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ssment of models for predicting
biocrude yields from hydrothermal liquefaction of
biomass†

Peter M. Guirguis, Mahadevan Subramanya Seshasayee, Bita Motavaf
and Phillip E. Savage *

Hydrothermal liquefaction (HTL) is a thermochemical process that converts biomass into a renewable,

heavy oil that can be upgraded and refined to make liquid fuels. Quantitative models for correlating and

then predicting yields of crude bio-oil from HTL of biomass date back to 2011. The literature provides 18

variations of component additivity models and another 24 different lumped kinetic models. Herein, we

review the progress, development, and implementation of both types of models and assess their abilities

to predict the biocrude yields from an extensive set of experimental data published for HTL of a range of

different biomass feedstocks. We identify two component additivity models that provided the lowest

mean absolute residuals and the kinetics model that best predicted the published biocrude yields. There

is no single model that predicts well the biocrude yields for HTL of all the different types of biomass

feedstocks. We offer guidance regarding which model to choose for any specific feedstock. This review

and assessment also identifies opportunities for improving the quantitative modeling of HTL outcomes.
Sustainability spotlight

This article focuses on hydrothermal liquefaction, a proven method for converting biomass to biocrude oil. This comprehensive review and assessment of
models for biocrude production critically examines the pathways and ability to predict biocrude yields. By spotlighting the strengths and limitations of existing
models, this review paves the way for development of even better models for describing this promising technology for producing renewable liquid fuels. This
research aligns with the ethos of RSC Sustainability, providing a roadmap for assessing and optimizing biomass-to-biocrude models.
1 Introduction

Hydrothermal liquefaction (HTL) uses hot, compressed water
(z250–450 °C) in the liquid or supercritical state to convert
biomass into a crude bio-oil. The many prior reviews1–15 of HTL
and hydrothermal chemistry show that water provides a favor-
able environment11 (low dielectric constant, high ion product)
for organic chemical reactions12 that concentrate the chemical
energy resident in the original biomass into the molecules in
the oil phase. However, as is typical of complex chemical reac-
tion networks, competing reactions also producemolecules that
appear in gas, solid, and aqueous phases aer reaction. Gasi-
cation and cracking reactions lead to gas formation. Hydration
and amination reactions increase the polarity of molecules,
which along with the initial depolymerization of heteroatom-
rich biopolymers, leads to formation of aqueous-phase
ylvania State University, 121D CBEB

-mail: psavage@psu.edu

(ESI) available: Document including
res and Excel sheet including all the
OI: https://doi.org/10.1039/d3su00458a

6–756
products.1,7 Addition reactions among the organic molecules
form heavier molecules in the oil fraction and eventually solid
char.2

Kinetic models based on a set of governing reaction path-
ways facilitate investigation of the rates of competing pathways
in HTL and identication of optimal feedstock characteristics16

and reaction conditions17 for specic desired outcomes. Kinetic
models have been developed for HTL and used to rst correlate
and then predict yields of different product fractions for
different feedstocks at different conditions. Simpler algebraic
models have also been developed to correlate and predict HTL
outcomes. These typically calculate yields of biocrude from HTL
at a single specic set of reaction conditions for feedstocks with
different biochemical compositions (e.g., different relative
amounts of lipids, protein, polysaccharide). Such models have
been termed component additivity models as they sum together
expected contributions from HTL of each of the different
biochemical components individually to estimate oil produc-
tion from HTL of a more complex biomass feedstock.

This review and assessment highlights the state of the art in
HTL modeling and chronicles the progress made to this end.
We assess the abilities of both component additivity models
© 2024 The Author(s). Published by the Royal Society of Chemistry
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and kinetic models to predict experimental biocrude yields
compiled from literature for HTL of biomass such as micro-
algae, food waste, sewage sludge, and lignocellulosic materials.
We note that machine learning models have recently emerged
for HTL,18–22 but these are far fewer and less developed than the
kinetics and component additivity modes, so we do not include
them in the present review and assessment. Additionally, we
conne the review to the very large number of HTL experiments
that used dichloromethane to recover the crude bio-oil. A few
experimental studies used other solvents, and these are omitted
unless noteworthy in some way (e.g., historical context).

Though there have been many previous reviews1–15 on HTL of
biomass, none focus on the mathematical models that predict
product yields from HTL. Only Yang et al.8 and Kumar9 include
these topics in their reviews and they offer just brief discussions
of the various models. They provide no comparisons or
assessments of the different models. There are also no pub-
lished comparisons of the effectiveness of component additivity
models vs. reaction engineering models for predicting HTL
outcomes. This article, which includes an assessment of how
well different component additivity models and different
kinetics models predict the published data, lls these gaps.
Additionally, we identify research topics that would provide
opportunities for advancing the eld by developing improved
models.

2 Assessment methods

We used published models with the parameters as provided to
predict published experimental biocrude yields from HTL of
different biomass feedstocks at the reaction conditions and
with the feedstock composition used in each study. A spread-
sheet with these experimental data is available online in the
ESI.† These model predictions and comparisons with literature
data were automated using python code. The ESI† provides
more details.

We calculate several measures of how well a given model
predicts the data set based on the set of individual residuals
(difference between model prediction and experimental result).
The ESI elaborates on these metrics in eqn (S1)–(S4),† and they
include the median residual (error), Med[3], the mean absolute
residual, j3j, the median absolute error, Med[j3j], and the mean
absolute percent error, MAPE. We also report the fraction of the
experimental biocrude yields that each model predicts to within
5 wt% and 10 wt% of the published yields. Finally, we report the
percentage of predictions with greater than 100% relative error.

3 Component additivity models

We dene a component additivity model as an algebraic equa-
tion that provides an outcome for HTL of some feedstock based
on the relative amounts of the different components (e.g.,
cellulose, protein) in the feedstock. The outcome of interest in
this review is the yield of biocrude. Some component additivity
models include process variables (time, temperature) along
with the component mass fractions. An algebraic equation that
incorporates process variables but has no dependence on
© 2024 The Author(s). Published by the Royal Society of Chemistry
feedstock composition would not qualify as a component
additivity model. Such equations are excluded from this review.
In Section 3.1, we provide an overview of all the component
additivity models including chosen parameters and conditions
used to collect the data for parameter estimation. In Section 3.2,
we assess predictions from themodels for biocrude yields in the
literature.

3.1 Review of component additivity models for HTL of
biomass

Component additivity models typically provide the yield of
biocrude expected from HTL of a biomass feedstock with
a known biochemical composition (e.g., lipid, protein, poly-
saccharide, lignin content) at a specic set of HTL conditions
(time, temperature). The model is oen a simple linear equa-
tion that estimates the biocrude yield expected from HTL of
whole biomass or a mixture of components based on the yields
associated with HTL of each biochemical component alone at
the specied conditions. Component additivity models can also
include second-order terms that account for synergistic or
antagonistic interactions between two different biochemical
components, as well as more complicated expressions. Table
S1† shows the published component additivity models for
calculating biocrude yield from HTL of biomass.

3.1.1 Models with no interactions between components.
Biller and Ross23 published the rst component additivity
model. They used carbohydrates, protein, and lipids, the main
biochemical components in microalgae, to represent whole
algal biomass. The model has the form in eqn (1) where Xi is the
mass fraction of biochemical component i in the biomass
feedstock and the ai are coefficients.

Biocrude yield (wt%) = a1Xcarb + a2Xprot + a3Xlip (1)

The oil yields from HTL experiments with model biochem-
ical components were used to determine the ai coefficients. The
model was then used to predict the experimental oil yields re-
ported in the same publication from HTL of microalgae. The
model predicts well the oil yields from HTL (350 °C and 60 min)
of microalgae that had low (<10 wt%) carbohydrate content, but
more poorly for microalgae with high (>20 wt%) carbohydrate
content. Since this model did not account for any potential
interactions between biochemical components, it missed the
effect of Maillard reactions between proteins and carbohydrates
that can increase bio-oil yields by providing a new pathway to
oil-phase molecules.24 Omitting this feature likely contributed
to the inaccuracies in predicting biocrude yields from HTL of
protein-containing algae with high carbohydrate content.

Leow et al.25 and Shakya et al.16 adopted the approach of
Biller and Ross23 Leow et al.25 obtained the model parameters by
using biocrude yields from HTL (300 °C, 30 min) of different
batches of the same strain of microalgae with known
biochemical content (rather than model compounds). A single
microalga, Nannochloropsis, was cultivated under different
conditions to obtain biomass feedstocks with protein, carbo-
hydrate, and lipid contents that varied from 17–58 wt%, 11–
22 wt%, and 23–59 wt% respectively. Leow et al.25 used nine
RSC Sustainability, 2024, 2, 736–756 | 737

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3su00458a


RSC Sustainability Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

7.
10

.2
02

4 
07

:4
1:

40
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
different algae strains with a wider range of protein (7–62 wt%),
carbohydrate (8–54 wt%), and lipid (13–55 wt%) and conducted
HTL at 280 °C and 320 °C for 30 min.

Wagner et al.26 used the component additivity model in eqn
(1) with data from HTL or model compounds (oil, soy protein,
and corn our) to correlate biocrude yields from HTL at 300,
320, 340 and 360 °C. The model coefficients are closer to those
determined by Biller and Ross,23 who also used individual
model biochemical components, than those of Leow et al.,25

who used whole microalgal biomass exclusively to determine
model parameters.

Li et al.27 advanced the eld by expanding the number and
types of HTL outcomes that could be correlated and then pre-
dicted using a linear component additivity model. They devel-
oped correlations for solid, aqueous, and gas phase yields,
biocrude higher heating value (HHV), elemental composition,
energy recovery, and aqueous phase total organic carbon and
total nitrogen. The authors used data from HTL of 24 batches of
microalgae with varied biochemical compositions to regress the
parameters in the component additivity models. Their model
indicates that HTL of lipids at 300 °C for 30 min would produce
biocrude alone, HTL of proteins alone would produce no solids,
and HTL of carbohydrates alone would produce no aqueous-
phase products. These model outcomes are not consistent
with literature reports of signicant aqueous-phase yields from
HTL of carbohydrates such as starch and cellulose,28 of HTL of
lipids contributing to gas and aqueous-phase products29 and of
HTL of protein contributing to biochar.30

3.1.2 Models with interactions between components. All
the models in the section above neglect potential interactions
between the different biochemical components that could
inuence HTL outcomes. Teri et al.31 were the rst to include
terms in a component additivity model to account for interac-
tions between components, as shown in eqn (2).

Biocrude yieldðwt%Þ ¼
X
i

aiXi þ
X
i

X
j

aijXiXj (2)

Teri et al.31 developed two sets of ai and aij coefficients by using
two different sets of model feedstocks. One model is parame-
terized using data from HTL of soy protein, cornstarch, and
castor oil, and the second is from HTL of albumin, cellulose,
and sunower oil. Both the individual feedstocks and mixtures
underwent HTL at 300 °C for 20 min and 350 °C at 60 min.
Throughout this review and assessment, the models are labeled
as “1”, “1-int”, “2”, and “2-int”. The “1” and “2” represent the set
of model compounds used to determine their parameters (1 =

soy protein, cornstarch, and castor oil; 2 = albumin, cellulose,
and sunower oil). The “int” designates the version of the
model included interactions. The authors found protein–lipid
interactions to be synergistic (increased bio-oil yields) at 300 °C
and antagonistic (reduced bio-oil yields) at 350 °C for both sets
of model compounds. Carbohydrate-protein interactions were
antagonistic at 300 °C and synergistic at 350 °C for set #1 while
synergistic under both conditions for set #2. Interestingly,
predictions of biocrude yields for HTL of mixtures of the three
components together were poorer when interactions were
included.
738 | RSC Sustainability, 2024, 2, 736–756
Hietala et al.,32Yang et al.,33 Lu et al.,30 and Déniel et al.29

subsequently published models with second-order interactions.
Hietala et al.32 developed a model using data from HTL of 1-, 2-,
4-, and 6-species cultures of different microalgae, which
provided an expanded range of carbohydrate, lipid, and protein
contents. The authors also divided the lipid fraction into satu-
rated, monounsaturated, and polyunsaturated fatty acids in the
model. Interactions among the types of fatty acids had an
inuence on the oil yield. A 5 wt% increase in monounsaturated
fatty acids with a corresponding decrease in polyunsaturated
fatty acids decreases the oil yield by 8 wt%. Models were also
parameterized to predict the H/C ratio, N content, O content,
and heating value of the bio-oil. Déniel et al.29 were the rst to
include lignin in a component additivity model, and they also
included interactions of lignin with other biochemical
components.

Lu et al.30 and Yang et al.33 were the rst to include hemi-
cellulose in a component additivity model, which broadened
the applicability of such models to a wider range of feedstocks.
Lu et al.30 were the rst to report the synergistic interactions
(i.e., increased oil yield) between lignin and cellulose or hemi-
cellulose and antagonistic interactions (i.e., decreased oil yield)
between lignin and lipids for HTL at 350 °C. Yang et al.33 re-
ported that celluloses and hemicelluloses (xylose) have syner-
gistic interactions with lipids during HTL at 300 °C.

Table 1 summarizes the interactions reported in component
additivity models for HTL of different pairs of biochemical
components of biomass. When there are measurable interac-
tions, they are synergistic for carbohydrate with protein and,
except for Teri et al.,31 for carbohydrate with lipid. Protein–lipid
interactions, when present, are synergistic for HTL at 300 °C
and antagonistic at 350 °C. Gasication of long-chain fatty
amides (products from interactions between lipid-derived and
protein-derived molecules) at high temperatures would cause
this shi from synergy at milder temperatures to antagonism at
higher temperatures. When present, interactions between
carbohydrates and proteins with lignin are synergistic at both
temperatures. Lipids typically show antagonistic interactions
with lignin except for themodel of Mahadevan Subramanya and
Savage34 at 300 °C.

Sheng et al.35 modied the way binary interactions had been
modeled by dividing the second-order term (aijXiXj) by the
absolute difference in mass fraction for the two components as
shown in eqn (3). They argued that the denominator term arose
naturally from the governing reaction engineering equations,
but their derivation was incorrect. The ESI† provides more
details. This modied form for the interaction terms does not
have any physical meaning.

aijXiXj becomes
aijXiXj��Xi � Xj

�� where isj and XisXj (3)

Yang et al.36 were the rst to include temperature, time, and
biomass loading as variables in a component additivity model.
Three different temperatures, time, and biomass loading
combinations were used in the experiments. An ANOVA model
was then used to determine the algebraic equation that best
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of types of binary interactions reported in component additivity modelsa

a Green shading with “+” denotes synergy (positive aij in eqn (2)). Red shading with “−” denotes antagonism (negative aij in eqn (2)). Yellow shading
with “X” denotes no statistically signicant effect (aij = 0 in eqn (2)). Gray shading with “N/A” denotes an interaction not examined in the model.
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described the data. This approach proved successful in pre-
dicting biocrude yields to within 10 wt%, but one can ask
whether it is meaningful to include temperature, time, or
biomass loading as terms in a component additivity model.
Doing so destroys the physical underpinnings of such a model
and leads to an expression that is not connected to any funda-
mental chemical principles. An alternate approach would be to
make the ai and aij parameters in a component additivity model
functions of temperature, time, or biomass loading. These
variables are known to inuence biocrude yields from HTL of
individual biochemical components, so allowing them to
inuence the values of the ai and aij parameters would be
a natural way of incorporating that inuence.

In 2021, Mahadevan Subramanya and Savage34 published
experimental results from HTL of multiple model poly-
saccharides, which allowed inclusion of separate terms for
distinct polysaccharides (e.g., starch and cellulose) in a compo-
nent additivity model. The experiments showed that HTL of
cellulose produces less bio-oil than starch under all tempera-
tures examined. This study was the rst to extend component
additivity models for biomass to supercritical temperatures (up
to 425 °C). A nal novel feature from this study was nding the
second-order interaction coefficient (aij in eqn (2)) for cellulose
and proteins for HTL at 300 °C and 30 min was a function of
feedstock composition. The authors introduced the expression
for acell,P shown in eqn (4) to account for this composition
dependence.

acell;P ¼ a
0
cell;PXPXcell

ðXP þ XcellÞ2
(4)

Yan et al.,37 in pioneering work, used ReaxFF molecular
dynamics (MD) to simulate HTL of biopolymers and advance
molecular-level understanding of the same. The researchers
examined “cellulose” (modeled as a long unbranched chain of
© 2024 The Author(s). Published by the Royal Society of Chemistry
glucose), “hemicellulose” (modeled as long branched chain of
glucose (even though hemicellulose contains C5 sugars)), lipids
(triglycerides and fatty acids), and “lignin” (structure specied
from Adler38) and did work at different HTL temperatures. The
model is limited to lignocellulosic biomass by its exclusion of
protein. Following earlier work,39 they correlated the very high
simulation temperatures to more physically reasonable
temperatures that would be used for HTL in practice. The
simulations included binary, ternary, and quaternary combi-
nations of the biopolymers. They identied bonds most likely to
break in the biomolecules, interactions that can occur, and
products from HTL. C4 molecules with oxygen and C5–C31
molecules with fewer than three oxygen atoms were taken to be
biocrude. The authors used the simulation results to posit
a component additivity model that included component inter-
actions and temperature.
3.2 Assessment of component additivity models for HTL of
biomass

In this section, we assess the model predictions for biocrude
yields from HTL of two different classes of biomass feedstocks
at different temperatures and times. To avoid over-extrapolating
any of themodels, we tested their predictive ability only near the
temperatures and times used in the HTL experiments that led to
the model parameters. For example, Biller and Ross23 did
experiments at 350 °C for 60 min to get their model parameters.
We would then test this model over a range of times around
60 min and temperatures around 350 °C. Teri et al.31 and
Mahadevan Subramanya and Savage34 show there is a region of
HTL reaction severity surrounding a specic time and temper-
ature wherein the component additivity models are able to give
reliable predictions. We limit the assessment to HTL experi-
mental data taken with this region. Details are provided in the
ESI.†
RSC Sustainability, 2024, 2, 736–756 | 739
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We begin assessing the component additivity models in
Section 3.2.1 by rst using them to predict published biocrude
yields from HTL of biomass feedstocks that contained all the
same biochemical components used to parameterize the model.
For example, the model from Biller and Ross23 applies to
biomass with carbohydrates, protein, and lipids. When assess-
ing that model, we use biocrude yields solely from HTL studies
of biomass that contained carbohydrates, protein, and lipids
(all three components), and no other biochemical components.

In Section 3.2.2, we test the ability of the component addi-
tivity models to predict biocrude yields from HTL of biomass
feedstocks that contain any of the components used to develop
the model. We relax the requirement above that all components
must be in the biomass feedstock. One can reasonably expect
the predictive abilities of the models to be poorer in this
assessment than in the previous section, as that assessment
used biomass that was used to develop the models. Even so, the
present assessment is instructive as it provides information
about the robustness and generalizability of each of the
component additivity models. For example, in the prior
assessment, if a model was developed using biomass that con-
tained protein, lipids, and polysaccharides, it was tested only on
literature data from HTL of biomass that contained all three
components. In the present assessment, we also include liter-
ature data from HTL of biomass that contain a subset of the
components (e.g., HTL of a model polysaccharide alone).

Some of the component additivity models separated the
contributions to biocrude yield from hemicellulose, cellulose,
and/or starch. However, in many cases the experimental data
used in this assessment are from HTL of biomass with only the
total polysaccharide content given. No breakdown between
cellulose, hemicellulose, and/or starch is available. Since we do
not know the relative amounts of the different polysaccharides
for these feedstocks, we assign the total polysaccharide content,
which is known, to one of the polysaccharide components in the
model, with the other polysaccharide component(s) being zero.
We then repeat this assessment with another polysaccharide
component(s) being assigned the total polysaccharide content
in the biomass. The results from these assessments then
provide boundaries for the predicted biocrude yields. Results
from models with multiple polysaccharides are shown herein
for the case wherein all polysaccharides are treated as hemi-
cellulose, or as starch, if hemicellulose is not part of the model.
The ESI† provides a summary of statistics for other cases.

Another detail related to this section of the assessment is
that the model of Hietala et al.32 distinguishes between satu-
rated, monounsaturated, and polyunsaturated fatty acids
(PUFA). The ratio of the three classes of fatty acids inuences
model predictions. When assessing this model with literature
data for HTL of biomass that did not provide this fatty acid
breakdown, we assumed a split of 39.4%, 15.8%, and 44.8% for
SAFA, MUFA, and PUFA, respectively, based on the averages
from Hietala et al.32

3.2.1 Assessment with intended biomass feedstock and
HTL conditions. Fig. 1 is a “violin plot”, where the width of the
shape along the x-axis for a givenmodel at a given residual value
corresponds to the number of biocrude yield predictions that
740 | RSC Sustainability, 2024, 2, 736–756
shared that residual. In Fig. 1, the median value is the solid
horizontal bar and the quartiles are the dashed line within the
enclosed region. A median residual of zero would indicate
a model that overpredicted the biocrude yields as frequently as
it underpredicted. A non-zero median indicates the model
predictions were biased toward one side or the other. One
model provided some residuals exceeding 100 wt%, but we
terminated the y-axis at that point tomaintain readability. Table
S2† summarizes the various statistics used to judge the
predictive ability of each model.

The rst set of models farthest to the le in Fig. 1 is the set
entitled, “Carbs, Proteins, and Lipids”. These models have in
view HTL of biomass such as microalgae or food waste, which
have only polysaccharides, proteins, and lipids, and they use
a simple linear combination of rst-order effects (eqn (1)).
These models tend to be biased as the median values (−14.1,
−2.4,−3.4, 4.7,−6.4, 5.1, and 8.8 wt%, in the order presented in
the graph) are not zero. The mean and median of the absolute
values of the residuals, ðj3jÞ and Med[j3j], range from 11.4–
14.1 wt% and 10.0–14.3 wt%, respectively (Table S2†). The
model by Li et al.27 appears to give the best predictions based on
lowest Med[j3j] and highest percent of predictions within 5 wt%
and 10 wt% for this class of models and these types of
feedstocks.

The next set of models in Fig. 1 form a group entitled, “carbs,
proteins, lipids, and/or lignin, with second-order interactions”.
These models allow for second-order interactions between
different components (i.e.,

P
i

P
j
aijXiXj in eqn (2)). This group

includes the least biased models, as the median residuals were
0.2, −0.9, −3.3, 2.3, 7.1, −0.5, and −6.9 wt%, in the order pre-
sented in Fig. 1. This group also has lower mean absolute
residuals and median absolute residuals than did the previous
group.

The nal and right-most set of models in Fig. 1 is entitled
“higher order interactions”, which can include self-interactions
(terms with X2). Predictions of biocrude yields from these
models are worse than those from the previous set of models
that had second-order interactions. The mean absolute resid-
uals ranged from 6.9 to 17.9 wt%. The median absolute resid-
uals ranged from 8.4 to 16.3 wt%. The residuals from the model
of Aierzhati et al.40 exceeded 100 wt% at times. This outcome is
physically impossible, but it arises because the model terms
including time and temperature allow prediction of biocrude
yields exceeding 100 wt%. This mathematical feature of the
model likely limits its utility to conditions near those where the
parameters were determined.

The lowest mean absolute residuals from the models in
Fig. 1 are 5.7 wt% from Yang et al.33 followed by 6.9 wt% from
both Lu et al.30 and Yan et al.37 However, the assessment of all
three models was limited to only a small dataset (12 published
biocrude yields for Yang et al.33 and Lu et al.30 and 3 published
biocrude yields for Yan et al.37). For Yang et al.,33 the low HTL
temperature (290 °C) and short time (10 min) employed limited
the model assessment to fewer published biocrude yields. For
Lu et al.,30 the small number of published HTL studies that
including all the components, polysaccharides, lipids, proteins,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Distribution of residuals with median (solid line) and quartiles (dashed line) for biocrude yields predicted by component additivity models
for HTL of the intended biomass feedstock near the intended HTL conditions. *Residuals from Aierzhati et al.40 reached −274 wt%.
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and lignin, is limiting. The model from Yan et al.37 can be used
to predict only three published biocrude yields in the present
assessment, as it can handle biomass that contained carbohy-
drates, lipids, and lignin but nothing else. These three predic-
tions are for HTL of mixtures of model compounds and not
whole biomass.

For models assessed against more than 100 published bio-
crude yields, the two by Teri et al.31 labeled “1-int” and “2-int”
have the lowest j3j (11.2 wt%). The model from Teri et al.31

labeled “1-int” also has the highest percentage (27.5%) of bio-
crude yields predicted within 5 wt% while the model labeled “2-
int” has the highest percentage (53.8%) of biocrude yields pre-
dicted within 10 wt% of the experimental value. Of all the
models, the one proposed by Aierzhati et al.40 could be assessed
against the largest number (519) of published biocrude yields.
Themodel uses time and temperature as variables in the model,
and it can be assessed for HTL from 280 to 360 °C and from 10
to 60min. Themodels provided by Teri et al.31 could be assessed
over the second-largest number of biocrude yields (465), fol-
lowed by the model fromWagner et al.26 at 314. These latter two
studies provide models for two and four distinct time–temper-
ature combinations, respectively, thereby allowing assessment
over a larger number of published studies. Considering the
© 2024 The Author(s). Published by the Royal Society of Chemistry
models in chronological order of publication does not show any
trend of increasing accuracy over time.

3.2.2 Assessment with all relevant biomass feedstocks and
HTL conditions. Fig. 2 and Table S3† show the predictions are
generally more biased, have larger residuals, and predict fewer
biocrude yields to within ±5 wt% and ±10 wt% than was the
case for predictions from HTL studies with the intended bio-
mass.As was the case with the data in Fig. 1, the models with
second-order interactions between components have less bias,
smaller j3j wt%, and a greater percentage of biocrude yields
predicted to within ±5 wt% and ±10 wt% than do the models
without interactions and the models that include “higher order
interactions”. The two models from Teri et al.31 labeled “1-int”
and “2-int” have the lowest mean (12.6 and 12.5 wt%) and
median (9.6 and 9.7 wt%) absolute residuals. Moreover, z26%
of their residuals are within 5 wt% of the experimental biocrude
yields and z52% are within 10 wt% (see Table S3†). These
percentages of predictions within 5 wt% and 10 wt% are the
highest of all the component additivity models assessed herein.
Based upon the metrics noted above, the two models from Teri
et al.31 that include interactions give the best predictions of
experimental biocrude yields. It is worth noting that models
from Teri et al.31 including interaction terms (labeled 1-int and
RSC Sustainability, 2024, 2, 736–756 | 741
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Fig. 2 Distribution of residuals with median (solid line) and quartiles (dashed line) for biocrude yields predicted by component additivity models
for HTL of all relevant biomass feedstocks and HTL conditions. *Residuals for Aierzhati et al.40 extend to −274 wt%.
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2-int) outperform the models excluding interaction terms
(labeled 1 and 2). The authors had drawn the opposite conclu-
sion in their work, perhaps because they considered only
a small number of biomass feedstocks and did not have the
advantage of the large data set that now exists for HTL of diverse
biomass materials.

The ESI† provides results from a nal assessment of these
models for predicting biocrude yields from HTL of microalgae.
This biomass feedstock has been used frequently in HTL
experiments and the data set had 530 experimental biocrude
yields. The trends noted earlier in this section for HTL of the
intended biomass appear again when examining the microalgal
dataset, but with less variation and fewer outliers. The model
from Li et al.,27 which was parameterized using data from HTL
of microalgae, makes the best predictions in this section. The
results appear in Fig. S1 and Table S4.†
4 Kinetic models

Kinetic models are built upon the reaction pathways that occur
during the chemical conversion being modeled. The major
features of these pathways are generally known for HTL of most
types of biomass.7,41 Initially, the biomass (typically a solid)
undergoes hydrolysis and thermolysis and the proteins, lipids,
742 | RSC Sustainability, 2024, 2, 736–756
carbohydrates, and lignin break down into polypeptides,
oligosaccharides, fatty acids, and phenol derivatives. These
intermediates further hydrolyze to their respective monomeric
units (e.g., sugars, amino acids). The monomers then undergo
rearrangements, coupling reactions, dehydration, deamination,
and decarboxylation to form small molecules that are distrib-
uted among the aqueous, oil, and gas phases. Saccharides
dehydrate to form furans, furfurals, cyclopentanones, and fur-
anones, and then undergo aldol condensation to form single-
ring aromatics. Single-ring aromatics and fatty acids can oli-
gomerize to form solids. Peptides can undergo hydrolysis to
form amines in the biocrude phase and deamination to form
water-soluble organic acids. Fatty acids decarboxylate to form
alkanes and alkenes. Denitrogenation and decarboxylation of
protein and carbohydrates cause the formation of gases such as
NH3 and CO2. Maillard reactions form N-containing heterocy-
clic compounds, aldols, and high molecular weight
compounds.

HTL chemistry is complex and there can bemore than 30 000
individual molecules in the biocrude alone.42 This complexity,
along with the chemical diversity in the biochemical compo-
nents of biomass, makes it difficult tomodel the reactions at the
level of elementary reaction steps (e.g., a microkinetic model).
Rather, researchers have developed kinetic models where the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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numerous reaction products are lumped into a small number of
different classes based on their solubilities. For instance,
models would account for transformations between oil-phase,
aqueous-phase, gas-phase, and solid-phase product fractions.
See Table S5† for a summary of the reaction networks10 that
have been proposed for HTL of biomass. Lumped kinetic
models have long been used by the petroleum and chemical
processing industry to describe complex reacting systems with
many different molecular species and many different reactions
connecting them.43

This section reviews the kinetics models that have been
developed for HTL of biomass and then assesses how well each
predicts many published biocrude yields from HTL experi-
ments. This review and assessment provide guidance regarding
the development of better kinetics models for HTL as well as
guidance for understanding the level of condence to have in
predictions from a given model.

4.1 Review of kinetic models for HTL of biomass

4.1.1 Models for whole biomass as a single lumped reac-
tant. In 2012, Zhang et al.44 proposed the rst reaction network
(Fig. 3) and reaction engineering model for HTL. It was for low-
input high-diversity grass. The network had parallel primary
paths from the biomass to solid, liquid (dened as water- and
acetone-soluble products), and gas products. The yield of liquid
products was calculated by difference from the mass balance,
rather than being determined by direct measurement. We
exclude this model from the assessment because it used
acetone rather than a chlorinated solvent (e.g., DCM) to recover
biocrude. Nearly all experimental studies used DCM, which is
not miscible with water, so that separate yields could be
measured for biocrude and for aqueous-phase products. This
model was not designed to predict the yield of DCM-soluble
material from HTL of biomass. Rather, it lumps biocrude
together with aqueous-phase products.

Valdez and Savage45 presented the rst kinetic model for
HTL of biomass that dened biocrude in the conventional
manner (as the dichloromethane-soluble material recovered
aer the reaction). The authors subsequently used hexane
extraction to divide the biocrude into heavy (hexane-insoluble)
and light (hexane-soluble) fractions. Rather than presuming
what reaction paths were active during HTL, these investigators
did HTL experiments with the original algal biomass and then
also with each of the product fractions recovered from HTL of
the algae. These experiments revealed which product fractions
were formed from algae and which could be formed from each
of the product fractions via subsequent reactions. Fig. 4 shows
the network they deduced.
Fig. 3 Reaction network for HTL proposed by Zhang et al.44

© 2024 The Author(s). Published by the Royal Society of Chemistry
The algal solids decompose to give light oil, heavy oil, and
aqueous phase products. These three primary product fractions
all have reversible interconversion pathways amongst them-
selves. The latter two also have a gasication pathway. Experi-
mental data for the yields of different production fractions from
HTL of algae over a range of temperatures and times were used
to determine the Arrhenius parameters for each rate constant in
the model. All reactions were taken to be pseudo-rst order.
Saral et al.46 use the reaction network from Fig. 4 for HTL of
Spirulina platensis but combine the light and heavy fractions
into a single biocrude product fraction.

Fig. 5 shows the relative rates within the network at two
different times. At shorter times (z5 min), the fastest reactions
involve algal biomass solids degrading into aqueous-phase
products and heavy biocrude and molecules in the heavy bio-
crude moving into the aqueous-phase products. Aer 20 min,
the biomass has been decomposed so those primary reactions
are much slower. The fastest reactions involve repartitioning of
molecules within the light and heavy biocrudes and the
aqueous-phase products.

Hietala et al.47 were the rst to provide a kinetic model and
reaction network (Fig. 6) that faithfully described outcomes
from both isothermal and fast HTL. The latter technique uses
rapid heating and non-isothermal processing, and it converts
microalgae into biocrude in just tens of seconds.42

The authors modied reaction pathways in earlier studies to
better represent the experimental product fraction yields,
especially at shorter HTL times. Their network included a direct
pathway from biomass solids to gas-phase products and
a pathway to “volatiles” from the aqueous-phase products.
Hietala et al.47 were the rst to distinguish between permanent
gas products and “volatiles”, which were low-boiling aqueous-
phase products lost to evaporation as this product fraction
was dried to remove the water. The model was developed for
HTL of Nannochloropsis sp., and a key contribution was
modeling reaction times as short as 10 s along with longer times
up to 45 min. Fig. 7 shows the model calculations faithfully
reproduced the main trends in the experimental product yields
(note the log scale on the x-axis).

Hietala et al.47 were also the rst to use initial conditions that
did not require all the algal biomass to be in the “solids” phase
at t = 0. Instead, the authors set the initial condition for the
“solids” as 100 wt% minus the lipids wt% in the biomass. The
initial condition for the biocrude phase was the lipids wt% in
the biomass. Though not all algal lipids are extractable at room
Fig. 4 Reaction network for HTL of microalgae developed by Valdez
and Savage.45
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Fig. 5 The relative rates for the reaction paths at (a) short and (b) long times during HTL of microalgae. Reproduced from Valdez and Savage45

with permission from Algal Research Journal, copyright 2013.

Fig. 6 Reaction network for HTL of microalgae developed by Hietala
et al.47
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temperature and t = 0,48 the lipids would be released within
seconds, as cell lysis occurred.49 Handling the initial conditions
in this way allowed the model to better correlate yields of
product fractions from HTL at short reaction times. Qian et al.50

later used the same model, reaction network, and initial
condition concept for modeling fast and isothermal HTL of
sewage sludge.
Fig. 7 Model calculations and experimental product yields for HTL of m
Bioresource Technology Journal, copyright 2016.

744 | RSC Sustainability, 2024, 2, 736–756
Note that the fast HTL experiments (t < 5 min in Fig. 7) were
essential for obtaining data in regions where the yields of the
product fractions were undergoing the greatest changes with
time. These data are critical for determining meaningful values
of the kinetics parameters. All the previous modeling work, and
most that has been done since, did not consider this lower-
severity HTL region and the parameter estimation suffered as
a result. If the modeler had data only from isothermal HTL (say t
= 5 min and longer), Fig. 7 shows that there would be very little
variation in the product yields with time, which would make it
difficult to determine precise values of the kinetics parameters.

All the models in this subsection treat whole biomass as
a single pseudo-component. They can do a good job of corre-
lating experimental HTL results for that particular biomass.
Whether a set of model parameters determined for HTL of one
biomass feedstock can be applied to HTL of a different feed-
stock remains to be determined. Recognizing this potential
icroalgae. Reprinted in part from Hietala et al.47 with permission from

© 2024 The Author(s). Published by the Royal Society of Chemistry
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limitation of these single-pseudo-component models led to
development of the more generalizable models discussed in the
next section.

4.1.2 Models for whole biomass as a mixture of separate
biochemical components. Valdez et al.51 broadened and
generalized their earlier reaction network by treating the initial
algal biomass feedstock as a combination of its three main
biochemical components (i.e., protein, lipid, carbohydrate) as
shown in Fig. 8. This is the rst kinetics model that considered
explicitly the initial biochemical composition of the biomass. It
paved the way for generalized models that could be used to
predict HTL outcomes for other microalgae of arbitrary (but
known) composition and other feedstocks containing protein,
lipids, and polysaccharides (e.g., sludges, food waste).

The reaction network is the same as that in Fig. 4, but with
the light and heavy biocrude fractions combined into a single
lumped product fraction and the initial biomass solids being
apportioned into protein, lipids, or carbohydrates. The primary
pathways allow for conversion, at different rates, of protein,
lipid, and carbohydrate components in microalgae into prod-
ucts that partition into the aqueous-phase or biocrude product
fractions. There can be interconversion between these product
fractions as well as gas formation.

HTL experiments were done at 250, 300, 350, and 400 °C
from 10–60 min with three different microalgae (Chlorella pro-
tothecoides, Scenedesmus sp., and Nannochloropsis sp.) that had
different biochemical contents. The set of differential equations
implied by the reaction pathways for HTL in a batch reactor was
then solved simultaneously along with parameter estimation to
determine the best-t rate constants for each path. A good t (c2

= 1.5) of the model to the experimental yields of product frac-
tions was observed. The rate constants obtained indicated faster
production of biocrude from the HTL of algae that are richer in
lipids or proteins than in polysaccharides.

Vo et al.52 used the reaction network in Fig. 8 to model the
product yields from HTL of Aurantiochytrium sp. KRS101. Like
Valdez et al.,51 they conducted experiments at 250–400 °C for
10–60 min and used the product yields to determine the rate
constants by minimizing the least square errors. The model
successfully correlated the data for HTL of that specic micro-
alga and thereby demonstrated the general applicability of the
Valdez et al.51 reaction network.

Vo et al.53 further developed a kinetic model for HTL of
Tetraselmis sp. by combining the concepts of deconstructing the
Fig. 8 Generalized reaction network for HTL of microalgae from
Valdez et al.51

© 2024 The Author(s). Published by the Royal Society of Chemistry
biomass feed into protein, lipid, and carbohydrate components
and partitioning the biocrude into light (hexane-soluble) and
heavy (DCM-soluble) fractions as shown in Fig. 9. They were
able to correlate all product fraction yields (solid, aqueous,
biocrude) to within ±5 wt%.

Sheehan and Savage54 introduced a reaction engineering
model for HTL where second order reactions can occur between
carbohydrates, proteins, and lipids. For example, the model
would account for a reaction between carbohydrates and
proteins in a batch system as shown in eqn (5). They combined
the experimental data from Valdez et al.51 and Vo et al.52 to
determine values for the model parameters in the reaction
network in Fig. 8. The predictive ability of the model was then
tested on 133 other published biocrude yields from HTL of
microalgae. The model predicted 70 biocrude yields to within
5 wt% error. The authors found that including second-order
interactions in the model led to poorer predictions of the
published biocrude yields. We believe this may be due to the
equations inability to provide mass balance closure. Therefore,
we included this model both with and without interactions
as part of the present assessment, which uses a much larger
set of published biocrude yields. More information is given in
the ESI.†

dxcarb

dt
¼ �kCPxcarbxprot (5)

Palomino et al.55 published a simplied reaction network
(Fig. 10) and corresponding model that focused on biocrude
exclusively (no aqueous-phase products, no char, no gas). The
biocrude, once formed, does not react further. The authors
prevented the model from reaching 100% yields of biocrude by
incorporating additional tted parameters (Xi) that give the
maximum biocrude yield available from each of the biochem-
ical components.

Obeid et al.56 were the rst to introduce a HTL reaction
engineering model that includes lignin as an explicit
biochemical component (Fig. 11). The network also introduces
a “solids” product fraction that is different from the initial solid
feedstock components (e.g., carbs, proteins, lignin). These
solids represent material formed during the hydrothermal
reaction process. The authors determined values for the
kinetics parameters by using experimental data from HTL of
a four-component mixture of sunower oil, microcrystalline
cellulose, bovine serum albumin, and alkaline lignin. Their
experiments considered only nominally isothermal HTL and
reaction times exceeding ve minutes. Consistent with the
Fig. 9 Combination of networks in Fig. 4 and 8 introduced by Vo
et al.53
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Fig. 10 Reaction network proposed by Palomino et al.55

Fig. 11 HTL reaction network from Obeid et al.56
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results in Fig. 7, there was little variation in the yields of the
product fractions over the range of times examined. Unlike
previous reaction networks, the reaction paths in Fig. 11 do not
allow for direct conversion of lignin, protein, or carbohydrates
to biocrude. Rather, these biochemical components rst form
aqueous-phase products, which can then react further to
produce DCM-soluble biocrude.

Obeid et al.57 later used this same network and associated
differential equations to correlate data from HTL of different
whole biomass feedstocks (i.e., a microalga, sewage sludge, and
pine wood sawdust). The models correlated the results for HTL
of these different feedstocks, but the rate constants determined
for the various reaction paths were different for each feedstock.
For example, the rate constant for conversion of protein to
aqueous-phase products (k6 in Fig. 11) at 300 °C was 3 s−1 for
pine wood, 21 s−1 for a mixture of model,56 24 s−1 for algae, and
42 s−1 for sludge. The activation energy for conversion of
protein to aqueous-phase products was 0.3 kJ mol−1 for algae,
8.3 kJ mol−1 for sludge, 28 kJ mol−1 for the mixture of
biopolymers,56 and 78 kJ mol−1 for pinewood. This feedstock-
dependence of the kinetics for each step in the network likely
connes the utility of the networks to the specic feedstocks for
which the parameters were determined. It also defeats one of
the purposes of developing suchmodels, which is to decompose
conceptually and mathematically the biomass into a small
number of biochemical components that can be taken to react
at the same rate for all whole biomass feedstocks. In the
assessment in the next section, we label each model with the
biomass feedstock used to produce the HTL data that led to its
parameters.

Hietala and Savage48 advanced kinetics models for HTL by
using molecularly explicit reaction pathways for each
746 | RSC Sustainability, 2024, 2, 736–756
biochemical component as the foundation. Fig. 12 shows the
reaction network. Eachmolecular product was apportioned into
the biocrude, gas, solid, or aqueous-phase product fractions, to
enable comparison with experimental results. This work also
advanced HTL kinetic modeling by being the rst to account for
the biomass concentration (loading) in the reactor, which is
known to inuence HTL outcomes.13,32,42,58 The polynomial used
to correlate the density of water as a function of temperature
gives faithful estimates only up to 450 °C. Using the model at
higher temperatures could give inaccurate results. The model
comprised 16 pathways (each is numbered in Fig. 12) that
include reactions such as hydrolysis, addition, cyclo-
dehydration, retro-aldol condensation, deamination, and
decarboxylation. The model also included polysaccharide–
protein interactions via explicit inclusion of the chemical
reactions themselves. This work was the rst to include Mail-
lard reactions in a reaction engineering model for HTL of whole
biomass.

HTL experiments with different mono- and polycultures of
whole algal biomass provided the data used to determine the
model parameters. Experiments were conducted from 150–350 °
C and for 1–100 min, and the data set included both isothermal
and non-isothermal (fast) HTL conditions. The rate constants
were determined by using 1070 different product yields ob-
tained from experiments with 103 unique sets of process vari-
ables. Fig. 13 shows the biocrude yields calculated from the
model were within 4 wt% root-mean-square deviation of the
experimental biocrude yields.

4.1.3 Models for HTL of isolated biochemical components
alone. As discussed in a previous section that dealt with
component additivity models, there has been extensive research
into HTL of individual biochemical components (e.g., specic
proteins, cellulose, starch) that have been separated from whole
biomass. Those experimental results provided opportunities for
kinetic modeling. Sheehan and Savage59 provided the rst
kinetic model for fast and isothermal HTL of an isolated
biochemical component (soy protein isolate) alone. The reac-
tion network is based on the one in Fig. 8. Recognizing that
proteins can be soluble in water, they subjected the initial
biomass to their product recovery protocol to determine the
appropriate initial conditions for the model. Luo et al.60 used
the same approach to model HTL of soy protein concentrate,
but for isothermal HTL at times up to 60 min and temperatures
ranging from 200–350 °C.

Obeid et al.61 provided experimental data for HTL of four
different biochemical components alone (cellulose, alkaline
lignin, bovine serum albumin, and sunower oil). They used
reduced versions of the Valdez et al.51 reaction network in Fig. 8
to correlate the data. Chloroform was used to recover the bio-
crude. This solvent gave a 5 wt% higher yield of biocrude than
did DCM for HTL of a Nannochloropsis microalga.62 Following
Hietala et al.,47 Obeid et al.61 took the initial (t = 0) yield of
biocrude to be equal to the lipid content in the biomass. They
also measured the portion of the feedstock that was water-
soluble even prior to HTL and used this value as the initial
condition in the model. The model is the rst to introduce
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3su00458a


Fig. 12 Molecular reaction pathways for HTL of microalgae adapted from Hietala and Savage.48 The colors represent the solubility of each
component. Dark brown is DCM soluble, light brown is water soluble, and green is insoluble. A gradient represents partial solubility. AA = amino
acid, AQ= aqueous-phase product, BC= biocrude, BCh= biochar, Car= carbohydrates, DAs= dissolved ash, FA= fatty acids, Lip= lipid, Pep=

peptide, PPe = polypeptide, Pro = protein, PSa = polysaccharide, Sac = saccharide. The subscripts on AA, AQ, and BC refer to the number of
amine groups in the molecule. Reproduced from Hietala and Savage48 with permission from Chemical Engineering Journal, copyright 2021.
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a different initial fraction for carbohydrates and lignin into
initial conditions for products.

These authors subsequently developed lumped kinetics
models for hydrothermal conversion of glucose, guaiacol, L-
alanine, and oleic acid.56 These small molecules (monomers)
were intended to mimic carbohydrates, lignin, protein, and
lipids, respectively. The authors used a modied version of the
reaction network in Fig. 8 wherein the pathways involving solids
were reversible. Though the reaction networks are identical to
those used in the earlier work,61 the rate constants were quite
different. For example, the rate constant for the pathway from
cellulose to aqueous-phase products was 3.3 s−1 for HTL at 350 °
C. For D-glucose it was 22.7 s−1 at the same temperature. The
rate constants for conversion of proteins and lignin were also
much lower than those for disappearance of alanine and
guaiacol. This comparison of the reactivity of biopolymers and
their corresponding monomers showed that the initial depoly-
merization of the macromolecule is much slower than the
subsequent reactions of monomers.
© 2024 The Author(s). Published by the Royal Society of Chemistry
4.2 Assessment of kinetic models for HTL of biomass

Similar to Section 3.2.1, in Section 4.2.1 we rst assess the
kinetics models using literature data from HTL of biomass
feedstocks that contain all the biochemical components
included as reactants in the models. For example, the Valdez
et al.51 model correlated biocrude yields fromHTL of microalgae
that contained proteins, lipids, and carbohydrates. There are
659 entries in the database that are from HTL of biomass with
all three of these components and only those components.
These were used to assess the model. If the biomass contained
lignin or lacked carbohydrates, proteins, or lipids, those data
were not used to assess the Valdez et al. model (or others that
considered all three components and only those three
components).

In Section 4.2.2 we repeat for the kinetics models the
assessment that was done with the component additivity
models in Section 3.2.2. We assess the kinetics models for
biocrude yields with a broader dataset by including HTL
RSC Sustainability, 2024, 2, 736–756 | 747
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Fig. 13 Experimental and correlated biocrude yields from HTL of
microalgae from Hietala and Savage.48 The different symbols corre-
spond to different algal biomass feedstocks. Reprinted in part from
Hietala and Savage48 with permission from Chemical Engineering
Journal, copyright 2021.
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experiments with biomass feedstocks containing only some of
the biochemical components the model can handle. The model
from Obeid et al.,61 for example, can handle biomass feedstocks
with carbohydrates, proteins, lipids, and lignin. In this section,
themodel will be assessed using data fromHTL of biomass with
all four components as well as biomass feedstocks with three or
fewer of the components.

We assessed the kinetics models at all temperatures and
times in the database for biocrude yields. This approach
sometimes led to extrapolation outside the ranges used to
determine model parameters.

4.2.1 Assessment with intended biomass feedstock and
HTL conditions. Fig. 14 summarizes the assessment of reaction
engineering models for HTL of multicomponent biomass
feedstocks. We group the models together based on the
different biochemical components each includes and whether
interactions between biochemical components are included.

The rst group of models in Fig. 14 treats the biomass
feedstock as a uniform, homogeneous solid at t = 0. Table S6†
shows that both models in this category have higher biases,
higher mean and median absolute residuals, and fewer yields
predicted within 5 wt% and 10 wt% than models that allow for
different reactivities for proteins, lipids, and polysaccharides.
The second group of models in Fig. 14 partition the biomass
into a uniform, homogeneous solid portion, and a separate
lipid portion, all of which starts in the biocrude product fraction
at t = 0. The models in this group give better predictions, on
average, than those that treat the entire biomass feedstock as
“homogeneous solids”.

The third group of models allows polysaccharides, proteins,
and lipids to have different reactivities during HTL. These
748 | RSC Sustainability, 2024, 2, 736–756
models all provide better predictions than those that treat the
biomass feedstock as a single homogeneous solid. This
outcome is not surprising, as these models better incorporate
the physical realities and include additional parameters. Based
on the j3j and Med[j3j] statistics, the models with the best
predictions in this group are from Valdez,51 Sheehan,54 and
Palomino.55 The fourth group of models includes biomass
interactions. The predictive ability of the models is similar to
that of the models without interactions. Based on the average
absolute residuals, median residual, MAPE, median absolute
relative error, and percent of residuals within 10 wt%, the best
performing model for HTL of biomass with proteins, lipids, and
polysaccharides is that of Hietala and Savage.48

The last group of models in Fig. 14 can handle biomass
feedstocks that include lignin. The number of published bio-
crude yields available for assessment of these models is smaller
(138) than those available for assessing the models that exclude
lignin (659). Of the models in this group, the one from Obeid
et al.63 that is based on biopolymer model compounds makes
the best predictions. Table S10† shows it has the lowest j3j, Med
[j3j], and Med[APE] and the highest percent of residuals within
±5 wt% and ±10 wt%.

4.2.2 Assessment with all relevant biomass feedstocks and
HTL conditions. Fig. 15 shows the results for the rst four
models do not change relative to those in Section 4.2.1, as these
models do not include the biomass composition as input
parameters. The residuals for the remaining models, however,
exhibit a larger range than when predicting biocrude yields
from HTL of the intended biomass. Some of the violin plots
extend to negative residuals of 100%. These values are a result
of underpredicting the biocrude yield at mild reaction severities
for feedstocks that are entirely lipids. For these feedstocks, the
initial material meets the operational denition for being bio-
crude (i.e., DCM-soluble), so models that begin with lipids as
reactants will underpredict the bio-oil yields during the early
stages of HTL for pure lipid feedstocks. Recall that Qian et al.50

and Hietala et al.47 recognized this limitation and set the initial
condition for biocrude yield as the lipids content in the feed-
stock. This approach seems to be required to make accurate
predictions of biocrude yields for HTL of lipid-reach feedstocks
at mild reaction severities.

As was the case with the assessment for HTL of the intended
biomass, the model from Hietala and Savage48 shows the lowest
j3j, Med[j3j], and MAPE, while having the highest percentage of
residuals within 5 and 10 wt%. This model appears to be the
best for predicting biocrude yields from HTL of biomass con-
taining protein, lipids, and polysaccharides.

The j3j and Med[j3j] statistics are signicantly higher for the
models that included lignin than the models that did not.
Lignin can have strong positive or negative interactions with
other biochemical components (see Table 1 and S1†). Since the
models with lignin do not include interaction terms, the
interactions are confounded into the existing reactions and
their rate constants, which likely makes the models less robust
in predicting outcomes from HTL of feedstocks with widely
varying compositions.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Distribution of residuals with median (solid line) and quartiles (dashed line) for predicting biocrude yields from HTL of intended biomass
with lumped kinetic models.
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We examined the published biocrude yields that were pre-
dicted with greater than 100% relative error to see whether the
feedstocks or HTL conditions shared any common features. The
systems for which biocrude yields were predicted poorly are
HTL of isolated carbohydrates alone, isolated proteins alone,
biomass with high carbohydrate and low protein content, and
biomass with high protein and low carbohydrate content.

We additionally assess the models over a subset of the data
for algal biomass. Fig. S2 and Table S8† show the results. The
models from Valdez and Savage45 and Valdez et al.51 perform
very well andmove closer to being the best models. Bothmodels
were parameterized using biocrude yields from HTL of micro-
algae. There is an overall decrease in variability over all the
models, with more improvement for models parameterized
using data fromHTL of microalgae, but no change in the overall
trends. The model of Hietala and Savage48 has the lowest j3j,
Med[j3j], and MAPE and the highest percentage of predictions
within 5 wt% and 10 wt%. Hence, the best lumped kinetic
model to predict biocrude yields from HTL of microalgal
biomass is the model from Hietala and Savage48
5 Assessment of all models for
different biomass feedstocks

The assessments conducted thus far have used different sets of
data for assessing the different models. This is due to each
model having different intended and possible biomass
© 2024 The Author(s). Published by the Royal Society of Chemistry
feedstocks at different conditions that the model can be tested
on. A different way to assess the models, and also directly
compare component additivity and kinetics models, is to use
each model to make predictions for precisely the same set of
published biocrude yields for HTL of the same biomass feed-
stocks at the same conditions. This section makes these
assessments for seven different types of biomass. These types
are biomass composed entirely of carbohydrates, proteins,
lipids, and lignin (all four components and no others), biomass
composed entirely of carbohydrates, proteins, and lipids (all
three and no others), biomass that contains both and only
carbohydrates and lignin, and biomass that contains only
carbohydrates, only proteins, only lipids, and only lignin.To
identify the models best suited for predicting biocrude yields
from HTL of the different types of biomass, we examined all of
the statistical metrics for each case. For each metric, one of the
models was best for predicting biocrude yields for a given type
of feedstock. The “recommended models” in Table 2 are the
ones that were best for the most metrics.

Fig. 16 and Table S9† show the kinetics model from Obeid
et al.56 was best for predicting biocrude yields from HTL of
biomass consisting entirely of carbohydrates, proteins, lipids,
and lignin. Fig. 17 and Table S10† show the kinetics model of
Hietala and Savage48 was best for predicting biocrude yields
from HTL of biomass consisting entirely and only of protein,
lipid, and carbohydrate. The model was parameterized using
data from HTL of microalgae, and its success here indicates it
can also give good predictions for HTL of food waste, sludges,
RSC Sustainability, 2024, 2, 736–756 | 749
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Fig. 15 Distribution of residuals with median (solid line) and quartiles (dashed line) from predicting biocrude yields from HTL of all relevant
biomass feedstocks and HTL conditions for lumped kinetic models.
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and other microbial biomass. Violin plots and tables that
summarize the statistics for the different models for additional
types of biomass are in the ESI (Tables S11–S15 and Fig. S3–
S11).†

The kinetics model of Hietala et al.,47 though parameterized
with data from HTL of a single microalga, was the best at pre-
dicting biocrude yields from HTL of lignin and biomass with
solely carbohydrates and lignin. This model treated the biomass
as a uniform, homogeneous solid material. It seems such
a model can be extrapolated to other types of biomasses with
some success.
Table 2 Best models for predicting biocrude yields from HTL of differen

Components in biomass feedstock Best model

Carbohydrates, proteins, lipids, and
lignin

Obeid et al.56

Carbohydrates, proteins, and lipids Hietala and Savage48

Carbohydrates and lignin Hietala et al.47

Carbohydrates Sheehan and Savage54

Proteins Sheehan and Savage59

Lipids Mahadevan Subramanya and
Savage34

Lignin Hietala et al.47

750 | RSC Sustainability, 2024, 2, 736–756
For HTL of isolated biochemical components alone, bio-
crude yields from lipids are best predicted by the component
additivity model from Mahadevan Subramanya and Savage.34

The model from Sheehan and Savage,59 which was parameter-
ized using data from HTL of a protein, made the best predic-
tions of literature biocrude yields from HTL of protein. In
closing this section, we note that only one of 7 entries for rec-
ommended models in Table 2 is a component additivity model.
Kinetics models generally performed better in this test, as,
unlike component additivity models, they are designed to
handle a broad range of reaction times and temperatures.
t biomass feedstocks

Number of
biocrude
yields Statistics that are best

138 Med[3], Med[j3j], Med[APE], % <5 wt%

659 j3j, Med[j3j], % <5 wt%, % <10 wt%
25 j3j, MAPE, % <5 wt%, % <10 wt%, % > 100% relative

error
112 Med[3], j3j, Med[APE], % <10 wt%
75 Med[3], j3j, Med[APE], % <10 wt%
28 j3j, Med[j3j], MAPE, % >100% relative error

38 Med[3], Med[j3j], Med[APE], % >5 wt%, % <10 wt%

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Distribution of residuals with median (solid line) and quartiles (dashed line) for predicting biocrude yields fromHTL of biomass containing
carbohydrate, protein, lipid, and lignin (all four components) with all models.
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6 Toward improved predictive
models

Having reviewed and assessed both component additivity and
kinetics models for HTL of biomass, we now offer suggestions
for developing more advanced models. One pathway to more
Fig. 17 Distribution of residuals with median (solid line) and quartiles (das
entirely of carbohydrate, protein, and lipid (all three components) with k

© 2024 The Author(s). Published by the Royal Society of Chemistry
advanced models is to include the initial biomass loading
(wt% biomass in reactor) in the model. This process variable
affects biocrude yields. For example, biocrude yields from
HTL of polysaccharides can vary by a factor of 2.5 simply
by changing the biomass loading from 2 wt% to 15 wt%.64

To date, only one reaction engineering model has incorporated
hed line) for predicting biocrude yields fromHTL of biomass composed
inetic models.
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the biomass loading, but this needs to become standard in the
eld.

With a few exceptions, existing models make the implicit
assumption that the reactivity of all types of proteins, all types of
carbohydrates (structural and non-structural), and all types of
lipids can be represented by the reactivity of a single repre-
sentative biomolecule from each class. The literature shows this
simplication is not strictly valid.28 For example, at 400 °C and
5 min, HTL of bovine serum albumin gives a biocrude yield of
4 wt% whereas the yield is 28 wt% from soy protein isolate.65

The apparent rst-order rate constants for hydrothermal
conversion of different amino acids ranges from 0.03 to 0.48 s−1

at 300 °C.66 Structural (cellulose) and non-structural (starch/
hemicellulose) carbohydrates follow different pathways and
react at different rates during HTL.13,29,30,33,34,37,67 Carbohydrates
that are less structural (less branching) decompose more
readily. Saturated, mono-unsaturated, and poly-unsaturated
fatty acids show different hydrothermal reactivities.32 The
lipid fraction can also contain phospholipids, glycolipids,
sterols, and other compounds with a variety of functional
groups. The limited information available,68 shows different
hydrothermal reactivities for these compounds. Finally, the
lignin that is isolated from biomass and used in HTL experi-
ments is extracted using different processes (e.g., Kra, Ligno-
sulphonate, Organosolv) that inuence the pH during HTL as
well as the degree of polymerization, metal/sulfur content, and
amount of the lignin extract.69 All these factors have an effect on
the HTL process.70,71 We posit that more accurate and robust
models could be developed by including more than one repre-
sentative from each biochemical class. Of course, presuming
such a model t experimental data better, one would need to
assess whether the additional goodness of t justies the
inclusion of the additional rate constants.

Published HTL studies have used reactor heating rates
ranging from 10 °C min−1 (e.g., large autoclave reactor) to 350 °
Cmin−1 (e.g., 1 mL reactor). In most kinetic models, the heating
regime (and reactor cool down) is ignored and focus is placed
on the time the reaction is occurring isothermally. For studies
with rapid heating and cooling and an isothermal period that is
much longer than either, this simplication is reasonable. For
other systems and for non-isothermal (e.g., fast) HTL, it is not.
The prior modeling studies that did include the reactor heat up
used a polynomial equation to t the experimental temperature
prole.47,50,59,65 We suggest that all modeling studies incorporate
the non-isothermal periods experienced by the HTL reactor
when estimating model parameters. Of course, doing so would
require all experimental studies to measure and report the
reactor temperature proles during heating and cooling. We
also propose using the error function (eqn (6)) or the Morse
potential (eqn (S6)†), which we used in this assessment, to
describe the heating and cooling proles. These functions
match the general shape of a reactor heating curve and have just
a few adjustable parameters.

TðtÞ ¼ �
Tsetpoint � Tinitial

� 2ffiffiffiffi
p

p
ðt
0

e�ax
2

dxþ Tinitial (6)
752 | RSC Sustainability, 2024, 2, 736–756
where Tsetpoint is the temperature of the heat source, Tinitial is the
temperature the reactor is starting from, t is the time, a is the
parameter adjusted to t different heating curves, and x is
a dummy variable.

For kinetics models, the initial conditions affect the product
yields calculated at different reaction times. In most HTL
studies, the initial condition is taken as 100% of the biomass
feedstock being in the solid phase and none in the gas,
aqueous, or oil phases. Control experiments have shown,
however, that portions of different biomass feedstocks are
soluble in water (aqueous phase) or in DCM (oil
phase).48,50,52,53,56,59,63,65,72,73 These portions need to be deter-
mined experimentally for each feedstock and then used as the
appropriate initial conditions in a kinetics model. Some studies
have taken this approach48,56,59,63,65 and it needs to become
standard in the eld.

The present assessment of HTL models considered only the
biocrude yield. This yield is typically the most important
outcome from HTL, but other outcomes are also important.
There is merit in conducting a thorough assessment of how well
different models predict the yields of aqueous-phase, solid, and
gaseous products. Typically, more than half of the initial mass
of the biomass feedstock appears in these other phases. Being
able to model their yields (and compositions) would enable
a more general HTL process optimization along with tech-
noeconomic analysis and life-cycle assessment.

Some of the errors in predicting biocrude yields from
different models are likely due to differences in the experi-
mental procedures used to conduct HTL and to recover the
product fractions. For example, the amounts of water and DCM
used to recover reaction products can inuence the partitioning
of molecules between these two phases. Such details need to be
provided in experimental studies and their inuence on yields
of biocrude and aqueous-phase products needs to be
determined.

The present assessment focused on work wherein biocrude
was dened as the DCM-soluble material from HTL of biomass.
Other solvents such as acetone,39,74–90 chloroform,61,91,92

ethanol,93 hexane,90,94,95 toluene,90,94,96 ethyl acetate,97–99 and
mixtures of these solvents100–106 have been used instead of DCM
to recover HTL bio-oil. There is a need for models that can
correlate and predict biocrude yields recovered with different
solvents.

The present assessment of HTL models implicitly assumed
that the experimental error was the same for every published
biocrude yield. This approach was taken because not all pub-
lished studies reported uncertainties in their biocrude yields.
We recommend that experimentalists measure the uncertainty
and run-to-run variability in their product yields and report the
same in published studies. These uncertainties can then be
used to weigh individual data points when assessing and tting
models for HTL.

The internal structure and size of biomass particles could
have an impact on HTL outcomes. For example, one would
expect different bio-oil production rates from HTL of a given
woody biomass as wood chips, saw dust, and wood our at
a given set of conditions. The larger particles would be expected
© 2024 The Author(s). Published by the Royal Society of Chemistry
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to react more slowly, and the rates would be inuenced by
transport rates both to the surface of the particle and possibly
within the particle. Likewise, one might expect different rates
for HTL of whole microalgal biomass vs. food waste. Even
though the two feedstocks might contain the same proportions
of protein, lipid, and polysaccharide, they have different
internal physical structures that would affect reaction rates.
There are some models for HTL of biomass that incorporate
physical and transport effects. Iryani et al.107 used a shrinking
core model for HTL of sugarcane bagasse. This type of model
could also be used to account for cell lysis, which would be
important for microalgae.108 Jayathilake et al.108 developed
a multistage shrinking core model for the decomposition of
lignin particles during HTL. None of these models were applied
to a general multicomponent biomass feedstock for predicting
yields of product fractions fromHTL. This gap in literature is an
area of opportunity.

In this assessment, models that include second-order inter-
actions between biomass components made better predictions.
Sheehan and Savage59 included interactions between all binary
combinations of carbohydrates, proteins, and lipids. There is
a need to quantify the interactions of lignin with the other
biochemical components.

The present reaction engineering models deal with a small
number of lumped product fractions. Hietala and Savage48

developed the model that is the most molecular, in that it tracks
concentrations of specic groups of molecules – not solely
solubility-based product fractions. More advanced models can
be developed by expanding on this molecular framework.
Literature provides much information that can be used to this
end. The hydrothermal reactions of glucose, fructose, disac-
charides, polysaccharides,109–115 peptides, polypeptides, amino
acids,66,116–119 hesperidin,120 fatty acids,121–123 triglycerides,124

phospholipids,68 cholesterol,125 lignin,108,126–129 and some of
their interactions such as the Maillard reaction130,131 and cellu-
lose–lignin interactions132 have been studied on a molecular
level. This information can be used to develop models for HTL
that are increasingly molecular. Product fraction yields can be
recovered by determining the solubility of the different prod-
ucts in water and DCM (or other solvents). The molecular
information, however, could add value by enabling identica-
tion of high-value chemicals that one would want to separate,
purify, and sell to increase the protability of the process.

This review and assessment focused on HTL of biomass, but
HTL and hydrolysis of post-consumer plastics133–140 for waste
valorization and chemical recycling is an emerging eld.
Modeling needs to be done for HTL of plastics and for mixtures
of plastics and biomass, as this would extend the applicability of
HTL to any mixture of biopolymers and synthetic polymers.
Seshasayee et al.134 developed the rst and, to date, only model
(component additivity) that predicts the crude oil yield from
HTL of mixtures of biomass and plastics.
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