 (40.0 g, 110.42 mmol) and CSA (20.9 g, 88.34 mmol) was stirred in DCM (200 mL) and MeOH (200 mL) at -40 °C for 8 h. Then a solution of TEA (15.3 mL, 110.42 mmol) was dropped and the mixture was warmed to room temperature. After being concentrated, the residue was purified by flash chromatography on silica gel (PE/EA=6/1) to give alcohol **10** (17.8 g, 65%) as a colorless oil. $[\alpha]_D^{25}$ = +12.8 (c 1.02, CHCl₃); IR (film): v_{max} 3462, 2954, 2930, 2887, 2858, 1740, 1438, 1256, 1169, 1115, 1071, 838, 779 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.24-4.16 (m, 1H), 3.67 (s, 3H), 3.63-3.57 (m, 1H), 3.56-3.50 (m, 1H), 2.60-2.50 (m, 2H), 2.03 (dd, J = 7.6, 5.2 Hz, 1H), 0.87 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl_3) δ 171.9, 69.7, 66.2, 51.6, 39.2, 25.7, 18.0, -4.7, -4.9 ppm; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₁H₂₄O₄SiNa: 271.1342, found: 271.1354.

(*E*,*3R*,*S*_{*RS*})-Methyl 3-(*tert*-butyldimethylsilyloxy)-4-(2methylpropan-2-ylsulfinamido)butanoate 3 Then the above alcohol **10** was dissolved in DCM (200 mL) and treated with new prepared DMP (36.5 g, 86.14 mmol) at room temperature for 30 min. The mixture was quenched carefully with a saturated solution of NaHCO₃ and Na₂S₂O₃. The resulted mixture was separated and the aqueous was extracted with DCM for three times. The combined organic layers were washed with brine. Dried, filtrated and concentrated to give crude aldehyde **11**, which was dissolved in DCM (200 mL). Then 2-methyl-2-propanesulfinamide (8.7 g, 71.78 mmol), cupric sulphate anhydrous (22.9 g, 143.56 mmol) and PPTS (0.9 g, 3.59 mmol) were added in one portion. After being stirred for 24 h, the reaction was filtrated and concentrated to give the crude product, which was purified by flash chromatography on silica gel (PE/EA=10/1) to give 3 (21.1 g, 2 steps for 84%) as a colorless oil. For the mixture: IR (film): v_{max} 2955, 2930, 2898, 2858, 1742, 1624, 1473, 1462, 1437, 1364, 1256, 1173, 1090, 1005, 838, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06-8.02 (m, 0.33H), δ 7.96-7.94 (m, 0.67H), 4.90-4.84 (m, 0.67H), 4.58-4.54 (m, 0.33H), 3.68-3.67 (m, 1H), 3.65-3.63 (m, 2H), 2.98-2.85 (m, 0.66H), 2.78-2.71 (m, 0.67H), 2.62-2.54 (m, 0.67H), 1.16-1.14 (m, 6H), 1.14-1.12 (m, 3H), 0.86-0.82 (m, 9H), 0.07-0.02 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 170.7, 169.4, 165.7, 71.2, 69.3, 57.0, 56.8, 52.0, 51.8, 40.9, 40.3, 25.6, 22.3, 22.2, 18.2, 18.0, 4.5, -4.9, -5.1, -5.4 ppm; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{32}NO_4SSi$: 350.1821, found: 350.1821.

General procedure for synthesis of 4a-s, 14a-e and 17a-b: Compound 3 (350 mg, 1.00 mmol) was dissolved in anhydrous THF (5 mL) and cooled to -78 °C. Then a solution of Grignard reagent (3 mL, 1 M in THF) was slowly dropped. After being stirred for 3 h, the mixture was warmed to room temperature and stirred for overnight. The reaction was quenched with a saturated NH₄Cl aqueous solution and extracted with EtOAc $(30 \text{ mL} \times 3)$. The combined organic layers were washed with brine, dried, filtered and concentrated to give crude amide, which was directly dissolved in dry DMF (4 mL), then TEA (0.70 mL, 5.00 mmol), Boc₂O (0.46 mL, 2 mmol) and DMAP (122 mg, 1.00 mmol) was added. After stirring for 24 h, the reaction was diluted with water and extracted with EtOAc for three times. The combined organic layers were washed with water and brine for two times respectively. Dried, filtered and residue was concentrated, the purified by flash chromatography on silica gel (PE/EA = 15/1) to give imide 4a-s, 14a-e and 17a-b.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2phenylpyrolidine-1-carboxylate 4a White solid (277 mg, 71%), m.p 112-113°C. $[\alpha]_D^{25} = -5.4$ (c 1.40, CHCl₃); IR (film): v_{max} 2948, 2931, 2855, 1794, 1458, 1367, 1306, 1255, 1151, 1101, 839, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.30 (m, 3H), 7.22-7.18 (m, 2H), 5.00-4.95 (m, 1H), 4.12 (ddd, J = 5.6, 2.4, 1.6 Hz, 1H), 2.87 (dd, J = 17.2, 5.6 Hz, 1H), 2.43 (dd, J = 17.2, 1.6 Hz, 1H), 1.32 (s, 9H), 0.91 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 149.6, 139.1, 129.0, 128.0, 125.2, 83.0, 72.0, 71.4, 41.0, 27.7, 25.7, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₃₃NO₄SiNa: 414.2077, found: 414.2066.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-otolylpyrrolidine-1-carboxylate 4b Pale yellow oil (251 mg, 62%). $[\alpha]_{D}^{25}$ = -8.2 (*c* 2.50, CHCl₃); IR (film): v_{max} 2959, 2931, 2849, 1789, 1753, 1721, 1463, 1370, 1307, 1249, 1153, 1079, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.16 (m, 3H), 7.06-7.01 (m, 1H), 5.23-5.21 (m, 1H), 4.07 (ddd, *J* = 5.6, 2.4, 1.6 Hz, 1H), 2.87 (dd, *J* = 17.2, 5.6 Hz, 1H), 2.45-2.39 (m, 4H), 1.28 (s, 9H), 0.90 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 149.4, 137.1, 134.9, 130.8, 127.7, 126.6,

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name

123.2, 82.8, 71.1, 67.9, 41.1, 27.6, 25.6, 19.3, 17.8, -4.6, -4.9 ppm; HRMS (ESI-TOF) m/z: $[M + Na]^{+}$ Calcd for $C_{22}H_{35}NO_{4}SiNa$: 428.2233, found: 428.2231.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-mtolylpyrrolidine-1-carboxylate 4c Pale yellow oil (296 mg, 73%). $[\alpha]_D^{25} = -2.4$ (*c* 2.78, CHCl₃); IR (film): v_{max} 2959, 2931, 2849, 1789, 1753, 1715, 1359, 1307, 1154, 1079, 838, 778 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 1H), 7.08-7.04 (m, 1H), 6.95-6.90 (m, 2H), 4.90-4.87 (m, 1H), 4.05 (ddd, *J* = 5.6, 2.4, 1.6 Hz, 1H), 2.81 (dd, *J* = 17.6, 5.6 Hz, 1H), 2.35 (dd, *J* = 17.6, 1.6 Hz, 1H), 2.29 (s, 3H), 1.26 (s, 9H), 0.84 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 149.6, 138.9, 138.7, 128.9, 128.7, 125.6, 122.3, 82.9, 72.0, 71.4, 41.1, 27.7, 25.7, 21.4, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₂H₃₅NO₄SiNa: 428.2233, found: 428.2233.

(25,3*R*)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-ptolylpyrrolidine-1-carboxylate 4d White solid (276 mg, 68%), m.p 98-99°C. $[\alpha]_D^{25} = -4.6$ (*c* 1.43, CHCl₃); IR (film): v_{max} 2953, 2932, 2855, 1789, 1726, 1370, 1307, 1153, 1068, 921, 838, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.17 (m, 2H), 7.08-7.06 (m, 2H), 4.97-4.93 (m, 1H), 4.09 (ddd, *J* = 5.6, 2.0, 1.2 Hz, 1H), 2.86 (dd, *J* = 17.6, 5.6 Hz, 1H), 2.40 (ddd, *J* = 17.6, 2.0, 0.8 Hz, 1H), 2.36 (s, 3H), 1.33 (s, 9H), 0.90 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 149.7, 137.7, 136.0, 129.6, 125.1, 82.9, 72.1, 71.3, 41.0, 27.7, 25.7, 21.1, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z:* [M + Na]⁺ Calcd for C₂₂H₃₅NO₄SiNa: 428.2233, found: 428.2222.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(4methoxyphenyl)-5-oxopyrrolidine-1-carboxylate 4e Pale yellow oil (312 mg, 74%). $[\alpha]_D^{25} = -5.7$ (c 1.66, CHCl₃); IR (film): v_{max} 2953, 2932, 2849, 1787, 1715, 1512, 1364, 1306, 1251, 1153, 1079, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.03-7.09 (m, 2H), 6.93-6.89 (m, 2H), 4.94-4.92 (m, 1H), 4.08 (ddd, J = 5.6, 2.0, 1.2 Hz, 1H), 3.82 (s, 3H), 2.87 (dd, J = 17.6, 5.6 Hz, 1H), 2.41 (dd, J = 17.6, 1.6 Hz, 1H), 1.34 (s, 9H), 0.90 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 159.3, 149.6, 131.1, 126.4, 114.3, 82.9, 72.1, 70.1, 55.3, 41.0, 27.8, 25.7, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₃₅NO₅SiNa: 444.2182, found: 444.2172.

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3fluorophenyl)-5-oxopyrrolidine-1-carboxylate 4f White solid (327 mg, 80%), m.p 51-53°C. $[\alpha]_D^{25}$ = -6.0 (c 1.9, CHCl₃); IR (film): v_{max} 2954, 2931, 2858, 1790, 1758, 1721, 1589, 1453, 1367, 1305, 1258, 1153, 1082, 919, 839, 779 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.82 ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 1H), 7.05-6.98 (m, 2H), 6.93-6.88 (m, 1H), 4.97-4.93 (m, 1H), 4.10 (ddd, J = 5.6, 2.8, 2.0 Hz, 1H), 2.86 (dd, J = 17.6, 5.6 Hz, 1H), 2.44 (dd, J = 17.6, 2.4 Hz, 1H), 1.34 (s, 9H), 0.90 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 163.2 (d, J = 246.1 Hz), 149.4, 141.9 (d, J = 6.7 Hz), 130.7 (d, J = 8.2 Hz), 120.7 (d, J = 2.2 Hz), 114.9 (d, J = 21.0 Hz), 112.4 (d, J = 22.2 Hz), 83.3, 71.9, 70.9, 41.0, 27.7, 25.6, 18.0, -4.5, -4.8, -5.1 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₁H₃₂FNO₄SiNa:432.1982, found: 432.1985.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(4fluorophenyl)-5-oxopyrrolidine-1-carboxylate 4g White solid (331 mg, 81%), m.p 111-112°C. $[\alpha]_D^{25} = -6.9$ (c 0.78, CHCl₃); IR ARTICLE

(film): v_{max} 2948, 2926, 2849, 1789, 1715, 1518, 1370, 1306, 1249, 1151, 1085, 839 cm $^{-1}; \ ^{19}{\sf F}$ NMR (376 MHz, CDCl3) δ -114.11 ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.15 (m, 2H), 7.12-7.06 (m, 2H), 4.95-4.92 (m, 1H), 4.08 (ddd, J = 5.6, 2.8, 2.0 Hz, 1H), 2.86 (dd, J = 17.6, 6.0 Hz, 1H), 2.45 (dd, J = 17.6, 2.4 Hz, 1H), 1.34 (s, 9H), 0.90 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 162.3 (d, J = 245.2 Hz), 149.4, 135.0 (d, J = 2.8 Hz), 126.9 (d, J = 8.1 Hz), 116.0 (d, J = 21.5 Hz), 83.2, 72.0, 70.7, 41.0, 27.7, 25.6, 18.0, -4.5, -4.8, -5.1 ppm; HRMS (ESI-TOF) m/z: [M] Na]⁺ Calcd for + C₂₁H₃₂FNO₄SiNa:432.1982, found: 432.1977.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-(3-(trifluoromethyl)phenyl)pyrrolidine-1-carboxylate 4h Pale yellow oil (271 mg, 59%). $[\alpha]_D^{25} = -4.1$ (*c* 0.92, CHCl₃); IR (film): v_{max} 2948, 2931, 2866, 1801, 1452, 1364, 1333, 1255, 1167, 1130, 1096, 893, 839, 780 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.78 ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.38 (m, 4H), 4.97 (d, *J* = 2.4 Hz, 1H), 4.11 (ddd, *J* = 6.4, 3.2, 2.8 Hz, 1H), 2.86 (dd, *J* = 17.2, 6.4 Hz, 1H), 2.49 (dd, *J* = 17.6, 3.2 Hz, 1H), 1.31 (s, 9H), 0.89 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 149.3, 140.5, 131.5 (d, *J* = 43.1, 21.6 Hz), 129.6, 128.5, 124.8 (d, *J* = 23.0 Hz),123.8 (d, *J* = 361.0, 180.4 Hz), 122.3 (d, *J* = 22.0 Hz), 83.5, 72.0, 70.8, 41.0, 27.7, 25.6, 17.9, -4.8, -4.9 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₂H₃₂F₃NO₄SiNa:482.1950, found: 482.1951.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(4phenyl)-5-oxopyrrolidine-1-carboxylate 4i Colorless oil (378 mg, 81%). $[\alpha]_{D}^{25} = -5.8 (c 2.75, CHCl_3)$; IR (film): $v_{max} 2953, 2937, 2849, 1788, 1721, 1359, 1306, 1255, 1152, 1079, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) <math>\delta$ 7.64-7.61 (m, 4H), 7.49-7.45 (m, 2H), 7.40-7.36 (m, 1H), 7.27-7.25 (m, 2H), 5.05-5.03 (m, 1H), 4.17 (ddd, *J* = 5.2, 3.2, 1.2 Hz, 1H), 2.92 (dd, *J* = 17.6, 5.6 Hz, 1H), 2.40 (dd, *J* = 17.6, 1.6, Hz, 1H), 1.36 (s, 9H), 0.93 (s, 9H), 0.12 (s, 3H), 0.09 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl_3) δ 172.8, 149.7, 140.9, 140.3, 138.0, 128.9, 127.7, 127.6, 127.0, 125.6, 83.1, 72.0, 71.2, 41.1, 27.8, 25.7, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z:* [M + Na]⁺ Calcd for C₂₇H₃₇NO₄SiNa: 490.2390, found: 490.2381.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(naphthalen-1-yl)-5-oxopyrrolidine-1-carboxylate 4j Colorless oil (260 mg, 59%). $[\alpha]_D^{25}$ = +42.2 (*c* 1.80, CHCl₃); IR (film): v_{max} 2953, 2932, 2860, 1788, 1759, 1726, 1370, 1308, 1153, 1074, 921, 838, 778 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 8.07-8.05 (m, 1H), 7.95-7.92 (m, 1H), 7.84-7.82 (m, 1H), 7.62-7.54 (m, 2H), 7.47-7.43 (m, 1H), 7.28-7.25 (m, 1H), 5.87-5.85 (m, 1H), 4.24 (ddd, *J* = 5.6, 1.6, 1.2 Hz, 1H), 2.85 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.43 (d, *J* = 17.6 Hz, 1H), 1.26 (s, 9H), 0.96(s, 9H), 0.10(s, 3H), 0.04(s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) & 173.2, 149.7, 134.3, 134.0, 130.2, 129.1, 128.5, 126.6, 126.1, 125.3, 122.6, 120.8, 83.0, 70.8, 68.2, 41.3, 27.7, 25.7, 17.9, -4.5, -4.7 ppm; HRMS (ESI-TOF) *m/z*: $[M + Na]^+$ Calcd for C₂₅H₃₅NO₄SiNa: 464.2233, found: 464.2223.

(25,3R)-tert-Butyl3-(tert-butyldimethylsilyloxy)-2-(naphthalen-2-yl)-5-oxopyrrolidine-1-carboxylate4kWhitesolid (309 mg, 70%), m.p 116-117°C. $[\alpha]_D^{25} = -2.6$ (c 0.44,CHCl₃); IR (film): v_{max} 2953, 2932, 2866, 1789, 1748, 1715, 1468,1370, 1306, 1255, 1153, 1068, 838, 779 cm⁻¹; ¹H NMR (400

Method

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

MHz, CDCl₃) δ 7.91-7.82 (m, 3H), 7.63 (s, 1H), 7.56-7.50 (m, 2H), 7.35-7.33 (m, 1H), 5.17-5.15 (m, 1H), 4.20 (ddd, *J* = 5.2, 2.0, 1.2 Hz, 1H), 2.94 (dd, *J* = 17.4, 5.6 Hz, 1H), 2.47 (dd, *J* = 17.4, 1.6 Hz, 1H), 1.31 (s, 3H), 0.93 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 149.7, 136.3, 133.3, 133.0, 129.1, 127.9, 127.7, 126.7, 126.3, 123.6, 123.3, 83.1, 71.8, 71.5, 41.1, 27.7, 25.7, 18.0, -4.7, -4.7 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₅H₃₅NO4SiNa: 464.2233, found: 464.2231.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-ethyl-5oxopyrrolidine-1-carboxylate 4l Colorless oil (223 mg, 65%). $[\alpha]_D^{25}$ = +28.6 (*c* 1.28, CHCl₃); IR (film): v_{max} 2948, 2926, 2866, 1797, 1753, 1714, 1463, 1370, 1309, 1249, 1156, 1074, 926, 837, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.00 (d, *J* = 5.2 Hz, 1H), 3.79 (dd, *J* = 9.6, 3.6 Hz, 1H), 2.68 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.27 (d, *J* = 17.6 Hz, 1H), 1.74-1.61 (m, 1H), 1.46 (s, 9H), 1.39-1.28 (m, 1H), 0.94-0.88 (m, 3H), 0.80 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 150.1, 82.7, 69.2, 67.9, 41.8, 28.0, 25.7, 24.9, 17.9, 10.3, -4.6, -4.7 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₇H₃₃NO₄SiNa: 366.2077, found: 366.2067.

(2S,3R)-tert-Butyl2-(but-3-enyl)-3-(tert-butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate4mWhite solid (255 mg, 69%), m.p 51-53°C. $[\alpha]_D^{25} = +30.0$ (c 1.00,CHCl₃); IR (film): v_{max} 2955, 2930, 2857, 1787, 1754, 1716, 1468,1369, 1311, 1258, 1155, 1081, 915, 837 cm⁻¹; ¹H NMR (400MHz, CDCl₃) δ 5.86-5.75 (m, 1H), 5.12-5.00 (m, 2H), 4.10-4.06(m, 1H), 3.98-3.92 (m, 1H), 2.82-2.74 (m, 1H), 2.38-2.30 (m,1H), 2.23-2.05 (m, 2H), 1.84-1.75 (m, 1H), 1.55-1.52 (m, 9H),1.51-1.43 (m, 1H), 0.88-0.85 (m, 9H), 0.09-0.06 (m, 6H) ppm;¹³C NMR (100 MHz, CDCl₃) δ 172.4, 149.8, 136.7, 115.6, 82.7,68.0, 67.2, 41.5, 30.9, 29.9, 27.9, 25.5, 17.7, -4.8, -4.9 ppm;HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₃₆NO₄Si: 370.2414,found: 370.2408.

(25,3R)-tert-Butyl3-(tert-butyldimethylsilyloxy)-2-isopropyl-5-oxopyrrolidine-1-carboxylate 4n Colorless oil (186mg, 52%). { $[[\alpha]_D^{25} = + 31.8 (c 1.82, CHCl_3), lit^{9j} [\alpha]_D^{25} = +45.17$ (c=1 in CHCl_3)}; IR (film): v_{max} 2964, 2926, 2860, 1787, 1752,1717, 1474, 1370, 1306, 1157, 1068, 915, 837, 777 cm⁻¹; ¹HNMR (400 MHz, CDCl_3) δ 4.14 (d, J = 5.2 Hz, 1H), 3.89 (d, J = 5.6Hz, 1H), 2.72 (dd, J = 18.0, 5.6 Hz, 1H), 2.34 (d, J = 17.6 Hz, 1H),2.06-1.95 (m, 1H), 1.53 (s, 9H), 1.01 (d, J = 6.8 Hz, 2H), 0.90-0.86 (m, 12H), 0.09 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100MHz, CDCl_3) δ 173.1, 150.3, 82.8, 72.9, 65.9, 43.0, 29.8, 29.7,28.0, 25.6, 19.3, 17.9, 17.6, -4.6, -4.7 ppm; HRMS (ESI-TOF) m/z:[M + Na]⁺ Calcd for C₁₈H₃₅NO₄SiNa: 380.2233, found: 380.2241.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-isobutyl-5-oxopyrrolidine-1-carboxylate 4o Colorless oil (226 mg, 61%). $\{[\alpha]_D^{25} = +36.8 \ (c \ 1.00, \ CHCl_3), \ lit^{9j} \ [\alpha]_D^{25} = +36.06 \ (c \ 1.02, \ CHCl_3); \ lit^{10c} \ [\alpha]_D^{25} = -35.9 \ (c \ 2.3, \ CHCl_3)\}; \ IR \ (film): v_{max} \ 2957, \ 2931, 2855, \ 1787, \ 1754, \ 1716, \ 1463, \ 1368, \ 1312, \ 1257, \ 1157, \ 1078, \ 915, \ 836, \ 776 \ cm^{-1}; \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3) \ \delta \ 4.06 \ (d, J \ = 4.8 \ Hz, \ 1H), \ 4.01 \ (dd, J = 10.8, \ 3.2 \ Hz, \ 1H), \ 2.79 \ (dd, J = 17.6, \ 5.2 \ Hz, \ 1H), \ 2.34 \ (d, J = 17.6 \ Hz, \ 1H), \ 1.71-1.62 \ (m, \ 1H), \ 1.55 \ (s, \ 9H), \ 1.53-1.45 \ (m, \ 1H), \ 1.28 \ (ddd, J = 14.8, \ 10.8, \ 4.0 \ Hz, \ 1H), \ 1.04-0.96 \ (m, \ 6H), \ 0.88 \ (s, \ 9H), \ 0.09 \ (s, \ 3H), \ 0.08 \ (s, \ 3H) \ ppm; \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_3) \ \delta \ 172.3, \ 149.9, \ 82.8, \ 68.5, \ 66.4, \ 41.5, \ 41.1, \ 28.1, \ 25.6, \ 25.3, \ 23.8, \ 21.7, \ 17.9, \ -4.7, \ -4.8 \ ppm; \ HRMS$ (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{37}NO_4SiNa$: 394.2390, found: 394.2390.

Organic Chemistry Frontiers

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2pentylpyrrolidine-1-carboxylate 4p Colorless oil (277 mg, 72%). $[\alpha]_D^{25} = +20.7$ (*c* 1.55, CHCl₃); IR (film): v_{max} 2953, 2926, 2855, 1787, 1748, 1704, 1463, 1370, 1310, 1155, 1074, 836, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.09-4.05 (m, 1H), 3.95-3.89 (m, 1H), 2.76 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.34 (d, *J* = 17.6 Hz, 1H), 1.71-1.64 (m, 1H), 1.56-1.52 (m, 9H), 1.43-1.26 (m, 7H), 0.95-0.85 (m, 12H), 0.10-0.05 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 150.1, 82.7, 68.3, 68.0, 41.7, 32.0, 31.6, 28.0, 25.7, 25.6, 22.5, 17.9, 13.9, -4.6, -4.7 ppm; HRMS (ESI-TOF) *m/z:* [M + Na]⁺ Calcd for C₂₀H₃₉NO₄SiNa: 408.2546, found: 408.2555.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2cyclopropyl-5-oxopyrrolidine-1-carboxylate 4q Colorless oil (241 mg, 68%). $[\alpha]_D^{25} = +22.5$ (*c* 1.95, CHCl₃); IR (film): v_{max} 2955, 2930, 2849, 1787, 1754, 1717, 1463, 1368, 1307, 1255, 1156, 1081, 930, 838, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.15 (d, *J* = 4.8 Hz, 1H), 3.40 (d, *J* = 9.2 Hz, 1H), 2.76 (dd, *J* = 17.2, 4.8 Hz, 1H), 2.27 (d, *J* = 17.2 Hz, 1H), 1.46 (s, 9H), 0.79 (s, 9H), 0.72-0.62 (m, 1H), 0.60-0.44 (m, 3H), 0.24-0.14 (m, 1H), 0.00 (s, 3H), -0.01 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 150.3, 82.7, 71.4, 70.3, 41.8, 27.9, 25.6, 17.9, 13.6, 4.5, 1.8, -4.8, -4.9 ppm; HRMS (ESI-TOF) *m/z:* [M + Na]⁺ Calcd for C₁₈H₃₃NO₄SiNa: 378.2077, found: 378.2083.

(25,3*R*)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2cyclohexyl-5-oxopyrrolidine-1-carboxylate 4r Colorless oil (262 mg, 66%) { $[\alpha]_D^{25}$ = +46.2 (*c* 3.33, CHCl₃), lit^{9j} $[\alpha]_D^{25}$ = +40.73 (*c* 0.88, CHCl₃)}; IR (film): v_{max} 2930, 2855, 1785, 1748, 1715, 1370, 1305, 1255, 1154, 1068, 932, 833, 777 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.09 (d, *J* = 5.2 Hz, 1H), 3.80 (d, *J* = 5.6 Hz, 1H), 2.65 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.25 (d, *J* = 18.0 Hz, 1H), 1.77-1.68 (m, 2H), 1.66-1.57 (m, 3H), 1.56-1.49 (m, 1H), 1.46 (s, 9H), 1.23-1.01 (m, 4H), 0.87-0.81 (m, 1H), 0.79 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 150.4, 82.7, 72.5, 66.6, 42.9, 40.2, 29.8, 28.0, 26.3, 26.2, 25.6, 17.9, -4.5, -4.6 ppm; HRMS (ESI-TOF) *m/z:* [M + Na]⁺ Calcd for C₂₁H₃₉NO₄SiNa: 420.2546, found: 420.2549.

(25,3*R*)-tert-Butyl 2-benzyl-3-(tert-butyldimethylsilyloxy)-5oxopyrrolidine-1-carboxylate 4s Pale yellow oil (284 mg, 70%). $\{[\alpha]_D^{25} = +10.4 (c 1.00, CHCl_3) | it^{9j} [\alpha]_D^{25} = +8.67 (c 1.07, CHCl_3);$ $| it^{10b} [\alpha]_D^{23} = +37.9 (c 1.20, CHCl_3) \}$ IR (film): v_{max} 2959, 2926, 2860, 1787, 1704, 1370, 1312, 1148, 926, 821 cm⁻¹; ¹H NMR (400 MHz, CDCl_3) δ 7.37-7.31 (m, 2H), 7.30-7.24 (m, 1H), 7.23-7.18 (m, 2H), 4.16 (dd, *J* = 10.4, 3.2 Hz, 1H), 4.07 (d, *J* = 5.2 Hz, 1H), 3.17 (dd, *J* = 13.2, 4.0 Hz, 1H), 2.65 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.51 (dd, *J* = 13.2, 10.4 Hz, 1H), 2.31 (d, *J* = 17.6 Hz, 1H), 1.60 (s, 9H), 0.74 (s, 9H), -0.23 (s, 3H), -0.24 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl_3) δ 172.8, 150.0, 136.6, 129.3, 128.9, 127.1, 83.0, 69.1, 66.9, 41.4, 38.0, 28.1, 25.5, 17.8, -5.2, -5.3 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₂₂H₃₅NO₄SiNa: 428.2233, found: 428.2221.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-(2phenylethynyl)pyrrolidine-1-carboxylate (25,3R)-14a Pale yellow oil (316 mg, 76%). $[\alpha]_D^{25}$ = +19.5 (c 1.50, CHCl₃); IR (film): v_{max} 2959, 2926, 2860, 2205 (very weak),1790, 1764, 1715, 1468, 1348, 1308, 1255, 1148, 1074, 1019, 915, 838 cm⁻¹; ¹H

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

52

53

54

55

56

57

58

59

60

Journal Name

NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 2H), 7.37-7.30 (m, 3H), 4.81-4.78 (m, 1H), 4.43 (d, *J* = 5.2 Hz, 1H), 3.01 (dd, *J* = 17.2, 5.2 Hz, 1H), 2.45 (d, *J* = 17.2 Hz, 1H), 1.58 (s, 9H), 0.92 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 149.4, 131.7, 128.8, 128.4, 121.9, 85.5, 84.2, 83.4, 70.5, 59.2, 41.9, 28.1, 25.7, 18.0, -4.8 ppm; HRMS (ESI-TOF) *m/z:* [M + H]⁺ Calcd for C₂₃H₃₄NO₄Si: 416.2257, found: 416.2253.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-(2m-tolylethynyl)pyrrolidine-1-carboxylate (25,3R)-14b Pale yellow oil (343 mg, 80%). $[\alpha]_D^{25} = +25.6$ (c 1.00, CHCl₃); IR (film): v_{max} 2959, 2920, 2855, 2367 (very weak), 1792, 1766, 1718, 1369, 1348, 1307, 1148, 1079, 1021, 918, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.15 (m, 4H), 4.81-4.78 (m, 1H), 4.42 (d, J = 4.8 Hz, 1H), 3.02 (dd, J = 17.2, 5.2 Hz, 1H), 2.45 (d, J = 17.2 Hz, 1H), 2.35 (s, 3H), 1.58 (s, 9H), 0.92 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 149.4, 138.1, 132.3, 129.7, 128.8, 128.3, 121.7, 85.7, 83.8, 83.4, 70.5, 59.3, 41.9, 28.1, 25.7, 21.2, 18.0, -4.8 ppm; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₆NO₄Si: 430.2414, found: 430.2408.

(*2S,3R*)-*tert*-Butyl 3-(*tert*-butyldimethylsilyloxy)-2-(2-(4fluorophenyl)ethynyl)-5-oxopyrrolidine-1-carboxylate

(25,3R)-**14c** Yellow oil (334 mg, 77%). $[\alpha]_{D}^{25}$ = +18.2 (*c* 2.00, CHCl₃); IR (film): v_{max} 2959, 2937, 2860, 2227 (very weak), 1791, 1760, 1721, 1600, 1508, 1364, 1307, 1257, 1149, 1090, 1014, 921, 837 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.88 ppm; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.36 (m, 2H), 7.06-6.99 (m, 2H), 4.79-4.76 (m, 1H), 4.41 (d, *J* = 5.2 Hz, 1H), 2.99 (dd, *J* = 17.2, 5.2 Hz, 1H), 2.44 (d, *J* = 17.2 Hz, 1H), 1.57 (s, 9H), 0.91 (s, 9H), 0.15 (s, 3H), 0.13 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 162.8 (d, *J* = 248.9 Hz), 149.4, 133.7, 133.6, 118.0 (d, *J* = 3.2 Hz), 115.8, 115.6, 84.5, 83.9, 83.5, 70.4, 59.1, 41.9, 28.0, 25.6, 18.0, -4.8 ppm; HRMS (ESI-TOF) *m/z:* [M + H]⁺ Calcd for C₂₃H₃₃FNO₄Si: 434.2163, found: 434.2159.

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(hept-1-38 39 ynyl)-5-oxopyrrolidine-1-carboxylate (2S,3R)-14d Pale yellow oil (323 mg, 79%). $[\alpha]_{D}^{25}$ = +26.4 (*c* 1.00, CHCl₃); IR (film): v_{max} 40 41 2957, 2926, 2855, 2090 (very weak), 1793, 1760, 1720, 1472, 42 1352, 1306, 1256, 1149, 1085, 927, 828 cm⁻¹; ¹H NMR (400 43 MHz, CDCl₃) δ 4.56-4.52 (m, 1H), 4.26 (d, J = 5.2 Hz, 1H), 2.92 44 (dd, J = 17.2, 5.2 Hz, 1H), 2.36 (d, J = 17.2 Hz, 1H), 2.21-2.15 (m, 45 2H), 1.56 (s, 9H), 1.52-1.45 (m, 2H) , 1.39-1.29 (m, 4H), 0.93-46 0.87 (m, 12H), 0.11 (s, 3H), 0.10 (s, 3H) ppm; $^{13}\mathrm{C}$ NMR (100 47 MHz, CDCl₃) δ 171.9, 149.5, 86.4, 83.1, 75.4, 70.7, 59.0, 41.8, 48 30.9, 28.1, 28.0, 25.6, 22.1, 18.6, 18.0, 13.9, -4.9 ppm; HRMS 49 (ESI-TOF) m/z: $[M + H]^{+}$ Calcd for C₂₂H₄₀NO₄Si: 410.2727, found: 50 410.2722. 51

(25,3R)-tert-Butyl3-(tert-butyldimethylsilyloxy)-2-(3,3-dimethylbut-1-ynyl)-5-oxopyrrolidine-1-carboxylate(2S,3R)-14e Pale yellow oil (277 mg, 70%). $[\alpha]_D^{25} = +22.7$ (c 1.50, CHCl₃);IR (film): v_{max} 2968, 2931, 2866, 2209 (very weak), 1793, 1764,1723, 1364, 1348, 1306, 1255, 1149, 1085, 938, 821 cm⁻¹; ¹HNMR (400 MHz, CDCl₃) δ 4.53-4.50 (m, 1H), 4.25-4.22 (m, 1H),2.90 (dd, J = 16.8, 5.2 Hz, 1H), 2.36 (d, J = 17.2 Hz, 1H), 1.55 (s,9H), 1.20 (s, 9H), 0.89 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H) ppm; ¹³CNMR (100 MHz, CDCl₃) δ 172.1, 149.3, 94.4, 83.0, 73.9, 70.7,59.0, 41.7, 30.8, 28.0, 27.3, 25.6, 18.0, -4.9 ppm; HRMS (ESI-

TOF) m/z: $[M + H]^{+}$ Calcd for $C_{21}H_{38}NO_4Si$: 396.2570, found: 396.2560.

(2*R*,3*R*)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-(2phenylethynyl)pyrrolidine-1-carboxylate (2*R*,3*R*)-14a Pale yellow solid (303 mg, 73%), m.p 133-134°C. $[\alpha]_D^{25} = -37.7$ (*c* 1.00, CHCl₃); IR (film): v_{max} 2953, 2926, 2849, 2370 (very weak), 1781, 1698, 1326, 1288, 1255, 1158, 1093, 937, 840 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.40 (m, 2H), 7.36-7.30 (m, 3H), 5.05 (d, *J* = 6.8 Hz, 1H), 4.49 (ddd, *J* = 14.0, 7.2, 6.4 Hz, 1H), 2.80 (dd, *J* = 16.4, 9.2 Hz, 1H), 2.67 (dd, *J* = 16.4, 7.2 Hz, 1H), 1.58 (s, 9H), 0.94 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 149.0, 131.7, 128.5, 128.3, 122.6, 86.3, 83.6, 83.3, 66.1, 55.6, 40.8, 28.0, 25.6, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₃H₃₄NO₄Si: 416.2257, found: 416.2257.

(2*R*,3*R*)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2-(2m-tolylethynyl)pyrrolidine-1-carboxylate (2*R*,3*R*)-14b Pale yellow oil (322 mg, 75%). $[\alpha]_D^{25} = -27.2$ (*c* 1.50, CHCl₃); IR (film): v_{max} 2961, 2928, 2855, 2359, 1792, 1721, 1304, 1146, 1107, 932, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.10-7.03 (m, 3H), 7.01-6.97 (m, 1H), 4.88 (d, *J* = 4.8 Hz, 1H), 4.33 (ddd, *J* = 9.2, 5.2, 4.4 Hz, 1H), 2.63 (dd, *J* = 11.2, 6.4 Hz, 1H), 2.51 (dd, *J* = 11.2, 4.4 Hz, 1H), 2.18 (s, 3H), 1.41 (s, 9H), 0.78 (s, 9H), 0.00 (s, 3H), -0.02 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 149.0, 137.9, 132.3, 129.3, 128.8, 128.2, 122.4, 86.5, 83.5, 82.9, 66.1, 55.6, 40.8, 28.0, 25.7, 21.2, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₄H₃₆NO₄Si: 430.2414, found: 430.2402.

(*2R,3R*)-*tert*-Butyl 3-(*tert*-butyldimethylsilyloxy)-2-(2-(4-fluorophenyl)ethynyl)-5-oxopyrrolidine-1-carboxylate

(2*R*,3*R*)-tert-Butyl **3**-(tert-butyldimethylsilyloxy)-2-(hept-1ynyl)-5-oxopyrrolidine-1-carboxylate (2*R*,3*R*)-14d Pale yellow oil (290 mg, 71%). $[\alpha]_D^{25} = -25.2$ (*c* 1.00, CHCl₃); IR (film): v_{max} 2957, 2931, 2858, 2245 (very weak), 1793, 1760, 1725, 1332, 1305, 1256, 1142, 904, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.78 (ddd, *J* = 7.2, 2.4, 1.6 Hz, 1H), 4.36 (ddd, *J* = 14.0, 7.2, 6.4 Hz, 1H), 2.72 (dd, *J* = 16.4, 10.0 Hz, 1H), 2.58 (dd, *J* = 16.4, 7.2 Hz, 1H), 2.24-2.18 (m, 2H), 1.55 (s, 9H), 1.53-1.47 (m, 2H) , 1.40-1.31 (m, 4H), 0.94-0.88 (m, 12H), 0.13 (s, 3H), 0.11 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.2, 87.0, 83.3, 73.8, 66.0, 55.1, 40.6, 31.0, 28.2, 28.0, 25.6, 22.2, 18.7, 18.0, 13.9, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z:* [M + H]⁺ Calcd for C₂₂H₄₀NO₄Si: 410.2727, found: 410.2721.

(2R,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3,3dimethylbut-1-ynyl)-5-oxopyrrolidine-1-carboxylate (2R,3R)-

Method

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

14e Pale yellow solid (249 mg, 63%), m.p 120-121°C. $[\alpha]_D^{25} = -29.4$ (*c* 0.50, CHCl₃); IR (film): v_{max} 2967, 2931, 2855, 2044 (very weak), 1780, 1697, 1342, 1297, 1255, 1149, 1023, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.78 (d, *J* = 7.2 Hz, 1H), 4.36 (ddd, *J* = 14.4, 7.6, 6.8 Hz, 1H), 2.71 (dd, *J* = 16.4, 10.4 Hz, 1H), 2.57 (dd, *J* = 16.4, 7.2 Hz, 1H), 1.56 (s, 9H), 1.22 (s, 9H), 0.94 (s, 9H), 0.13 (s, 3H), 0.11 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 149.0, 95.0, 83.2, 72.2, 65.8, 55.1, 40.5, 30.9, 28.0, 27.4, 25.7, 18.0, -4.7, -4.8 ppm; HRMS (ESI-TOF) *m/z:* [M + H]⁺ Calcd for C₂₁H₃₈NO₄Si: 396.2570, found: 396.2565.

(25,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-5-oxo-2vinylpyrrolidine-1-carboxylate 17a Pale yellow oil (252 mg, 74%). $[\alpha]_{D}^{25} = -0.45$ (c 2.80, CHCl₃); IR (film): v_{max} 2953, 2926, 2860, 1787, 1715, 1364, 1309, 1255, 1154, 1079, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.82 (ddd, *J* = 17.2, 10.4, 6.0 Hz, 1H), 5.25-5.17 (m, 2H), 4.47-4.43 (m, 1H), 4.07-4.04 (m, 1H), 2.74 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.37-2.30 (m, 1H), 1.50 (s, 9H), 0.88 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 149.8, 133.9, 116.6, 82.9, 69.5, 69.4, 41.1, 27.9, 25.6, 18.0, -4.8 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₇H₃₁NO₄SiNa: 364.1920, found: 364.1915.

(25,3R)-tert-Butyl2-(but-1-en-2-yl)-3-(tert-butyldimethylsilyloxy)-5-oxopyrolidine-1-carboxylate17bPale yellow oil (251 mg, 68%). $[\alpha]_D^{25}$ = +2.6 (c 0.50, CHCl₃); IR(film): v_{max} 2957, 2931, 2859, 1790, 1755, 1721, 1474, 1368,1306, 1257, 1154, 1087, 920, 838 cm⁻¹; ¹H NMR (400 MHz,CDCl₃) δ 4.90-4.88 (m, 1H), 4.84-4.82 (m, 1H), 4.38-4.34 (m,1H), 4.04-4.01 (m, 1H), 2.77 (dd, J = 17.6, 5.6 Hz, 1H), 2.30 (d, J= 17.2 Hz, 1H), 2.20-2.00 (m, 2H), 1.48 (s, 9H), 1.16-1.11 (m,3H), 0.89 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100MHz, CDCl₃) δ 173.1, 149.7, 147.3, 108.1, 82.7, 71.5, 68.6, 41.1,27.9, 26.5, 25.6, 17.9, 12.1, -4.6, -4.7 ppm; HRMS (ESI-TOF) *m/z:*[M + Na]⁺ Calcd for C₁₉H₃₅NO₄SiNa: 392.2233, found: 392.2232.

(2S,3S)-tert-Butyl 2-benzyl-3-hydroxy-5-oxopyrrolidine-1carboxylate 18 To a solution of 4s (240 mg, 0.59 mmol) was stirred in dry THF (3 mL) at room temperature, and then a solution of TBAF (3 mL, 1.0 mol in THF) was dropped. After being stirring for 3 hours, the mixture was quenched with water and extracted with EtOAc for three times. The combined organic layers were washed with brine. Dried over anhydrous Na₂SO₄, filtered and concentrated, the residue was purified by chromatography on silica gel to give crude intermediate (172 mg), which was treated with DMP (502 mg, 1.18 mmol) in dry CH₂Cl₂ (5 mL) for 30 min. Then the mixture was guenched carefully with a saturated solution of NaHCO3 and Na2S2O3 and separated. The aqueous layer was extracted with DCM for three times and the combined organic layers were washed with brine. Dried, filtrated and concentrated to give crude ketone without further purification. The above crude mixture was dissolved in MeOH (5 mL) and cooled to 0 $^{\circ}$ C. Then NaBH₄ (22 mg, 0.59 mmol) was added in three portions. After being stirred for 2 hours at 0 $^{\circ}$ C ~ room temperature, the reaction was quenched with NaHCO3 aqueous solution and extracted with DCM for three times. The combined organic layers were concentrated and the residue was purified by chromatography on silica gel to give 18 (153 mg, 89 %) as a white solid. m.p. 122-123 °C; lit.^{10d} m.p. 122-124 °C. $\{[\alpha]_D^{25} = +26.9 \ (c \ 1.00,$

Organic Chemistry Frontiers

CHCl₃), lit.^{10b} $[\alpha]_D^{24} = +25.1$ (*c* 0.85, CHCl₃); lit.^{10d} $[\alpha]_D^{25} = +25.2$ (*c* 0.86, CHCl₃); lit.^{9j} $[\alpha]_D^{25} = +27.7$ (*c* 1.12, CHCl₃); IR (film): v_{max} 3403, 2975, 1770, 1676, 1366, 1287, 1167 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.22 (m, 5H), 4.56-4.44 (m, 2H), 3.24-3.09 (m, 2H), 2.63 (dd, *J* = 17.0, 7.2 Hz, 1H), 2.43 (dd, *J* = 17.0, 8.0 Hz, 1H), 1.51 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 149.8, 137.8, 129.9, 128.6, 126.7, 83.3, 65.6, 62.7, 40.1, 40.0, 28.0 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₁NO₄Na: 314.1368, found: 314.1372.

Streptopyrrolidine 5 To a solution of 18 (120 mg, 0.41 mmol) in CF₃COOH (1.5 mL) was attired for 4 h at 0 °C to room temperature. Then the mixture was concentrated and the residue was purified by chromatography on silica gel to give 5 (65 mg, 83%) as a white solid. mp 133-134 °C. lit.⁹ mp 132-134 °C; lit.^{20a} mp 134-135 °C; lit.^{20b} mp 133-135 °C { $[\alpha]_D^{25}$ = -44.5 (c 0.15, MeOH); lit.⁹ $[\alpha]_D^{25} = -44.6$ (*c* 0.05, MeOH); lit.¹¹ $[\alpha]_D^{25} = -44.6$ 12 (c 0.05, MeOH)}; lit.^{20a} $[\alpha]_{D}^{20} = -44$ (c 1.0, MeOH)}; lit.^{20b} [α]_D²⁰ = -43.5 (*c* 1.0, MeOH)}; IR (film): ν_{max} 3455, 3229, 1693, 1346, 1044 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 2H), 7.30-7.24 (m, 3H), 5.78 (brs, 1H), 4.51-4.43 (m, 1H), 3.91 (ddd, J = 10.4, 5.6, 4.8 Hz, 1H), 3.07 (dd, J = 13.6, 5.6 Hz, 1H), 2.98 (d, J = 4.8 Hz, 1H), 2.86 (dd, J = 13.6, 8.8 Hz, 1H), 2.68 (dd, J = 17.2, 6.0 Hz, 1H), 2.42 (dd, J = 17.2, 2.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 137.7, 129.0, 128.9, 126.9, 68.7, 60.8, 41.0, 35.4 ppm; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₄NO₂: 192.1025, found: 192.1010.

(2S,3R)-tert-Butyl2-(3-(benzyloxy)propyl)-3-(tert-
butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate(2S,3R)-19aPale yellow oil (56 mg, 12%). $[\alpha]_D^{25}$ = +23.0 (c 0.20,
CHCl₃); IR (film): v_{max} 2959, 2924, 2854, 1782, 1717, 1457, 1364,
1309, 1260, 1152, 1076, 1019, 921, 828 cm⁻¹; ¹H NMR (400
MHz, CDCl₃) δ 7.40-7.31 (m, 5H), 4.55-4.48 (m, 2H), 4.09 (d, J =
5.2 Hz, 1H), 3.96 (dd, J = 9.2, 3.2 Hz, 1H), 3.57-3.47 (m, 2H),
2.78 (dd, J = 17.6, 5.2 Hz, 1H), 2.36 (d, J = 17.6 Hz, 1H), 1.84-
1.62 (m, 4H), 1.54 (s, 9H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H)
ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 150.1, 138.3, 128.4,
127.7, 82.9, 73.1, 69.8, 68.3, 67.9, 28.9, 28.0, 26.4, 25.7, 17.9, -
4.6, -4.7 ppm; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for
C₂₅H₄₁NO₅SiNa: 486.2652, found: 486.2653.

(2R,3R)-tert-Butyl2-(3-(benzyloxy)propyl)-3-(tert-
butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate(2R,3R)-19aWhite solid (93 mg, 20%), m.p 80-82°C. $[\alpha]_D^{25} = -38.9$ (c 2.42, CHCl₃); IR (film): v_{max} 2959, 2926, 2860, 1787,
1704, 1370, 1312, 1148, 926, 821 cm⁻¹; ¹H NMR (400 MHz,
CDCl₃) δ 7.38-7.27 (m, 5H), 4.55-4.47 (m, 3H), 4.19-4.13 (m,
1H), 3.53-3.46 (m, 2H), 2.65-2.52 (m, 2H), 2.05-1.95 (m, 1H),
1.82-1.64 (m, 3H), 1.53 (s, 9H), 0.91 (s, 9H), 0.10 (s, 3H), 0.09 (s,
3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 149.8, 138.6,
128.3, 127.5, 127.4, 83.1, 72.8, 70.2, 66.4, 61.4, 40.8, 28.0,
26.7, 25.7, 25.5, 18.0, -4.7, -5.0 ppm; HRMS (ESI-TOF) *m/z*: [M
+ Na]⁺ Calcd for C₂₅H₄₁NO₅SiNa: 486.2652, found: 486.2643.

(25,3R)-tert-Butyl2-(4-(benzyloxy)butyl)-3-(tert-
butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate(2S,3R)-19d Yellow oil (129 mg, 27%). $[\alpha]_D^{25}$ = +24.7 (c 1.50,
CHCl₃) ;IR (film): v_{max} 2959, 2930, 2856, 1786, 1753, 1714, 1368,
1310, 1256, 1152, 1102, 1076, 837 cm⁻¹; ¹H NMR (400 MHz,
CDCl₃) δ 7.29-7.19 (m, 5H), 4.44-4.42 (m, 2H), 3.99 (d, J = 3.2

3

4

5

6

7

8

9

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Hz, 1H), 3.85 (dd, J = 5.6, 2.8 Hz, 1H), 3.43-3.39 (m, 2H), 2.67 (dd, J = 12.0, 3.2 Hz, 1H), 2.28 (d, J = 12.0 Hz, 1H), 1.65-1.55 (m, 4H), 1.46 (s, 9H), 1.38-1.32 (m, 2H), 0.80 (s, 9H), 0.01 (s, 3H), 0.00 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 150.1, 138.5, 128.4, 127.6, 82.8, 73.0, 69.8, 68.3, 67.9, 41.7, 31.9, 29.7, 28.1, 25.7, 22.8, 17.9, -4.6, -4.7 ppm; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₄₄NO₅Si: 478.2989, found: 478.2983.

10(2R,3R)-tert-Butyl2-(4-(benzyloxy)butyl)-3-(tert-11butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate

12 (2R,3R)-19d Pale yellow oil (124 mg, 26%). $[\alpha]_{D}^{25}$ = +45.0 (c 13 0.40, CHCl₃); IR (film): v_{max} 2953, 2930, 2855, 1789, 1755, 1717, 14 1368, 1305, 1255, 1162, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 15 7.21-7.10 (m, 5H), 4.36-4.32 (m, 2H), 4.06 (dd, J = 5.2, 4.0 Hz, 16 1H), 3.79-3.73 (m, 1H), 3.36-3.28 (m, 2H), 2.15 (ddd, J = 10.0, 17 5.6, 4.8 Hz, 1H), 1.89-1.84 (m, 1H), 1.55-1.45 (m, 4H), 1.37 (s, 18 9H), 1.28-1.19 (m, 2H), 0.74 (s, 9H), 0.00 (s, 3H), -0.03 (s, 3H) 19 ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 150.3, 138.5, 128.4, 20 127.6, 127.5, 83.0, 73.0, 71.2, 70.1, 55.3, 34.6, 33.0, 29.6, 28.1, 21 25.7, 21.8, 18.2, -4.5, -5.3 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ 22 Calcd for C₂₆H₄₄NO₅Si: 478.2989, found: 478.2986. 23

(*2R,3R*)-*tert*-Butyl 2-(6-(benzyloxy)hexyl)-3-(*tert*butyldimethylsilyloxy)-5-oxopyrrolidine-1-carboxylate

(2*S*, 3*R*)-**19e** Yellow oil (303 mg, 60%). $[\alpha]_{D}^{25} = +22.7$ (*c* 2.00, CHCl₃); IR (film): v_{max} 2959, 2930, 2857, 1786, 1748, 1715, 1368, 1310, 1153, 1078, 921, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 4.53-4.51 (m, 2H), 4.07 (d, *J* = 5.2 Hz, 1H), 3.95-3.90 (m, 1H), 3.51-3.46 (m, 2H), 2.78 (dd, *J* = 17.6, 5.2 Hz, 1H), 2.34 (d, *J* = 17.6 Hz, 1H), 1.73-1.60 (m, 3H), 1.55 (s, 9H), 1.46-1.34 (m, 7H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 150.1, 138.6, 128.4, 127.6, 127.5, 82.8, 72.9, 70.3, 68.3, 67.9, 41.7, 29.7, 29.4, 28.1, 26.1, 26.0, 25.7, 17.9, -4.6, -4.7 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₈H₄₈NO₅Si: 506.3302, found: 506.3296.

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3hydroxypropyl)-5-oxopyrrolidine-1-carboxylate 20 To a solution of 4m (4.9 g, 13.26 mmol) in *t*-BuOH/H₂O (60 mL, *V/V* = 3/1) was added *N*-methylmorpholine *N*-oxide (5.4 g, 39.79) mmol) and potassium osmate (VI) dihydrateaqueous (245 mg, 0.66 mmol). After being stirred overnight, the reaction mixture was quenched with a saturated aqueous solution of NaHSO₄ and stirred for another 1 h. Then the resulted mixture was concentrated and residue was diluted with water. The mixture was extracted with EtOAc (150 mL×3) and the combined organic extracts were washed with brine. The organic layer was dried, filtrated and concentrated to give crude middle compound without further purification, which was dissolved in THF/H₂O (180 mL, V/V = 1/1) and cooled to 0 $^{\circ}$ C. Then sodium periodate (5.7 g, 26.52 mmol) was added in one portion. After being stirred for 1.5 h, the reaction was quenched with Na₂S₂O₃. The mixture was extracted with EtOAc (150 mL×3) and the combined organic extracts were washed with brine. The organic layer was dried, filtrated and concentrated and the residue was purified by flash chromatography on silica gel (PE/EA=1/1) to give **20** (4.31 g, 87%) as a colorless oil. $[\alpha]_{D}^{25} =$ +28.2 (c 1.00, CHCl₃); IR (film): v_{max} 2953, 2932, 2849, 1770, 1715, 1364, 1293, 1140, 1074, 833 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.11-4.05 (m, 1H), 4.00-3.90 (m, 1H), 3.73-3.62 (m, 2H), 2.83-2.73 (m, 1H), 2.40-2.15 (m, 2H), 1.83-1.57 (m, 3H), 1.56-1.47 (m, 10H), 0.89-0.82 (m, 9H), 0.11-0.03 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 150.2, 83.0, 68.3, 67.7, 61.9, 41.7, 28.8, 28.4, 28.0, 25.6, 17.9, -4.6, -4.7 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₃₆NO₅Si: 374.2363, found: 374.2357.

(2S,3R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3-(tertbutyldimethylsilyloxy)propyl)-5-oxopyrrolidine-1-carboxylate trans-19b To a cooled (0 °C) solution of 20 (4.0 g, 10.70 mmol) TBSCI (2.4 g, 16.05 mmol) and DMAP (1.3 g, 10.70 mmol) in DMF (45 mL) was added imidazole (2.2 g, 32.12 mmol) in one portion. After being stirred for 24 h, the mixture was guenched with a saturated aqueous solution of NH₄Cl. The resulted mixture was separated and the aqueous phase was extracted with EA (60 mL × 4). The combined organic layers were washed with water (30 mL × 2) and brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 10/1) to give trans-19b (4.86 g, 93%) as a colorless oil. $[\alpha]_{D}^{25}$ = +26.1 (*c* 1.50, CHCl₃); IR (film): v_{max} 2956, 2930, 2849, 1788, 1716, 1474, 1310, 1256, 1153, 1074, 836 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) δ 4.08 (d, J = 5.2 Hz, 1H), 3.92 (dd, J = 9.6, 4.0 Hz, 1H), 3.68-3.59 (m, 2H), 2.78 (dd, J = 17.6, 5.2 Hz, 1H), 2.35 (d, J = 17.6 Hz, 1H), 1.81-1.71 (m, 1H), 1.62-1.55 (m, 2H), 1.57 (s, 9H), 1.51-1.42 (m, 1H), 0.89 (s, 9H), 0.88 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H), 0.05 (s, 6H) ppm; 13 C NMR (100 MHz, CDCl₃) δ 172.6, 150.0, 82.8, 68.4, 67.9, 62.5, 41.7, 29.3, 28.5, 28.0, 25.9, 25.7, 18.3, 17.9, -4.6, -4.7, -5.3 ppm; HRMS (ESI-TOF) m/z: [M + H_{1}^{+} Calcd for C₂₄H₅₀NO₅Si₂: 488.3228, found: 488.3229.

(2S, 3R, 5R)-tert-Butyl 5-allyl-3-(tert-butyldimethylsilyloxy)-2-(3-(tert-butyldimethylsilyloxy)propyl)pyrrolidine-1carboxylate 2,5-cis 25 To a solution of 19b (2.2 g, 4.52 mmol) in dry THF (20 mL) was treated with a solution of LiEt₃BH (13.5 mL, 13.56 mmol, 1.0 M in THF) at -78 °C. After being stirred for 30 min, the reaction was carefully quenched with MeOH (5 mL) and stirred for another 5 min. Then a solution of sodium bicarbonate was drooped and warmed to room temperature. The resulting mixture was extracted with EtOAc (50 mL × 3) and the combined organic layers were washed with brine. The dried organic layer was filtered and concentrated to give crude mixture without further purification, which was dissolved in dry CH₂Cl₂ (40 mL) and cooled to -78 °C. Once 2-allyl-4,4,5,5tetramethyl-1,3,2-dioxaborolane (1.2 mL, 6.49 mmol) was dropped, a solution of BF3 OEt2 (2.2 mL, 17.31 mmol) was dropped slowly and the reaction mixture was stirred at -78 °C to -40 °C for overnight. The mixture was quenched with a saturated NaHCO₃ solution (10 mL) and warmed to room temperature. The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ for three times. The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 25/1) to give 2,5-cis **25** (1.53 g) in 69% yield as a colorless oil. $[\alpha]_{D}^{25} = +25.2$ (*c* 0.50, CHCl₃); IR (film): v_{max} 2956, 2930, 2858, 1472, 1391, 1257, 1175, 1078 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, rotamers) δ 5.82-5.68 (m, 1H), 5.11-5.00 (m, 2H), 4.10-4.05 (m, 1H), 3.88-3.82 (m, 0.5H), 3.75-3.52 (m, 3.5H), 3.00-2.90 (m, 0.5 H), 2.75-2.65 (m, 1H), 2.56-2,45 (m, 0.5H), 2.44-2.34 (m, 0.5H), 2.06-1.95 (m, 1H),

Organic Chemistry Frontiers

Method

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

51

60

1.90-1.70 (m, 2H), 1.62-1.44 (m, 11H), 1.28-1.14 (m, 1H), 0.94-0.88 (m, 18H), 0.10-0.07 (m, 6H), 0.06-0.04 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃, rotamers) δ 154.0 (153.9), 136.4 (136.3), 116.6 (116.5), 79.0, 76.1 (75.2), 67.8, 63.0, 57.6 (57.3), 38.9 (37.6), 35.5 (34.6), 30.2 (30.1), 29.8 (28.0), 28.6, 25.9, 25.8, 18.3 (18.2), 17.9, -4.7, -4.8, -5.3 ppm; ¹H NMR (400 MHz, DMSO, 70°C) δ 5.75-5.62 (m, 1H), 5.00-4.90 (m, 2H), 4.07-4.03 (m, 1H), 3.70-3.60 (m, 1H), 3.56-3.48 (m, 2H), 3.47-3.40 (m, 1H), 2.77-2.55 (m, 1H), 2.36-2.22 (m, 1H), 2.07-1.98 (m, 1H), 1.70-1.58 (m, 2H), 1.43-1.31 (m, 11H), 1.20-1.13 (m, 1H), 0.82 (s, 9H), 0.81 (s, 9H), 0.01 (s, 6H), -0.04 (s, 6H) ppm; HRMS (ESI-TOF) m/z: $[M + H]^{+}$ Calcd for C₂₇H₅₆NO₄Si₂: 514.3748, found: 514.3742.

(2S,3R,5R,E)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3-(tert-butyldimethylsilyloxy)propyl)-5-(4-methoxy-4-oxobut-2enyl)pyrrolidine-1-carboxylate (5R)-26 To solution of 25 (794 mg, 1.55 mmol) and methyl acrylate (2.1 mL, 23.18 mmol) in dry DCM (260 mL) was quickly added Grubbs^{2nd} catalyst (110 mg) and heated to reflux for 7 h, then the mixture was concentrated and the crude was purified by flash chromatography on silica gel to give 26 (884 mg, 95%, E : Z = 95 :5) as a colorless oil. $[\alpha]_D^{25}$ = +28.7 (*c* 1.50, CHCl₃); IR (film): v_{max} 2955, 2930, 2860, 1750, 1704, 1391, 1255, 1172, 1097, 1057, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, rotamers) δ 6.92-6.85 (m, 1H), 5.90-5.81 (m, 1H), 4.11-4.07 (m, 1H), 3.97-3.89 (m, 0.5H), 3.87-3.80 (m, 0.5H), 3.76-3.72 (m, 3H), 3.71-3.52 (m, 3H), 3.17-3.08 (m, 0.5H), 2.91-2.82 (m, 0.5H), 2.75-2.65 (m, 0.5H), 2.64-2.52 (m, 0.5H), 2.11-2.00 (m, 1H), 1.91-1.81 (m, 0.5H), 1.79-1.68 (m, 1.5H), 1.60-1.42 (m, 11H), 1.25-1.12 (m, 1H), 0.93-0.87 (m, 18H), 0.10-0.07 (m, 6H), 0.06-0.03 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃, rotamers) δ 167.0 (169.9), 154.0 (153.7), 147.0 (146.9), 122.6, 79.5 (79.3), 76.0 (75.1), 67.7, 63.0, 56.7 (56.5), 51.5 (51.4), 37.7 (36.3), 36.1 (35.2), 30.2 (30.1), 29.8 (28.0), 28.5, 25.9, 25.8, 18.3 (18.2), 17.9, -4.7, -4.8, -5.3 ppm; HRMS (ESI-TOF) m/z: $[M + H]^{+}$ Calcd for C₂₉H₅₈NO₆Si₂: 572.3803, found: 572.3804.

(2S,3R,5R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3-(tert-butyldimethylsilyloxy)propyl)-5-(4-methoxy-4-

42 oxobutyl)pyrrolidine-1-carboxylate (5R)-27 Compound 26 43 (800 mg, 1.40 mmol) and 10% Pd/C (80 mg) was stirred under 44 hydrogen atmosphere for overnight. Then the mixture was 45 filtrated and concentrated. The residue was purified by flash 46 chromatography on silica gel (PE/EA=10/1) to give 27 (739 mg, 92%) as a colorless oil. [α]_D²⁵ = +23.4 (*c* 2.00, CHCl₃); IR (film): 47 48 $\nu_{max} \ 2953, \ 2929, \ 2858, \ 1742, \ 1693, \ 1391, \ 1255, \ 1178, \ 1098,$ 49 1060, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, rotamers) δ 4.10-50 4.05 (m, 1H), 3.80-3.48 (m, 7H), 2.42-2.22 (m, 2H), 2.12-2.00 (m, 1.5H), 1.89-1.82 (m, 1H), 1.77-1.68 (m, 2H), 1.67-1.43 (m, 52 13.5H), 1.24-1.10 (m, 1H), 0.92-0.85 (m, 18H), 0.09-0.03 (m, 53 12H) ppm; 13 C NMR (100 MHz, CDCl₃, rotamers) δ 174.1 54 (174.0), 154.0 (153.9), 79.0, 76.1 (75.2), 67.5, 63.0, 57.6, 51.4, 55 36.0 (35.2), 34.0 (33.9), 33.8 (32.7), 30.2 (30.1), 29.8 (28.0), 56 28.6, 25.9, 25.7, 22.2, 18.3 (18.2), 17.9, -4.7, -4.9, -5.3 ppm; 57 HRMS (ESI-TOF) m/z: $[M + H]^{+}$ Calcd for C₂₉H₆₀NO₆Si₂: 574.3959, 58 found: 574.3954. 59

(2S,3R,5R)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3-(tert-butyldimethylsilyloxy)propyl)-5-(5-

(dimethoxyphosphoryl)-4-oxopentyl)pyrrolidine-1-

carboxylate (5R)-28 To a solution of dimethyl methylphosphonate (0.7 mL, 6.1 mmol) in dry THF (50 mL) was treated with a solution of n-BuLi (2.7 mL, 6.1 mmol, 2.4 M in hexane) at -78 °C for 1 h. Then a solution of compound 27 (500 mg, 0.87 mmol) in THF (10 mL) was slowly dropped, and the reaction was warmed to -50°C and stirred for 2 h. The resulted mixture was quenched with a saturated aqueous solution of NH_4Cl and extracted with EtOAc (50 mL × 3). The combined organic layers were washed with brine, dried and The residue was purified by flash concentrated. chromatography on silica gel (PE/EA=30/1) to give 28 (563 mg, 97%) as a colorless oil. $[\alpha]_D^{25}$ = +23.7 (*c* 1.50, CHCl₃); IR (film): v_{max} 2955, 2932, 2855, 1750, 1709, 1463, 1393, 1255, 1179, 1035, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, rotamers) δ 4.08-4.03 (m, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.74-3.47 (m, 4H), 3.15-3.08 (m, 1H), 3.07-3.02 (m, 1H), 2.72-2.50 (m, 2H), 2.08-1.98 (m, 1.5H), 1.88-1.66 (m, 3.5H), 1.60-1.44 (m, 13H), 1.22-1.11 (m, 1H), 0.92-0.83 (m, 18H), 0.08-0.02 (m, 12H) ppm; ¹³C NMR (100 MHz, CDCl₃, rotamers) δ 201.8 (201.4), 154.0 (153.9), 79.0, 76.1 (75.2), 67.5, 63.0, 57.7 (57.6), 53.0, 52.9, 44.1 (44.0), 42.0 (41.8), 40.7 (40.5), 35.2 (35.9), 32.3 (33.5), 30.2 (30.0), 29.8 (28.0), 28.6, 25.9, 25.7, 20.5, 17.9 (18.3), -4.7, -4.9, -5.3 ppm; 31 P NMR (125 MHz, CDCl₃, rotamers) δ 22.89 (22.73) ppm; HRMS (ESI-TOF) m/z: $[M + H]^{\dagger}$ Calcd for $C_{31}H_{65}NO_8PSi_2$: 666.3986, found: 666.3983.

(2S, 3R, 5R, E)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3-(tert-butyldimethylsilyloxy)propyl)-5-(4-oxoundec-5-

enyl)pyrrolidine-1-carboxylate 29 To a solution of sodium hydrogen (36 mg, 0.90 mmol) in dry THF (8 mL) was carefully treated with a solution of compound 28 (543 mg, 0.75 mmol) at -0 °C. After being stirred for 1 h at 0 °C to room temperature, hexaldehyde (0.11 mL, 0.90 mmol) was dropped and the resulted mixture was stirred for another 3h. Then the reaction was quenched with a saturated aqueous solution of NH₄Cl and extracted with EtOAc (20 mL × 3). The combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA=30/1) to give **29** (459 mg, 88%) as a colorless oil. $[\alpha]_{D}^{25} = +30.4$ (c 0.50, CHCl₃); IR (film): v_{max} 2953, 2928, 2857, 1692, 1458, 1391, 1356, 1175, 1096, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, rotamers) δ 6.82-6.77 (m, 1H), 6.12-6.03 (m, 1H), 4.10-4.05 (m, 1H), 3.80-3.47 (m, 4H), 2.67-2.45 (m, 2H), 2.25-2.16 (m, 2H), 2.12-1.98 (m, 1.5H), 1.88-1.81 (m, 1H), 1.78-1.68 (m, 2H), 1.63-1.42 (m, 15.5H), 1.37-1.26 (m, 4H), 1.24-1.11 (m, 1H), 0.92-0.86 (m, 21H), 0.08-0.03 (m, 12H) ppm; ¹³C NMR (100 MHz, CDCl₃, rotamers) δ 200.8 (200.5), 154.1 (153.9), 147.4, 130.4, 79.0, 76.1 (75.2), 67.5, 63.0, 57.7, 39.9, 35.1 (35.9), 32.6 (33.9), 32.4, 31.3, 30.2 (30.1), 29.8 (28.0), 28.6, 27.8, 25.9, 25.7, 22.4, 21.4, 18.3, 17.9, 14.0, -4.7, -4.9, -5.3 ppm; HRMS (ESI-TOF) m/z: $[M + H]^{+}$ Calcd for C₃₅H₇₀NO₅Si₂: 640.4793, found: 640.4790.

(2S, 3R, 5R, E)-tert-Butyl 3-(tert-butyldimethylsilyloxy)-2-(3hydroxypropyl)-5-(4-oxoundec-5-enyl)pyrrolidine-1carboxylate 30 Compound 29 (393 mg, 0.61 mmol) was dissolved in mixture of DCM/MeOH (4 mL, V : V = 50 : 50) and cooled to -51 °C. Then camphorsulfonic acid (100 mg, 0.43 mmol) was added in one portion and the reaction was stirred

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

60

Journal Name

for overnight. The mixture was guenched with TEA (0.61mmol) was dropped and warmed to room temperature. The resulted mixture was extracted with DCM (20 mL \times 3) and the combined organic layers were washed with brine, dried and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 2/1) to give 30 (300 mg, 93%) as a colorless oil. $[\alpha]_{D}^{25}$ = +23.7 (*c* 1.00, CHCl₃); IR (film): $\nu_{max} \ 3449, \ 2956, \ 2929, \ 2858, \ 1688, \ 1670, \ 1631, \ 1393, \ 1255,$ 1173, 1054, 843 cm $^{\text{-1}};\,^{1}\text{H}$ NMR (400 MHz, CDCl3, rotamers) δ 6.87-6.78 (m, 1H), 6.12-6.04 (m, 1H), 4.10-4.01 (m, 1H), 3.81-3.60 (m, 4H), 3.57-3.53 (m, 0.33H), 2.95-2.88 (m, 0.67H), 2.67-2.44 (m, 2H), 2.25-2.16 (m, 2H), 2.13-2.00 (m, 1.33H), 1.90-1.82 (m, 1H), 1.80-1.70 (m, 2H), 1.67-1.57 (m, 2H), 1.56-1.44 (m, 13.67H), 1.35-1.28 (m, 4H), 1.25-1.15 (m, 1H), 0.93-0.87 (m, 12H), 0.08-0.04 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃, rotamers) δ 200.4 (200.8), 154.3 (154.0), 147.5, 130.3, 79.4 (79.1), 75.7 (76.0), 66.1 (67.3), 61.4 (62.6), 57.8, 39.8, 35.8 (35.1), 33.8 (32.6), 32.4, 31.3, 29.0 (29.9), 28.5, 28.2 (29.5), , 27.8, 25.7, 22.4, 21.4, 17.9, 13.9, -4.8, -4.9 ppm; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₉H₅₆NO₅Si: 526.3928, found: 526.3929.

24 3-Epi-epohelmin A 3-epi-6 To a solution of alcohol 30 (102 mg, 25 0.19 mmol) and TEA (0.21 mL, 1.52 mmol) in dry CH₂Cl₂ (5 mL) was 26 cooled to 0 $^{\circ}$ C. Then MsCl (43 μ L, 0.57 mmol) was dropped and the 27 mixture was stirred for 30 min. The reaction was quenched with a 28 saturated NH₄Cl solution (20 mL) and extracted with CH₂Cl₂ (25 mL 29 \times 3). The combined organic layers were washed with brine for two 30 times, dried and concentrated to give crude product without 31 further purification. The above crude product and 2,6-lutidine (0.11 32 mL, 0.91 mmol) were dissolved in CH₂Cl₂ (15 mL) and cooled to -78 33 °C. The reaction was treated with TESOTf (0.2 mL, 0.87 mmol) and 34 the mixture was allowed to warm to room temperature and stirred 35 for overnight. The mixture was diluted with water and extracted 36 with CH_2CI_2 (30 mL × 3) and the combined organic layers were 37 washed with brine. The resulted organic layer was dried and 38 39 concentrated to give crude product without further purification, 40 which was stirred in mixture of MeOH/HCl (3 mL, V : V = 50 : 50) for 41 overnight. Then the mixture was concentrated to give crude salt, 42 which was dissolved in water (10 mL) and treated with potassium 43 carbonate. The resulted mixture was extracted with $CHCl_3$ (15 mL × 44 5) and the combined organic layers were dried with MgSO₄. After 45 being concentrated, the residue was purified by flash 46 chromatography on silica gel (DCM / $CH_3OH = 80/1-10/1$) to give 3-47 epi-epohelmin A 3-epi-6 (28 mg, 49%), as a yellow oil, $\left[\alpha\right]_{D}^{25}$ = +7.8 48 (c 0.80, CHCl_3); IR (film): ν_{max} 3386, 2959, 2927, 2858, 1668, 1627, 49 1571, 1458, 1407, 1381, 1261, 1177, 1105, 1043 cm⁻¹; ¹H NMR (400 50 MHz, CDCl₃) δ 6.84 (ddd, J = 10.4, 5.2, 4.4 Hz, 1H), 6.07 (d, J = 10.8 51 Hz, 1H), 4.10-4.05 (m, 1H), 3.85-3.80 (m, 1H), 3.28-3.22 (m, 1H), 52 2.91-2.82 (m, 2H), 2.65-2.55 (m, 2H), 2.49-2.44 (m, 1H), 2.24-2.19 53 (m, 2H), 2.17-2.10 (m, 1H), 1.96-1.91 (m, 2H), 1.88-1.80 (m, 2H), 54 1.77-1.70 (m, 2H), 1.68-1.62 (m, 2H), 1.50-1.43 (m, 2H), 1.34-1.28 55 (m, 4H), 0.91-0.88 (m, 3H) ppm; 13 C NMR (100 MHz, CDCl₃) δ 200.0, 56 148.0, 130.2, 75.3, 73.2, 66.6, 53.5, 40.9, 39.4, 33.5, 32.4, 31.4, 29.1, 57 27.8, 24.6, 22.4, 21.3, 13.9 ppm; HRMS (ESI-TOF) m/z: $[M + H]^{\dagger}$ 58 Calcd for C₁₈H₃₂NO₂: 294.2433, found: 294.2424. 59

ers Accepted

Acknowledgements

We thank the National Natural Science Foundation of China (21472022, 21272041, 21072034, 20832005), Key Laboratory for Chemical Biology of Fujian Province for financial support. The authors also thank Dr. Han-Qing Dong for helpful suggestions and thank Xiao-Yun, Wei for initial exploration.

References

- 1 (a) B. M. Trost, Science, 1983, 219, 245; (b) I. Ojima, Catalytic Asymmetric Synthesis; Wiley-VCH: Weinheim, 2000; (c) J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis; Wiley: Chichester, 2000; (d) J. G. de Vries and G. A. Molander, in Science of Synthesis Workbench Edition: Stereoselective Synthesis (Ed.: P. A. Evans), Thieme, Stuttgart, 2011, Vols. 1-3. For selected reviews and accounts, see: (e) P. A. Wender, V. A. Verma, T. J. Paxton and T. H. Pillow, Acc. Chem. Res., 2008, 41, 40; (f) T. Newhouse, P. S. Baran and R. W. Hoffmann, Chem. Soc. Rev., 2009, 38, 3010; (g) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010, 110, 624; (h) R. A. Sheldon, Chem. Soc. Rev., 2012, 41, 1437; (i) K. M. Engle, T.-S. Mei, M. Wasa and J.-Q. Yu, Acc. Chem. Res., 2012, 45, 788; (j) B. G. Hashiguchi, S. M. Bischof, M. M. Konnick and R. A. Periana, Acc. Chem. Res., 2012, 45, 885.
- For selected recent reviews on *p*-toluenesulfinimines, see:
 (a) P. Zhou, B.-C. Chen and F. A. Davis, *Tetrahedron*, 2004, **60**, 8003; (b) D. Morton and R. A. Stockman, *Tetrahedron*, 2006, **62**, 8869.
- 3 For selected reviews on the chemistry of *t*-BS-imines, see: (a) J. A. Ellman, T. D. Owens and T. P. Tang, Acc. Chem. Res., 2002, 35, 984; (b) G.-Q. Lin, M.-H. Xu, Y.-W. Zhong and X.-W. Sun, Acc. Chem. Res., 2008, 41, 831; (c) F. Ferreira, C. Botuha, F. Chemla and A. Pérez-Luna, Chem. Soc. Rev., 2009, 38, 1162; (d) M. T. Robak, M. A. Herbage and J. A. Ellman, Chem. Rev., 2010, 110, 3600. For selected recent examples, see: (e) D. M. Hodgson, A. Charlton, R. S. Paton and A. L. Thompson, J. Org. Chem., 2013, 78, 1508; (f) H.-C. Xu, S. Chowdhury and J. A. Ellman, Nat. Protoc. 2013, 8, 2271; (g) A. W. Buesking, V. Bacauanu, I. Cai and J. A. Ellman, J. Org. Chem., 2014, 79, 3671; (h) C. Q. Fontenelle, M. Conroy, M. Light, T. Poisson, X. Pannecoucke and B. Linclau, J. Org. Chem., 2014, 79, 4186.
- For early selected examples, see: (a) F. A. Davis and W. McCoull, J. Org. Chem., 1999, 64, 3396; (b) T. P. Tang, S. K. Volkman and J. A. Ellman, J. Org. Chem., 2001, 66, 8772; (c) D. D. Staas, K. L. Savage, C. F. Homnick, N. N. Tsou and R. G. Ball, J. Org. Chem., 2002, 67, 8276; (d) J. W. Evans and J. A. Ellman, J. Org. Chem., 2003, 68, 9948; (e) Y.-W. Zhong, Y.-Z. Dong, K. Fang, K. Izumi, M.-H. Xu and G.-Q. Lin, J. Am. Chem. Soc., 2005, 127, 11956.
- 5 (a) R.-C. Liu, J.-H. Wei, B.-G. Wei and G.-Q. Lin, *Tetrahedron: Asymmetry*, 2008, **19**, 2731; (b) C. Xarnod, W. Huang, R.-G. Ren, R.-C. Liu and B.-G. Wei, *Tetrahedron*, 2012, **68**, 6688.
- 6 (a) X. Sun, W. Zheng and B.-G. Wei, *Tetrahedron Lett.*, 2008, 49, 6195; (b) W. Huang, J.-L. Ye, W. Zheng, H.-Q. Dong and B.-G. Wei, *J. Org. Chem.*, 2013, 78, 11229.
- 7 (a) C.-M. Si, W. Huang, Z.-T. Du, B.-G. Wei and G.-Q. Lin, Org. Lett., 2014, 16, 4328; (b) C.-M. Si, Z.-Y. Mao, H.-Q.

rganic Cr

Organic Chemistry Frontiers

59

60

14 | J. Name., 2012, 00, 1-3

Method

1

Dong, Z.-T. Du, B.-G. Wei and G.-Q. Lin, *J. Org. Chem.*, 2015, **80**, 5824.

- 8 For books on pyridine alkaloids, see: (a) G. B. Fodor and B. Colasanti, The Pyridine and Piperidine Alkaloids: Chemistry and Pharmacology *InPelletier, S. W., Ed. Alkaloids: Chemical and Biological Perspectives*; Wiley-Interscience: New York, NY, 1985; Vol. 3, pp 1-90; (b) M. J. Schneider, Pyridine and Piperidine Alkaloids: An Update *InPelletier, S. W., Ed. Alkaloids: Chemical and Biological Perspectives*; Pergamon: Oxford, UK, 1996; Vol. 10, pp 155-299.
- 9 For selected reviews, see: (a) P.-Q. Huang, Synlett, 2006, 1133; (b) B. L. Stocker, E. M. Dangerfield, A. L. Win-Mason, G. W. Haslett and M. S. M. Timmer, Eur. J. Org. Chem., 2010, 1615; For selected examples, see: (c) R. G. Andrew, R. E. Conrow, J. D. Elliott, W. S. Johnson and S. Ramezani, Tetrahedron Lett., 1987, 28, 6535; (d) S. Ishibuchi, Y. Ikematsu, T. Ishizuka and T. Kunieda, Tetrahedron Lett., 1991, 32, 3523; (e) P.-Q. Huang, S.-L. Wang, H. Zheng and X.-S. Fei, Tetrahedron Lett., 1997, 38, 271; (f) P.-Q. Huang, S.-L. Wang, J.-L. Ye, Y.-P. Ruan, Y.-Q. Huang, H. Zheng and J.-X. Gao, Tetrahedron, 1998, 54, 12547; (g) G. C. G. Pais and M. E. Maier, J. Org. Chem., 1999, 64, 4551; (h) Y.-A. Kim, S.-M. Oh and S.-Y. Han, Bull. Korean Chem. Soc., 2001, 22, 327; (i) B.-Y. He, T.-J. Wu, X.-Y. Yu and P.-Q. Huang, Tetrahedron: Asymmetry, 2003, 14, 2101; (j) W. Huang, J.-Y. Ma, M. Yuan, L.-F. Xu and B.-G. Wei, Tetrahedron, 2011, 67, 7829; (k) X.-G. Wang, A.-E. Wang and P.-Q. Huang, Chin. Chem. Lett., 2014, 25, 193.
- 10 (a) H. Takahata, K. Yamazaki, T. Takamatsu, T. Yamazaki and T. Momose, J. Org. Chem., 1990, 55, 3947; (b) H. Yoda, H. Yamazaki and K. Takabe, Tetrahedron: Asymmetry, 1996, 7, 373; (c) P.-Q. Huang, J.-L. Ye, Z. Chen, Y.-P. Ruan and J.-X. Gao, Synth. Commun., 1998, 28, 417; (d) H.-Q. Dong and G.-Q. Lin, Chin. J. Chem., 1998, 16, 458; (e) D. K. Pyun, B. J. Kim, H. J. Jung, J. H. Kim, J. S. Lee, W. K. Lee and C. H. Lee, Chem. Pharm. Bull., 2002, 50, 415; (f) N. Fukuda, K. Sasaki, T. V. R. S. Sastry, M. Kanai and M. Shibasaki, J. Org. Chem., 2006, 71, 1220; (g) J. Nöth, K. J. Frankowski, B. Neuenswander, J. Aubé and O. Reiser, J. Comb. Chem., 2008, 10, 456; (h) T. G. Elford, A. Ulaczyk-Lesanko, G. De Pascale, G. D. Wright and D. G. Hall, J. Comb. Chem., 2009, 11, 155; (i) S. Cren, P. Schar, P. Renaud and K. Schenk, J. Org. Chem., 2009, 74, 2942; (j) J.-D. Yu, W. Ding, G.-Y. Lian, K.-S. Song, D.-W. Zhang, X. Gao and D. Yang, J. Org. Chem., 2010, 75, 3232.
- 11 H. J. Shin, T. S. Kim, H.-S. Lee, J. Y. Park, I.-K. Choi and H. J. Kwon, *Phytochemistry*, 2008, **69**, 2363.
- 12 For the original isolation of epohelmin A, see: (a) Y. Sakano, M. Shibuya, Y. Yamaguchi, R. Masuma, H. Tomoda, S. Omura and Y. Ebizuka, J. Antibiot., 2004, 57, 564. For the revised the structure of epohelmins A and B, see: (b) B. B. Snider and X. Gao, Org. Lett., 2005, 7, 4419; (c) M. Shibuya, B. B. Snider, Y. Sakano, H. Tomoda, S. Omura and Y. Ebizuka, J. Antibiot., 2005, 58, 599. For the Asymmetric synthesis of epohelmin B, see: (d) A. Fürstner and A. Korte, Chem. Asian J., 2008, 3, 310.
- 13 As a representative example, see the recently synthetic efforts towards *trans*-4-Substituted- γ-amino-β-hydroxy acids: (a) A. K. Ghosh, W. Liu, Y. Xu and Z. Chen, Angew. Chem., Int. Ed., 1996, **35**, 74; (b) M. Catasús, A. Moyano, M. A. Pericàs and A. Riera, Tetrahedron Lett., 1999, **40**,

9309; (c) M. Haddad, C. Botuha and M. Larchevêque, Synlett, 1999, 1118; (d) M. E. Maier and C. Hermann, Tetrahedron, 2000, 56, 557; (e) C. Alemany, J. Bach, J. Garcia, M. López and A. B. Rodríguez, Tetrahedron, 2000, 56, 9305; (f) C. Palomo, M. Oiarbide, J. M. Garcia, A. Gonzalez, R. Pazos, J. M. Odriozola, P. Banuelos, M. Tello and A. Linden, J. Org. Chem., 2004, 69, 4126; (g) C.-F. Dai, F. Cheng, H.-C. Xu, Y.-P. Ruan and P.-Q. Huang, J. Comb. Chem., 2007, 9, 386; (h) J.-M. Luo, C.-F. Dai, S. Y. Lin and P.-Q. Huang, Chem. Asian J., 2009, 4, 328; (i) A. K. Ghosh, K. Shurrush and S. Kulkarni, J. Org. Chem., 2009, 74, 4508; (j) D. Yoo, J. Song, M. S. Kang, E. S. Kang and Y. G. Kim, Tetrahedron: Asymmetry, 2011, 22, 1700; (k) A. Bandyopadhyay, A. Malik, M. G. Kumar and H. N. Gopi, Org. Lett., 2014, 16, 294.

- 14 K. Stratmann, D. L. Burgoyne, R. E. Moore, G. M. L. Patterson and C. D. Smith, *J. Org. Chem.*, 1994, **59**, 7219.
- 15 T. F. Molinski, K. A. Reynolds and B. I. Morinaka, *J. Nat. Prod.*, 2012, **75**, 425.
- 16 (a) S. Yoshifuji, K. Tanaka, T. Kawai and Y. Nitta, *Chem. Pharm. Bull.*, 1986, **34**, 3873; (b) M. S. Valle, P. Retailleau and C. R. D. Correia, *Tetrahedron Lett.*, 2008, **49**, 1957.
- 17 J. A. Marshall, A. Piettre, M. A. Paige and F. Valeriote, J. Org. Chem., 2003, 68, 1780.
- 18 (a) D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155; (b) D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277.
- 19 (a) D. A. Cogan and J. A. Ellman, J. Am. Chem. Soc., 1999,
 121, 268; (b) G. Liu, D. A. Cogan, T. D. Owens, T. P. Tang and J. A. Ellman, J. Org. Chem., 1999, 64, 1278.
- 20 (a) J. Poncet, P. Jouin, B. Castro, L. Nicolas, M. Boutar and A. Gaudemer, J. Chem. Soc., Perkin Trans., 1990, 1, 611; (b) S.-H. Xiang, H.-Q. Yuan and P.-Q. Huang, Tetrahedron: Asymmetry, 2009, 20, 2021.
- 21 (a) P.-Q. Huang, Z.-Q. Guo and Y.-P. Ruan, *Org. Lett.*, 2006,
 8, 1435; (b) X. Zhou, W.-J. Liu, J.-L. Ye and P.-Q. Huang, *J. Org. Chem.*, 2007, 72, 8904.
- 22 Z.-H. Chen, Z.-M. Chen, Y.-Q. Zhang, Y.-Q. Tu and F.-M. Zhang, *J. Org. Chem.*, 2011, **76**, 10173.
- 23 J. D. White and S. Jana, *J. Org. Chem.*, 2014, **79**, 700.
- (a) T. Sengoku, Y. Satoh, M. Oshima, M. Takahashi and H. Yoda, *Tetrahedron*, 2008, 64, 8052; (b) C.-M. Si, Z.-Y. Mao, R.-G. Ren, Z.-T. Du and B.-G. Wei, *Tetrahedron*, 2014, 70, 7936.
- 25 (a) R. H. Grubbs and S. Chang, *Tetrahedron*, 1998, 54, 4413; (b) S. Chatterjee, S. Ghadigaonkar, P. Sur, A. Sharma and S. Chattopadhyay, *J. Org. Chem.*, 2014, 79, 8067.
- 26 CCDC-1417164 (Compound *trans*-4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.