Green Chemistry

Fluorous Ethers

Journal:	Green Chemistry
Manuscript ID:	GC-CRV-06-2015-001345.R3
Article Type:	Critical Review
Date Submitted by the Author:	11-Aug-2015
Complete List of Authors:	Lo, Angel; City University of Hong Kong, Department of Biology and Chemistry Horvath, Istvan; City University of Hong Kong, Department of Biology and Chemistry

SCHOLARONE[™] Manuscripts

Green Chemistry

Review

Fluorous Ethers

applications in chemical processes.

Angel S. W. Lo and István. T. Horváth

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Introduction

Solvents have been playing an important role to perform chemical reactions and processes, isolate and purify chemical compounds by extraction, crystallization, or azeotrope distillation, clean surfaces, and assist the structural and analytical characterization of chemicals.¹ Traditionally, the right combination of physical and chemical properties of molecules were the only important criteria to select suitable solvents or design new ones. Well-known and publicized solvents related accidents² as well as the negative environmental and health effects of some of the commonly used solvents³ have changed the selection strategies⁴ and requirements: low vapour pressure, no or low flammability, no or low toxicity, low persistency, and high biodegradability have become additional features of todays preferred solvents.⁵ For example, chlorofluorocarbons (CFCs) were developed as a safe, non-toxic, and non-flammable replacement of toxic and dangerous refrigerants,⁶ such as ammonia and sulfur dioxide. In addition, they were widely used as cleaning solvents, agricultural propellants, and blowing agents. Their increasing popularity led to more and more releases to the atmosphere, which resulted in the ozone depletion.^{7a} The production of CFCs ceased globally by the middle of the nineties and the ozone layer is on track to recovery.^{7b} Hydrofluoroethers (HFEs) are emerging alternatives to replace perfluorocarbons (PFCs), CFCs, and hydrochloro-fluorocarbons (HCFCs).⁸ HFEs have shorter life-time in the atmosphere due to their facile decomposition by their reaction with hydroxy radicals.⁹ Consequently, HFEs have no ozone depletion and low global warming potentials. Since HFEs are less expensive and considerably less persistent and toxic in the environment, they have been used as refrigerants, cleaning solvents, blowing and degreasing agents.¹⁰

The most popular green solvents are water, alcohols, ionic liquids, and supercritical fluids.⁵ Although many of them exhibit very attractive solvent properties and have been used successfully, they are not necessarily free of environmental and/or health issues. The polar green solvents such as water, alcohols, and some of the ionic liquids could distribute low level polar contaminations including toxic chemicals. Ionic liquids have become very popular,¹¹ though their toxicity could be an issue, especially if their solubility in water could lead to contamination. Supercritical carbon dioxide and water have emerged as green solvents,¹² though the required higher pressures increase the risks for accidents. In all cases, the environmental benefits offered by the greener solvents must be a contributor to their favourable economic performance. While a broad range of greener polar solvents are available, only a few non-polar solvents have been developed. The most non-polar chemicals are the perfluorinated alkanes ($C_x F_{2x+2}$), dialkylethers ($[C_xF_{2x+1}]_2O$), and trialkyl amines ($[C_xF_{2x+1}]_3N$), which could be used as solvents as well.¹³

Fluorous Biphasic System (FBS)

Fluorous ethers having one or more fluorous ponytails containing longer and shorter F(CxF2x)-perfluoroalkyl substituent(s)

where $(x \ge 6)$ or (x = 1 - 5), respectively, were reviewed including some of their basic properties, synthesis and selected

Perfluorinated liquid compounds could easily form liquid-liquid biphasic systems with polar organics. The facile separation of the perfluorinated liquid reach phase was the basis of the fluorous biphasic concept, which was introduced together with the term fluorous, in 1994.¹⁴ Fluorous transformations should be controlled by carefully designed fluorous reagents or catalysts, which are preferentially soluble in the fluorous phase and has limited solubility in the product phase (Scheme 1).

^a Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong S.A.R. Email: <u>istvan.t.horvath@cityu.edu.hk</u>

This journal is © The Royal Society of Chemistry 20xx

The temperature regulation of the fluorous biphasic systems leading to one phase at higher temperatures and two phases at lower temperatures, a simple approach to control mass transfers *via* thermoregulation, was also recognized.¹⁴

ARTICLE

The introduction of the fluorous biphasic concept was followed by the rapid development of fluorous chemistry,¹⁵ which is closely connected to organofluorine chemistry.¹⁶ While the latter is dedicated to the fundamental aspects of making and breaking carbon-fluorine bond(s), fluorous chemistry is concerned with the design and attachment of perfluoro-alkyl group(s) containing substituents to the hydrocarbon domains of fluorous reagents and catalysts to ensure their efficient solubility and separation (Scheme 1). Originally,¹⁴ high fluorous partition ($P_F = c_{fluorous phase}/c_{other phase}$ in 50/50 vol.% c-C₆F₁₁CF₃/toluene)¹⁷ or fluorophilicity (In P_F)¹⁸ of the fluorous compounds was achieved by the attachment of C₆-C₁₂-perfluoroalkyl ponytails to the hydrocarbon domains of fluorous reagents on catalysts in appropriate number.

Commercially attractive fluorous systems should be designed to remain inside the laboratory or the production facility. However, low level leaching of a fluorous reagent or a catalyst to the product(s) or its accidental releases could result in long term environmental and health issues. If a fluorous compound with a long perfluoroalkyl group would enter the environment, its oxidative and/or hydrolytic fragmentation would lead to the formation of a long-chain perfluoroalkyl caboxylate (LCPFAC) (Scheme 2), among which perfluoro-ocatanoic acid (CF₃(CF₂)₆-COOH or PFOA) is the best known.¹⁹

Scheme 2 Proposed formation of perfluoalkyl caboxylate from fragmentation of longchain fluorous compound in environment.

PFOAs and some of their precursors are persistent, widely present in humans and the environment, have long half-lives in humans, can cause adverse effects in laboratory animals, and were linked to developmental and reproductive problems, liver toxicity and cancer.²⁰ Under the Toxic Substances Control Act, US Environmental Protection Agency (EPA) has recently proposed to amend a significant new use rule for LCPFACs,²¹ where 5 < n < 21 or 6 < m < 21:

1. $CF_3(CF_2)_n$ -COO-M where M = H + or any other group where a formal dissociation can be made;

- 2. CF₃(CF₂)_n-CH=CH₂;
- 3. CF₃(CF₂)_n-C(=O)-X where X is any chemical moiety;

4. $CF_3(CF_2)_m$ -CH₂-X where X is any chemical moiety;

5. $CF_3(CF_2)_m$ -Y-X where Y = non-S, non-N heteroatom and where X is any chemical moiety.

The bioaccumulation and toxicity of the homologues of perfluoroalkyl caboxylates is higher for longer compared to those with shorter perfluoroalkyl chain lengths.²⁰ Therefore, the combination of shorter C_{1-4} -perfluoroalkyl-groups was suggested to maintain high fluorous solubility and partition and minimize bioaccumulation.²²

Synthesis of C₆₋₁₀ Perfluorinated Alkyl group(s) Containing Fluorous Ethers

Examples of available long-chain perfluorinated alkyl ethers are listed in Table 1. Fluorination of dialkyl-ethers and - polyethers has been the most used direct synthesis of perfluoroethers such as **1**, **4** and **13** with different molecular weights and boiling points (Table 1).²³

Fluorous ethers **2a-d**, **9a-c** and **12** (Table 1) have been prepared by reacting fluorous alcohols with alkyl bromides in the presence of KOH in N-methyl-2-pyrrolidone (Scheme 3).²⁴

Long-chain containing fluorous ethers **3** and **8** (Table 1) were synthesised by preparing fluorous iodides from fluorous allyl ethers and perfluoalkyl iodides in the presence of AIBN and aqueous $Na_2S_2O_5$, followed by the heterogeneous palladium catalysed hydrogenation (Scheme 4).²⁵

Scheme 4 Formation of fluorous ether by radical reaction of fluorous vinyl compound and fluorous iodide.

A series of fluorous dialky-ethers **5** – **7**, **10** and **16** (Table 1) were prepared by using the Mitsunobu reaction of perfluoro and perfluoroalkyl alcohols (Scheme 5).²⁶

Scheme 5 Mitsunonu reaction of perfluoro- and fluorous alcohols

Green Chemistry

Review

Compound	Formula	MW [g/mol]	F [w%]	mp [°C]	bp [°C]	Yield	Ref		
CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂	C7F16O	404	75.2	N/A	36	N/A	23		
	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5 \left(\mathbf{2a} \right)$	C ₁₀ H ₉ F ₁₃ O	392	63.0	< -80	65	97		
$CF_3 CF_2 CF_2 CF_2 CF_2 CH_2 O^R$	$\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7(\mathbf{2b})$	C ₁₁ H ₁₁ F ₁₃ O	406	60.8	< -80	145	71	24	
2	$\mathbf{R} = \mathbf{C}_5 \mathbf{H}_{11}(\mathbf{2c})$	C ₁₃ H ₁₅ F ₁₃ O	434	56.9	- 46.8	110 ^a	72	24	
	$\mathbf{R} = \mathbf{C}_{8}\mathbf{H}_{17}(\mathbf{2d})$	C ₁₆ H ₂₁ F ₁₃ O	476	51.9	- 21.2	150 ^b	71		
$\begin{array}{c cccc} CF_2 & CF_2 & CH_2 & CH_2 & CH_2 \\ CF_3 & CF_2 & CF_2 & O & CH_2 & CF_2 \\ & & & & & & & & & & & \\ & & & & & & $	CF_2 CF_2 CF_3 $_2$ CF_2 CF_2	$C_{15}H_8F_{24}O$	660	69.1	N/A	210	82	25	
CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ C CF ₃ CF ₂ CF ₂ O CF ₂ 4	C ₁₂ F ₂₆ O	654	75.5	N/A	179	N/A	23		
$CF_3 CF_2 CF_2 CF_2 CF_2 CH_2$ $CF_3 CF_2 CF_2 CF_2 CH_2$ 5	C ₁₃ H ₆ F ₂₂ O	596	70.1	ca70	195- 199	71	26		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{21}H_{12}F_{32}O_2$	904	67.3	-10 to -8	180- 190°	66	26		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₂₄ H ₁₂ F ₃₈ O ₂	1054	68.5	24 - 26	170- 180°	85	26		
$R_{f6} CH_{2}^{CH_{2}} CH_{2}^{O} CH_{2}^{CF_{2}} CF_{2}^{CF_{2}} CF_{2}^{CF_{2}} CF_{2}^{CH_{2}} CH_{2}^{CH_{2}} CH_{2}^{CH_{2}} R_{f6}$ $R_{f6} = \sqrt{CF_{2}} CF_{2}^{CF_{2}} CF_{2}^{CF_{2}} CF_{3}$		$C_{25}H_{14}F_{38}O_2$	1068	67.6	Oil, N/A	>260	88	25	
	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5(\mathbf{9a})$	C ₁₂ H ₉ F ₁₇ O	492	65.7	< - 80	72	97	24	
$\begin{array}{c} CF_2 CF_2 CF_2 CF_2 CF_2 CH_2 \\ CF_3 CF_2 CF_2 CF_2 CF_2 CH_2 O^{-R} \end{array}$	$\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7 (\mathbf{9b})$	$C_{13}H_{11}F_{17}O$	506	63.8	< - 80	165	82	24	
9	$\mathbf{R} = \mathbf{C}_5 \mathbf{H}_{11} \left(\mathbf{9c} \right)$	C ₁₅ H ₁₅ F ₁₇ O	534	60.5	- 19.4	130 ^b	82	24	
$CF_{3} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{$	C ₁₅ H ₆ F ₂₆ O	696	71	- 37	224- 227	91	26		
$CF_3 CF_2 CF_2 CF_2 CF_2 CF_2 CH_2 O'$	$CH_3 CH_3 CH_3 CH CH CH_2 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$	C ₁₄ H ₁₇ F ₁₃ O	448	13.7	Liquid, N/A	214	92	27	

Table $1 - C_{6-10}$ Perfluorinated alkyl group(s) containing fluorous ethers

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Journal Name

Compound	Formula	MW [g/mol]	F [w%]	mp [°C]	bp [°C]	Yield [%]	Ref
$\begin{array}{cccccccc} CF_2 & CF$	$C_{18}H_{21}F_{17}O^d$	576	56.1	- 8.5	160 ^e	72	24
$\begin{array}{cccc} CF_3 \\ CF_2 \\ CF_$	C ₁₅ F ₃₂ O	804	75.6	N/A	215	N/A	23
$\begin{pmatrix} CF_{2} & CH_{2} &$	C ₄₁ H ₅₀ F ₃₄ O ₃	1236	52.3	< 20	N/A	82	28
$CF_{3} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CF_{3}} CF_{3} \xrightarrow{CF_{3}} CF_{3} \xrightarrow{CF_{3}} 15$	C ₁₇ H ₁₁ F ₂₆ NO	739	66.8	Liquid, N/A	150- 155 ^f	60	29
$\begin{array}{c} CF_3\\CF_2$	C ₁₇ H ₆ F ₃₀ O	796	71.6	15	140 ^g	88	26

^a 4.5mmHg, ^b5.25mmHg, ^c16mmHg, ^dmixture of isomers (10:1, GC), ^e0.75mmHg, ^f20mmHg, ^giso-octane

The palladium catalysed reaction of 1H,1H,2H,2H-perfluorooctanol with 4-methyl-2-pentanone under hydrogen has been used for the synthesis of fluorous ether **11** (F-626) (Scheme 6).²⁷

Scheme 6 Scheme of palladium catalysed reaction of perfluoroalcohol and ketone to form fluorous ether **11**.

The surfactant fluorous ether ${\bf 14}$ (Table 1) was synthesized according to Scheme 7. $^{\rm 28}$

15 was prepared by the reaction of perfluoro-*tert*-butanol, 1-bromo-ethanol and 4-toluenesulfonyl chloride, followed by the addition of 3-perfluorooctyl-1-propyl amine (Scheme 8).²⁹

Scheme 8 Synthesis of fluorous ether from perfluoro-tert-butanol to fluorous amine, via platform fluorous tosylate compound.

Synthesis of C₁₋₅ Perfluorinated Alkyl Group(s) Containing Fluorous Ethers

Due to the toxicity and persistent characters of LCPFACs, the combination of shorter C_{1-4} -perfluoroalkyl-groups should be the preferred choice for commercial applications.²²

17a-c were prepared by the reaction of perfluoro-*t*-butanol, 1-bromo-ethanol and 4-toluenesulfonyl chloride, followed by the addition of $NH_{3-x}Me_x$ (x=0-2) (Scheme 9, Table 2).²⁹

Fluorous ether **18** was prepared by the hydroalkylation of perfluoropropylene with CF_3CH_2OH in the presence of 1-butyl-3-methyl-imidazolium based ionic liquid with different anions

(Scheme 10).³⁰ The ionic liquids have served as both catalysts

Journal Name

and solvents. It should be noted that the elimination of HF from **18** resulted in an olefinic side-product, which was hydroalkylated with CF_3CH_2OH to yield **19** (Table 2).³⁰

$$F_{3}C = CF_{2} + HOCH_{2}CF_{3} \xrightarrow{\text{BMIM-X}} F_{3}C \xrightarrow{\text{F}} CH_{2}CF_{2} \xrightarrow{\text{C}} CH_{2}CF_{3}$$

X: CH_{3}CO_{2}^{-}; HCO_{3}^{-}; CO_{3}^{2-} 18

Scheme 10 Synthesis scheme of fluorous ethers using ionic liquids BMIM-X, where X = CH3CO₂'/HCO₃'/CO₃².

The Mitsunobu reaction of perfluoro-*t*-butanol and $C_4F_9C_3H_6OH$ was used to prepare **20** (Scheme 11).²⁶

$$\begin{array}{c} F_{3}C\\F_{3}C\\F_{3}C\end{array} \subset OH + HO \xrightarrow{CH_{2}} CH_{2}^{2}C_{4}F_{9} \xrightarrow{DEAD, PPh_{3}} F_{3}C \xrightarrow{F_{3}C} C \xrightarrow{CH_{2}} CH_{2}^{2}C_{4}F_{9} \\F_{3}C \xrightarrow{F_{3}C} 20 \end{array}$$
Scheme 11 Mitsunobu reaction of perfluoro- and fluorous alcohols.

The reaction of perfluoro-*t*-butanol, 1-bromo-ethanol and 4-toluenesulfonyl chloride followed by the addition of **17a** resulted in **21a** (Table 2).²⁹ **21b** and **22** were synthesised by the reaction of the sodium salt of perfluoro-*t*-butanol with $(CICH_2CH_2)_2NCH_3$ or $(CICH_2CH_2)_3N$, respectively (Scheme 12).²⁹

Scheme 12.Synthesis of fluorous amine ether by using sodium perfluoro-tert-butoxide.

The synthesis of **23a-c** was developed by Solvay-Solexis according to Scheme $13.^{31}$

Scheme 13 General oxidative polymerisation scheme of producing fluorous dialkyl polyethers.

Direct fluorination has been used for the synthesis of C_{1-5} perfluoro or fluorous dialkyl-ethers (Table 2) including **24-31**, **34-40**, **43-47** and **52-53** with different molecular weights and boiling points.²³

Fluorous ethers **32** and **33** are analogues of **23a-c** with different perfluoropolyether chain between the two methyl end-groups and were prepared according to Scheme 13.³¹

Fluorous ether **41a** was prepared by the Mitsunobu reaction of $(CF_3)_3C$ -OH and $CH_3C(CH_2OH)_3$ (Scheme 14).³²

Scheme 14 Another Mitsunobu reaction on synthesis of branched fluorous ether.

The reaction of PhCH₂OC(CH₂OC(CF₃)₃)₃ with aluminium chloride and anisole resulted in HOC(CH₂OC(CF₃)₃)₃ (**41b**), which could be methylated to give MeOC(CH₂OC(CF₃)₃)₃ (**41c**) (Table 2).

Perfluoro-*t*-butyl propyl ether (**17d**) or bis-perfluoro-*t*-butyl diethyl or dipropyl ethers, **42a** and **42b**, respectively, were prepared in good yields by reacting sodium perfluoro-*t*-butoxide with the appropriate alkyl halides (Scheme 15). The cytotoxicity of these fluorous ethers were shown to be lower than PFOA.³³

Scheme 15 Synthetic scheme of using sodium perfluoro-*tert*-butoxide to yield bisperfluoro-*tert*-butyl ethers.

Perfluoroethers **48a-d** were synthesised by the Williamson etherification of $C_4F_9CH_2CH_2OH$ and alkyl bromides with various length of alkyl groups (Scheme 16).²⁴

Scheme 16 General scheme of Wiliamson etherification for fluorous ether formation.

49 was synthesised by preparing fluorous iodides from perfluoropropyl allyl ether and perfluobutyl iodide in the presence of AIBN and aqueous $Na_2S_2O_5$, followed by the heterogeneous palladium catalysed hydrogenation.²⁵

Fluorous ethers **50** and **51** are analogues of **6** and **7**, and were prepared by Mitsunobu reaction of the appropriate perfluoro and fluorous alcohols.²⁶

Review

Table $2 - C_{1-5}$ Perfluorinated alkyl group(s) containing fluorous ethers	
	_

Compound		Formula	F [w%]	MW [g/mol]	mp [°C]	bp [°C]	Yield [%]	Ref	
	$\mathbf{R} = \mathbf{NH}_2 \left(\mathbf{17a} \right)$	C ₆ H ₆ F ₉ NO	61.3	279	Oil, N/A	110	47		
CF_3 $C \subset C$ CH_2 R	$\mathbf{R} = \mathrm{NHCH}_3\left(\mathbf{17b}\right)$	C ₇ H ₈ F ₉ NO	58.4	293	Oil, N/A	140-160 ^a	69	28	
F ₃ C O CH ₂ F ₃ C 17	$\mathbf{R} = \mathbf{N}(\mathbf{CH}_3)_2 \ (\mathbf{17c})$	C ₈ H ₁₀ F ₉ NO	55.7	307	Liquid, N/A	116	36		
"	$\mathbf{R} = \mathrm{CH}_3\left(\mathbf{17d}\right)$	C7H7F9O	61.5	278	Liquid, N/A	N/A	64	33	
CF ₃ CF ₂ CH 18	CF ₃	C₅H₃F9O	68.4	250	N/A	N/A	max. 96.5 ^b	30	
$CF_{3}^{CH_{2}}O_{F}^{CH_{2}}O_{F}^{CH_{2}}O_{F}^{CH_{2}}O_{F}^{CH_{2}}O_{F}^{CH_{2}}O_{F}^{CH}$	$C_7H_5F_{11}O_2$	63.3	330	N/A	N/A	max. 1.2°	30		
$CF_{3} \xrightarrow{C} CF_{2} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{C} CF_{2} \xrightarrow{C} CF_{3} \xrightarrow{C} CF_{3}$		C ₁₁ H ₆ F ₁₈ O	69	496	-150 to 130	107-110	N/A	26	
$\begin{array}{c c} CF_3 & R & CF_3 \\ CF_3 & CH_2 & CH_2 \\ CF_3 & CH_2 & CH_2 \\ CH_2 CH_2 & CH_$	$\mathbf{R} = \mathbf{H} \left(\mathbf{21a} \right)$	C ₁₂ H ₉ F ₁₈ NO ₂	63.2	541	Oil, N/A	120 ^{a,d}	20	20	
CF ₃ 21 CF ₃	$\mathbf{R} = \mathrm{CH}_3\left(\mathbf{21b}\right)$	$C_{13}H_{11}F_{18}NO_2$	61.6	555	Liq., N/A	130- 140 ^{a,e}	53	29	
$(CF_3)_3CO$ $CH_2^{CH_2}$ $(CF_3)_3CO^{,CH_2} CH_2^{-}CH_2^{-}OC(CF_3)_3$ 22		C ₁₈ H ₁₂ F ₂₇ NO ₃	63.9	803	Oil, N/A	140 ^d	33	29	
	n = 1 (23a)	$C_4H_6F_4O_2$	46.9	162	-21.2	92	N/A		
$H_3C \sim (CF_2 \circ) CH_3$	n = 2 (23b)	$C_6H_6F_8O_3$	54.7	278	-64.2	135	N/A	31	
23	n = 3 (23c)	$C_8H_6F_{12}O_4$	57.9	394	-34.2	161	N/A	1	
CF ₃ CF ₂ O _{CF2} CF ₃ 24		$C_4F_{10}O$	74.8	254	N/A	10	N/A	23	
CF ₃ CF ₃ F C O CH ₃ 25	C ₄ H ₃ F ₇ O	66.5	200	N/A	N/A	N/A	8, 23		
		C ₄ H ₄ F ₆ O	62.6	182	N/A	54.3	N/A	8, 23	
CF_3	$\mathbf{R} = \mathbf{CH}_3 \left(\mathbf{27a} \right)$	C ₄ H ₄ F ₆ O	62.6	182	N/A	51	N/A	0.02	
CF ₃	$\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_2\mathbf{F} (\mathbf{27b})$	C ₄ H ₃ F ₇ O	66.5	200	N/A	58.6	N/A	8,23	

Compound		Formula	F [w%]	MW [g/mol]	mp [°C]	bp [°C]	Yield [%]	Ref	
F ^{CH} ₂ CF ₂ CH 28	CF ₃ 2	C4H4F6O	62.6	182	N/A	65	N/A	8, 23	
CF ₃ CF ₂ OCF ₂ CF ₂ CF ₂ C	CF ₂ CF ₃	$C_{6}F_{14}O_{2}$	71.9	370	N/A	N/A	100	23	
	n = 2 (30a)	$C_6F_{14}O_3$	68.9	386	N/A	61	N/A	23	
30 n	n = 3 (30b)	$C_8F_{18}O_4$	68.1	502	N/A	105	N/A	23	
CF3 CF2 CF3 CF3	n = 2 (31a)	$C_7F_{16}O_3$	69.7	436	N/A	85	N/A		
CF_2 $/CF_2$ 31	n = 3 (31b)	$C_9F_{20}O_4$	68.8	552	N/A	118	N/A	23	
CH ₃ ^{CF₂} O ^{CF₂} CF ₂ ^O CF ₂ ^{CF} 32	^{2~} 0 ^{,CF} ^{2~} CH ₃	$C_8H_6F_{12}O_3$	60.3	378	-78	N/A	N/A	31	
CH ₃ O ^{CF₂} CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ 33	² 0 ^{, CF₂ CF₂ CH₃}	$C_9H_6F_{14}O_5$	57.8	460	N/A	179	N/A	31	
CF ₃ ^{CF₂} O ^{CF₂} C ^{CF₂} O ^{CF₂} CF ₃ CF ₃ ^{CF₂} C ^{F₂} O ^{CF₂} CF ₃		C ₉ F ₂₀ O ₃	70.9	536	N/A	114	86	23	
$R\left(CF_{2}^{O}CF_{2}^{CF_{3}}CF_{3}\right)_{3}$	$\mathbf{R} = \mathbf{CF}_{3}\mathbf{C} \cdot (\mathbf{35a})$	C ₁₁ F ₂₄ O ₃	71.7	636	N/A	153	71		
	$R=CF_3CF_2C-(35b)$	$C_{12}F_{26}O_3$	72	686	N/A	163	78	23	
35	$R = CF_3CF_2OCF_2C-(35c)$	C ₁₃ F ₂₈ O ₄	70.7	752	N/A	169	99 ^f		
$CF_3 - CF_2$ $O - CF_2 CF_2 - O - CF_2 - O - CF_2 - CF_3$ $CF_3 - CF_2 - O - CF_2 - O - CF_2 - CF_3$ $CF_3 - CF_2 - CF_2 - CF_3 - CF_3 - CF_3 - CF_3$ 36		C ₁₄ F ₃₀ O ₅	69.7	818	N/A	218-220	49	23	
$CF_{3} \xrightarrow{CF_{2}} O \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} O CF$	C ^{CF2} 0 ^{CF2} CF3	C ₂₂ F ₄₆ O ₇	69.9	1250	N/A	256	67	23	
CF_CF2_CF_O	$\mathbf{R} = \mathbf{CH}_3 \left(\mathbf{38a} \right)$	C ₄ H ₃ F ₇ O	66.5	200	N/A	67.9	N/A		
38	$\mathbf{R} = \mathbf{CH}_2\mathbf{CH}_2\mathbf{F} \ (\mathbf{38b})$	C ₄ H ₂ F ₈ O	69.7	218	N/A	43.3	N/A	8,23	
$CF_3 CF_2 CF_2 CF_2 CF_2 CF_3$		C ₆ F ₁₄ O	75.1	354	N/A	56	N/A	23	
CF ₃ ^{CF₂} 0 ^R 0 ^{CF₂} CF ₃ 40	$\mathbf{R} = (\mathbf{CF}_2)_3 \ (\mathbf{40a})$	$C_7F_{16}O_2$	72.4	420	N/A	91	100		
	$\mathbf{R} = \mathbf{CF}_2(\mathbf{CF}_3)_2\mathbf{CF}_2\ (\mathbf{40b})$	$C_9F_{20}O_2$	73.1	520	N/A	108	N/A	23	
	$\mathbf{R} = (\mathbf{CF}_2)_4 (\mathbf{40c})$	$C_8F_{18}O_2$	72.8	470	N/A	96	89		
H-C ^{OC} (CF ₃) ₃	$\mathbf{R} = \mathbf{CH}_3 \left(\mathbf{41a} \right)$	$C_{17}H_9F_{27}O_3$	66.0	774	N/A	Oil, N/A	78		
$(CF_3)_3CO_{CH_2 \downarrow CH_2} CC(CF_3)_3$	R = OH (41b)	C ₁₆ H ₇ F ₂₇ O ₄	66.0	776	N/A	Oil, N/A	99	32	
41	$R = OCH_3 (41c)$	C ₁₇ H ₉ F ₂₇ O ₄	65.0	790	N/A	Liquid, N/A	93		

Compound		Formula	F [w%]	MW [g/mol]	m.p [°C]	b.p [°C]	Yield [%]	Ref
CF_3 $CF_3 > CF_2$ $CF_3 > CF_2$	n = 1 (42a)	$C_{10}H_4F_{18}O_2$	69.0	498	N/A	N/A	53	33
CF_3 42	n = 2 (42b)	$C_{11}H_6F_{18}O_2$	67.0	512	N/A	N/A	43	33
$CF_{3} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{2}} CF_{2} \xrightarrow{CF_{3}} CF_{2} \xrightarrow{CF_{3}} 43$	CF ₂ CF ₃ CF ₃	C ₁₄ HF ₂₉ O ₄	70.3	784	-115	192-195	N/A	23
CF_{3} CF_{2} C	C ₁₅ F ₃₂ O ₂	74.1	820	N/A	N/A	N/A	23	
$\begin{pmatrix} CF_3_{CF_2}, CF_2_{O}, CF_2_{Q} \\ 2 \\ 45 \end{pmatrix} C \overset{C}{\overset{C}} CF_2_{C} CF_2 CF_2_{\mathsf$	C ₁₇ F ₃₆ O ₄	71.8	952	N/A	219	49	23	
CF ₃ ^C F ₂ ^C CF ₂ ^O CF ₂ ^O CF ₂ 46	C ₈ F ₁₈ O	75.3	454	N/A	100.4	N/A	23	
$ \begin{array}{c} CF_3 \\ CF_2 \\ CF_2 \\ CF_2 \\ CF_2 \\ CF_3 \\ 47 \end{array} $		C ₅ F ₁₂ O	75	304	N/A	35.4	N/A	23
CF3 CF2 CF2 CH2 O R	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5 \left(\mathbf{48a} \right)$	C ₈ H ₉ F ₉ O	58.6	292	< -80	56	95	26
48	$\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7 \left(\mathbf{48b} \right)$	$C_9H_{11}F_9O$	55.9	306	< -80	120	84	26
$\begin{array}{c} CF_3 \\ CF_2 \\ CF_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_2 \\ CF_2 \\ CF_3 \\ CF_2 \\$		$C_{11}H_8F_{16}O$	66.1	460	N/A	155	82	25
$CF_{3}, CF_{2}, CF_{2}, CF_{2}, CF_{2}, CH_{2}, CH_{2}, CH_{2}, CH_{2}, CH_{2}, CH_{2}, CH_{2}, CF_{2}, CF_{$		C ₁₇ H ₁₂ F ₂₄ O ₂	64.8	704	-30	135-137	47	26
$CF_{3} CF_{2} CF_{2} CF_{2} CF_{2} CH_{2} $		C ₂₀ H ₁₂ F ₃₀ O ₂	66.7	854	3 - 5	150-157°	72	26
$\frac{CF_3_CF_2^O_CF_2^CF_2_CF_2^CF_2_CF_2^O_CF_2^CF_3}{52}$		$C_9F_{20}O_2$	73.1	520	N/A	85	75	23
CF ₃ ^{CF2} ₂ CF ² ₂ CF ² ₂ 53	CF ₂ ^{CF₂} CF ₂ ^{CF₃}	C ₁₀ F ₂₂ O	75.5	554	N/A	139	N/A	23

^a oil bath temperature, ^bAnion AcO⁻, ^cAnion CO₃²⁻, ^d20mmHg, ^e16mmHg

Commercial Fluorous Solvents

The major types of commercial fluorous solvents are perfluoroalkanes, perfluorodialkyl ethers and polyethers, perfluorotrialkyl amines, and hydrofluoroethers (Table 3).

Perfluorohexane (FC-72),^{34, 35} perfluoromethylcyclohexane (PFMC)³⁵ and perfluoro-decalin³⁵ are frequently used perfluoroalkanes, which are immiscible with most organic solvents at room temperature.

Perfluoro and fluorous ethers and polyethers were introduced to the market for different industrial applications. Perfluoro-2-butyltetrahydrofuran (FC-75) has been available from Sigma-Aldrich.³⁵ The well-known engineering fluids, under the brand name NovecTM (for example Novec 7100: $C_4F_9OCH_3$ and Novec 7200: $C_4F_9OC_2H_5$) were developed by 3M, which have high boiling points, high thermal stability, low toxicity and can be used as a non-flammable solvents.³⁶ Solvay Chemicals has been producing perfluoropolyethers, called GaldenTM, with different boiling points from 55 to 270 °C. These were designed as chemically and thermally stable high

This journal is © The Royal Society of Chemistry 20xx

performance fluorinated heat transfer fluids.³⁷ Fluorinated Krytox[™] oil from DuPont are chemically inert oils, which could provide lubrication in wide range of conditions, resisting to common organic solvents.³⁸

Perfluorotributylamin has been used under different names: FC 43, Flurosol 43, Flurinert FC 43, Mediflor FC 43) and has similar properties to FC-72.³⁵

fluorine, it is a very useful solvent for synthesis as it could dissolve both fluorous and non-fluorous compounds.³⁹ Consequently, it is called a "hybrid" or an "amphiphilic" substance, which is a stable and useful medium for organic reactions, which are beyond the scope of this review.

Although benzotrifluoride (BTF)³⁵ contains only 39 w%

Fable 3. Some commercially available fluorous solvents							
Solvent	Formula	Average M.W	mp [°C]	bp [°C]	Density [g/cm ³]	Refractive index	Ref.
FC-72	$C_{6}F_{14}$	338	-82	58-60	1.670	1.25ª	34, 35
PFMC	$CF_3C_6F_{11}$	350	-37	76	1.787	1.29 ^a	
Perfluorodecalin	$C_{10}F_{18}$	468	-10	142	1.908	1.31 ^b	35
FC-75	$C_8F_{16}O$	420	-88	99-107	1.770	1.77	
Novec TM 7100 ¹²	n-C ₄ F ₉ OCH ₃	250	-135	61	1.520	1.27	
Novec TM 7200 ¹²	n-C ₄ F ₉ OCH ₂ CH ₃	264	-138	76	1.430	1.28	
Novec TM 7500 ¹²	(<i>i</i> -C ₃ F ₇)(<i>n</i> -C ₃ F ₇)CFOC ₂ H ₅	414	N/A	128	1.614	1.29	
Gladen HT-110	$CF_3(OC_2F_4)_m(OCF_2)_nOCF_3$	~580	N/A	110	1.71	1.28	
Gladen HT-135	$CF_3(OC_2F_4)_m(OCF_2)_nOCF_3$	~610	N/A	135	1.72	1.28	
Gladen HT-170	$CF_3(OC_2F_4)_m(OCF_2)_nOCF_3$	~760	N/A	170	1.77	1.28	36
Gladen HT-200	$CF_3(OC_2F_4)_m(OCF_2)_nOCF_3$	~870	N/A	200	1.79	1.28	
Krytox [™] GPL 102	F-(C(CF ₃)-CF ₂ -O) _n -CF ₂ CF ₃ (n=10-60)	N/A	Oil, N/A	-63 to 132	1.91 ^c	N/A	
Krytox [™] GPL 103	F-(C(CF ₃)-CF ₂ -O) _n -CF ₂ CF ₃ (n=10-60)	N/A	Oil, N/A	-60 to 154	1.92 ^c	N/A	
Krytox [™] GPL 104	F-(C(CF ₃)-CF ₂ -O) _n -CF ₂ CF ₃ (n=10-60)	N/A	Oil, N/A	-51 to 179	1.93 ^c	N/A	
Krytox [™] GPL 105	F-(C(CF ₃)-CF ₂ -O) _n -CF ₂ CF ₃ (n=10-60)	N/A	Oil, N/A	-36 to 204	1.94 ^c	N/A	
FC43	$N(C_4F_9)_3$	671	-50	178	1.884	1.29	25
BTF	$C_6H_5CF_3$	146	-29	103	1.181	1.41	35

^aat 20°C ^bat 17°C ^cat 0°C

Examples for the Application of Fluorous Ethers as Solvents

Due to the high solubility of oxygen in perfluorocarbons, perfluoro-2-butyltetrahydrofuran (FC-75) was used as the medium in the epoxidation of 1,2-dihydronaphthalene (Scheme 17).⁴⁰ The reaction was completed in one hour, 3 times faster than in dichloromethane or benzotrifluoride, as expected. The product was easily separated and the fluorous solvent was recycled.

Scheme 17 Mn-catalysed expoxidation of 1,2-dihydronapthalene in FC-75.

The acid-sensitive aerobic epoxidation of isolongifolene was performed in FC-75 to provide a neutral environment and lead to the formation of corresponding epoxide in good yield (Scheme 18).⁴¹

1*H*, 1*H*, 2*H*, 2*H*-perfluorooctyl-1,3-dimethyl-butyl-ether or (F-626) has been a very useful amphiphilic ether, which was introduced as an excellent solvent for fluorous and non-fluorous reactions and several well-known reactions have been tested. 27

The highly flammable diethyl ether was replaced successfully with F-626 in the reduction of benzoic acid ethyl ester with LiAlH_4 (Scheme 19).²⁷

Scheme 19 Reduction of benzoic acid ethyl ester with LiAlH₄ in F-626.

The palladium-catalysed hydrogenation of 1-dodecene resulted in 98% 1-dodecane (Scheme 20).²⁷ It is important to note that reaction conducted in F-626 achieved better yield compared to diethyl ether (95%), and more than 90% of F-626 could be recovered after fluorous/organic work up.

Scheme 20 Palladium-catalysed hydrogenation of 1-dodecene in F-626.

ARTICLE

The Vilsmeier formylation of 1,3-dimethoxy-benzene was performed in F-626 in better yield (83%) then in the toxic odichlorobenzene (60%) and 97% of F-626 was recovered from the reaction mixture by extraction with FC-72 (Scheme 21).²⁷

The reductive radical carbonylation of 1-iodo-adamantane with tris(1*H*, 1*H*, 2*H*, 2*H*-perfluorooctyl) tin hydride proceeded in 85% yield (Scheme 22).²⁷ While the 1-adamantylmethanol was isolated from the organic phase of a triphasic solvent extraction system ($H_2O/CH_2Cl_2/FC-72$), the fluorous tin-catalyst was recovered in the F-626 reach phase. The product yield of 80% was achieved conveniently in the second run.

The Mizoroi-Heck arylation of acrylic acid was performed in F-626 in high yield (Scheme 23)⁴². After a fluorous/organic workup, the recovery of F-626 was higher than 94%. The product yields obtained from the second or further runs of reactions in recovered F-626 were similar.

Соон + соон <u>Pd(OAc)₂/PPh₃</u> <u>F-626</u> , 120°С, 2h							
	Run	Yield (%)	Recovery of F-626 (%)				
	1	88	96				
	2	85	94				
	3	86	97				
	4	85	95				
Scheme 23 Mizoroi-Heck arylation of iodobenzene in F-626.							

NovecTM7500 [(CF₃CF₂CF₂)₂CF–O–CH₂CH₃] was successfully used as the primary reaction solvent in the Corey-Bakshi-Shibata reduction of ketones with light fluorous chiral proliniol precatalyst, which can be readily recycled.⁴³

Addition of the high boiling solvent F-626 was shown to work well in a high temperature reaction such as the Wolff-Kishner reduction (Scheme 24).²⁷ Compared to diethylene glycol as the common solvent in such reaction, good yield was

obtained in F-626, followed by fluorous/organic biphasic workup, the separation and solvent recovery were performed in ease.

Novec[™]-7100 has been reported as effective co-solvent for the electrophilic fluorination of aryl Grinard reagents with Nfluoro-2,4,6-trimethylpyridinium tetrafluoroborate (Scheme 25).⁴⁴ The reaction worked well in both heptane and Novec[™]-7100 and have shown even better yields than in diethyl ether, dioxane, and benzofluoride.

Scheme 25 Fluorination of 4-bromoanisole in hydrofluorocarbon ether Novec[™]-7100.

Similar uses with Novec^m-7200 were also reported for peptides and oligosaccharides synthesis.⁴⁵

NovecTM-7100 has played an important role as a medium of the triphasic system with bulky fluorous membrane transport host. The triphasic transport experiment was demonstrated with TMA[Cl] in NaOH as source phase and HCl as the receiving phase (Scheme 26).⁴⁶

Scheme 26 Example of Novec™-7100 as medium of bulky fluorous membrane transport host.

10 | J. Name., 2012, 00, 1-3

Novec[™]-7100 was useful for fluorous solid-phase extraction and chromatography for fluorous cabodiimide coupling reaction, due to slightly higher polarity than perfluorocarbon and improved immiscibility with ethyl acetate to provide more suitable solvent system.⁴⁷ Moreover, its application was extended to enzymatic studies, the horse liver alcohol dehydrogenase (HLADH) in catalyzing oxidation/reduction reactions using fluorous coenzyme nicatinamide adenine dinucleotide (NAD) in Novec[™]-7100 gives better extraction and immisibility.⁴⁸

Conclusion

The basic properties and the typical synthesis of around fifty fluorous ethers with one or more perfluoroalkyl substituents $[F(C_xF_{2x})-; (x = 1-10)]$ were reviewed. The selected applications of fluorous ethers with shorter perfluoroalkyl substituent(s) $[F(C_xF_{2x})-; (x = 1 - 5)]$ were demonstrated. The advantages of the fluorous ethers containing more than one shorter fluorous ponytails include good to excellent recyclability, good thermal stability, lower persistency and ozone depletion potential. In addition, their oxidative and/or hydrolytic fragmentation in the environment would lead to the formation of shorter perfluoroalkyl caboxylates, which have lower bioaccumulation and toxicity with respect to the higher homologues. Fluorous ethers containing more than one shorter fluorous ponytails therefore could be attractive solvents for synthesis and other applications.

Acknowledgements

This work was funded by the City University of Hong Kong, project numbers 7002604 (2010) and 9667113 (2015).

Notes and references

- 1 C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH, Weinheim, Germany, 1990
- 2 J. Emsley, New Scientist, 1986, 33-37.
- 3 A. Wypych and G. Wypych, *Databook of Solvents*, Elsevier, Amsterdam, 2014.
- 4 P. T. Anastas, J. C. Warner, *Green Chemistry: Theory and Practice*, Oxford University Press, New York, 1998.
- 5 W. Leitner, P. G. Jessop, C.-J. Li, P. Wasserscheid and A. Stark, ed. P. T. Anastas, *Green Solvents in Handbook of Green Chemistry*, Wiley-VCH, Weinheim, 2010, vol. 4.
- 6 T. Midgley Jr and A. L. Henne, Ind. Eng. Chem., 1930, **22**, 542-545
- 7 (a) Molina, M. J. and Rowland, F. S. Nature, 1974, 249, 810-812. (b) Assessment for Decision-Makers: Scientific Assessment of Ozone Depletion: 2014, World Meteorological Organisation, Global Ozone Research and Monitoring Project Report No. 56, Geneva, Switzerland, 2014.
- 8 A. Sekiya and S. Misaki, J. Fluroine Chem. 2000, 101, 215-221.
- 9 S. Urata, A. Takada, T. Uchimaru and A. K. Chandra, *Chem. Phys. Lett.*, 2003, **368**, 215-223
- 10 W.-T. Tsai, J. Hazard. Mater., 2005, A119, 69-78.

- 11 R. D. Rogers and K. R. Sheddon, *Ionic Liquids as Green Solvents: Progress and Prospects*, ACS Symposium Series, 2003, 856, 1391-1398.
- 12 E. J. Beckman, J. of Supercrit. Fluids, 2004, 28, 121-191; (b) T. Wu and B. Han, Innocations in Green Chemistry and Green Engineering, eds. P.T Anastas and J. B. Zimmerman, Spinger, New York, 2012, 297-326.
- 13 J. Hildebrand and R. L. Scott, *Regular Solutions*, Prentice-Hall Inc., Englewood Cliffs, NJ, 1962.
- 14 I. T. Horváth and J. Rábai, *Science*, 1994, **266**, 72-75.
- (a) J. A. Gladysz, D. P. Curran, I. T. Horváth, eds, Handbook of Fluorous Chemistry, Wiley- VCH, Weinheim, 2004; (b) Fluorous Chemistry in Topics in Current Chemistry, ed. I. T. Horváth, Springer, Heidelberg, 2012.
- 16 (a) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing, Oxford, 2006. (b) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, Wiley-VCH, Weinheim, 2013.
- 17 V. Herrera, P. J. F. de Rege, I. T. Horváth, T. L. Husebo and R. P. Hughes, *Inorg. Chem. Commun.*, 1998, **1**, 197-199.
- 18 L. E. Kiss, I. Kovesdi and J. Rábai, J. Fluorine Chem., 2001, 108, 95-110
- 19 US EPA Perfluorooctanoic Acid (PFOA) and Fluorinated Telomers: <u>www.epa.gov/oppt/pfoa/index.html</u>
- 20 (a)N. Kudo, N. Bandi, E. Suzuki,M. Katakura and Y. Kawashima, *Chem.-Biol. Interact.*, 2000, **124**, 119-132; (b) K. P. Das, B. E. Grey, R. D. Zehr, C. R. Wood, J. L. Butenhoff, S.-C. Chang, D. J. Ehresman, Y.-M. Tan and C. Lau, *Toxicol. Sci.*, 2008, **105**, 173-181.
- 21 US EPA Long-Chain Perfluorinated Chemicals (PFCs) Action Plan (2009):
- www.epa.gov/oppt/existingchemicals/pubs/actionplans/pfcs .html
- 22 I. T. Horváth, 1st International Symposium on Fluorous Technologies, Bordeaux-Talence, 2005.
- (a)H-N. Huang, D. F. Persico and Richard J. Lagow, J. Org. Chem., 1988, 53, 78-85. (b)A. C. Sievert, W. R. Tong and M. J. Nappa, J. Fluorine Chem., 1991, 53, 397-417; (c)R. D. Chambers, A. J. Joel and A. J. Rees, J. Fluorine Chem., 2000, 101, 97-105. (d)M. Brandwood, P. L. Coe, C. S. Ely and J. C. Tatlow, J. Fluorine Chem., 1975, 5, 521-535. (e)G. Marchionni, G. Ajroldi, M. C. Righetti and G. Pezzin, Macromolecules, 1993, 26, 1751-1757. (f)D. D. Moldavsky, and G. G. Furin, J. Fluorine Chem., 1998, 87, 111-121.
- 24 A. Zaggia, L. Conte, G. Padoan and F. Ceretta, J. Fluorine Chem., 2010, **131**, 844-851.
- 25 D. Lazzari, M. C. Cassani, G. Solinas and M. Pretto, J. Fluorine Chem., 2013,156, 34-37.
- 26 D. Szabó, A.-M. Bonto, I. Kövesdi, Á. Gömöry and J. Rábai, J. Fluorine Chem., 2005, **126**, 641-652.
- 27 H. Matsubara, S. Yasuda, H. Sugiyama, I. Ryu, Y. Fujiib and K. Kita, *Tetrahedron*, 2002, **58**, 4071-4076.
- 28 W. Huang, C. Jin, D. K. Derzon, T. A. Huber, J. A. Last, P. P. Provencio, A. S. Gopalan, M. Dugger and D. Y. Sasaki, J. Coll. Interface Sci., 2004, 272, 457-464.
- 29 D. Szabó, J. Mohl, A-M Bálint, A. Bodor and J. Rábai, *J. Fluorine Chem.*, 2006, **127**, 1496-1504.
- 30 J. H. Kim, S. Kwak, J. S. Lee, H. T. Vo, C. S. Kim, H-J Kang, H. S. Kim and H. Lee, *Appl. Cat. B: Environmental*, 2009, **89**, 137-141.
- 31 (a)G. Marchionni, R. Silvani, G. Fontana, G. Malinverno and M. Visca, J. Fluorine Chem., 1999, 95, 41-50; (b)G. Marchionni, M. Bassi, G. Fontana, P. Maccone and G. Ajroldi, J. Fluorine Chem., 1999, 98, 41-54; (c)G. Marchionni, M. Avataneo, U. De Patto, P. Maccone and G. Pezzin, J. Fluorine Chem., 2005, 126, 465-473. (d) C. Tonelli, A. D. Meo, R. Picozzi and M. Bassi, J. Fluorine Chem., 2011, 132, 356-362

ARTICLE

(e)M. Wu, W. Navarrini, G. Spataro, F. Venturini and M. Sansotera, *Appl. Sci.*, 2012, **2**, 351-367.

- 32 Z-X Jiang and Y. B. Yu, *Tetrahedron*, 2007, **63**, 3982-3988.
- 33 S. W. Lo, E. Law, M. Y. Lui, X-G. Wei, K. C Lau, C. Y. Ma, M. B. Murphy and I. T. Horváth, Org. Chem. Front., 2014, 1, 1180-1187.
- 34 D. W. Zhu, Synth., 1993, 10, 953-954.
- 35 <u>https://www.sigmaaldrich.com/</u> (accessed on June 14, 2015).
- 36 Novec™ from 3M Ltd, see: <u>http://solutions.3m.com/wps/portal/3M/en_US/3MNovec</u> <u>/Home/</u> (accessed on June 14, 2015).
- 37 Galden by Solvay Plastics: <u>www.solvayplastics.com</u> (accessed on June 14, 2015).
- 38 Krytox[™] GPL oil by DuPont Chemicals: <u>www.dupont.com/Lubricants/en_US/products</u> (accessed on June 14, 2015).
- 39 A. Ogawa and D. P. Curran, J. Org. Chem., 1997, 62, 450-451.
- 40 K.S. Ravikumar, F. Barbier, J-P. Bégué and D. Bonnet-Delpon, *Tetrahedron*, 1998, **54**, 7457-7464.
- 41 K. S. Ravikumar, J.-P. Bégué, D. Bonnet-Delpon and M. Ourevitch, *J. Fluorine Chem.*, 2000, **102**, 51-53.
- 42 T. Fukuyama, M. Arai, H. Matsubara and I. Ryu, *J. Org. Chem.*, 2004, **69**, 8105-8107.
- 43 Q. Chu, M. S. Yu and D. P. Curran, Org. Lett., 2008, 10, 749-752.
- 44 P. Anbarasan, H. Neumann and M. Beller, *Angew. Chem. Int. Ed.*, 2010, **49**, 2219-2222.
- 45 (a)K. Goto, T. Miura and M. Mizuno, *Tetrahedron Lett.*, 2005,
 46, 8293–8297. (b)T. Miura, S. Tsujino, A. Satoh, K. Goto, M. Mizuno, M. Noguchi, T. Kajimoto, M. Node, Y. Murakami, N. Imai and T. Inazu, *Tetrahedron*, 2005, 61, 6518-6526. (c)K.Tanaka, Y.Fujii, H. Tokimoto, Y. Mori, S.Tanaka, G. Bao, E. R. O. Siwu, A. Nakayabu, and K. Fukase, *Chem. Asian J.*, 2009, 4, 574-580.
- 46 Q. Chu, K. O'Neal, M. Osipov, J. N. Ngwendson, S. J. Geib, S. G. Weber and D. P. Curran, *New J. Chem.*, 2010, **34**, 2732-2734.
- 47 C. del Pozo, A. I. Keller, T. Nagashima and D. P. Curran, Org. Lett., 2007, 9, 4167-4170.
- 48 (a)J. L. Panza, A. J. Russell and E. J. Beckman, *Tetrahedron*, 2002, **58**, 4091-4104 (b)J. L. Panza, A. J. Russell and E. J. Beckman, *Chem Commun.*, 2002, 928-929.