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The potential homogeneous assay employing immunomagnetic beads (IMB) has been receiving attention
as a screening tool in food-safety control; the method is simple, efficient, and does not require long
incubation times or complex separation steps. In this study, a homogeneous immunoassay has been
successfully developed and applied in the determination of aflatoxin B; (AFB;) contamination in
agricultural products by coupling IMB and the biotin-streptavidin (BSA) (BSA-IMB) system. Under optimal
conditions, the limit of detection (LOD, ICyp), half-maximal inhibition concentration (ICsp) and detection
range (IC,0—1Cgp) of BSA-IMB are 0.00579, 0.573 and 0.0183-17.9 ng mL™%, respectively, for AFB;. The
detection of AFB; by BSA-IMB can be achieved in 40 min (ELISA needs at least 180 min). The cross-
reactivities of BSA-IMB with its analogues are negligible (<3.82%); these results indicate high selectivity.

The spiked recoveries are in the range from 89.6 to 118.2% with relative standard deviations (RSDs) of 3.4
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Accepted 1st July 2018 to 13.2% for AFB; in agricultural product samples. Furthermore, the results of BSA-IMB for authentic

samples show reliability and high correlation of 0.9928 with an HPLC-fluorescence detector. The

DOI: 10.1039/c8ra04460k proposed BSA-IMB system is demonstrated to be a satisfactory tool for homogeneous, efficient,
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1 Introduction

Aflatoxins are highly toxic secondary metabolites produced by
a number of different fungi, and they are present in various
agricultural products and feeds; they have significance because
of their deleterious effects on human beings, livestock and
poultry.’ Aflatoxin B, (AFB,) is the predominant and most toxic
aflatoxin, and it has been used to establish maximum limits
(MLs) by various government agencies.* In the European Union,
the rigorous legal limit for AFB; in groundnuts, nuts, dried
fruits, and cereal has been regulated at 2 pg kg™ '.>® In China,
MLs of AFB, are set below 10 pg kg™ in rice and below 5 pg kg ™
in infant foods.” Assessing contamination of AFB; in food and
feed producing chain is of great importance and necessity.
Various analytical methods have been reported for the
determination of AFBy; these mainly include chromatographic
methods and immunochemical assays such as detection using
a HPLC-fluorescence detector (FLD),>® HPLC-MS/MS,>"
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sensitive, and alternative detection of AFB; in a wide detection range for agricultural product samples.

enzyme-linked immunosorbent assays (ELISA)' and gold
immunochromatographic assays."> The chromatographic
methods are standardized, high precision and sensitive, but
they are also time-consuming, expensive and unsuitable for
screening purposes. Immunoassays are increasingly considered
as alternatives or complementary methods for AFB, analysis as
they have significant advantages such as high selectivity and
sensitivity, simplicity, rapidity, and cost-effectiveness." ELISA is
the most commonly used microplate-based immunochemical
assay, and it is a heterogeneous method, which requires
extensive pipetting, washing and incubation steps; therefore, it
is time-consuming (typically more than 2 h for an analysis) and
complex. A very promising way to overcome these problems of
immunoassays is a shift from heterogeneous methods to
homogeneous assays.**

Immunomagnetic beads (IMB), which are used in a potential
homogeneous assay, are receiving attention as a new immobile
phase pattern, as they can diffuse freely in the reaction mixture,
separate easily with the aid of an external magnet, and have an
efficient reaction that does not require long incubation time.*>*®
Moreover, IMB have good biocompatibility for coupling with
antibodies or small molecules and larger surface area than the
flat base of a microtiter plate, which immobilizes a higher
number of ‘active molecules’ and enhances the sensitivity of the
enzymatic immunoassay.*>'”** The biotin-streptavidin (BSA)
system is a potential and valuable approach for achieving signal
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Fig.1 Schematic illustrations of IMB (1) and BSA-IMB (2) for detecting
AFB;.

amplification and improving sensitivity.* This system has been
used for developing analytical methods, which can solve the
limitation of labeling HRP amount on target proteins, thus
obtaining perfect results.” With the help of BSA technology,
a large amount of HRP, which conjugates with streptavidin, can
be reflected by substrate catalysis and chromogenic reaction.*
Hence, highly efficient and sensitive detection can be easily
achieved using the IMB system coupled with BAS system.

The present study aims to use IMB system coupled with BAS
system to develop a homogeneous and efficient immunoassay
(BSA-IMB) for assessing AFB; contamination in agricultural
product samples (Fig. 1). For the determination of AFB;, IMB
and BSA-IMB based on monoclonal antibody (McAb) were
developed and reported. BSA-IMB showed higher sensitivity and
wider detection range and thus, it was chosen as the ideal
system for detecting AFB,. The matrix effects of 5 agricultural
product samples for BSA-IMB were evaluated. Moreover, BSA-
IMB was applied to detect AFB; in authentic samples of agri-
cultural products, and the results were confirmed by HPLC-FLD.

2 Materials and methods
2.1 Reagents and equipment

Carboxylic group-modified magnetic microspheres (200 nm)
were purchased from Suzhou Vdo Biotech Co., Ltd. (Suzhou,
China). Analytical standards of AFB,, its analogues (AFB,, AFGy,
AFG,, and AFM,), and goat anti-mouse immunoglobulin
horseradish peroxidase (GAM-HRP) were purchased from Sigma
Chemical Co. (St. Louis, USA). Commercial antigen (AFB;-OVA)
of AFB; was obtained from Wuxi Determine Bio-Tech Co., Ltd.
(Wuxi, China). Streptavidin conjugated with HRP (streptavidin-
HRP) was purchased from Beijing Biodragon Immunotechnol-
ogies Co., Ltd. (Beijing, China). N-Hydroxysulfosuccinimide
sodium salt (sulfo-NHS) and 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC) were supplied by Adamas-
beta Reagent Co., Ltd. (Shanghai, China). Biotinyl-N-hydroxy-
succinimide (BNHS), 2-morpholinoethanesulfonic acid (MES),
3',5,5'-tetramethyl benzidine (TMB), H,0,, bovine serum
albumin, ovalbumin (OVA), polyoxyethylene sorbitan mono-
laurate (Tween-20) and other chemical reagents were purchased
from Aladdin (Shanghai, China). Anti-AFB; McAb was prepared
and stored in our laboratory.*
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2-Morpholino-ethanesulfonic acid buffer (MES,
0.05 mol L', pH 5.2), carbonate-buffered saline buffer (CBS,
0.05 mol L™, pH 9.6), phosphate-buffered saline buffer (PBS,
0.01 mol L™ *, pH 7.4) and phosphate-buffered saline containing
0.05% Tween-20 (PBST) were prepared and stored in our labo-
ratory. Concentrated aqueous solutions of sulfo-NHS (94.3 mg
mL ') and EDC (50 mg mL ') were prepared in our laboratory
before use. TMB solution contained 0.4 mmol L™ " TMB and
3 mmol L' H,0, in citrate buffer (pH 5.0).

Milli-Q purified water was obtained from the Milli-Q purifi-
cation system (Bedford, MA, USA). Absorbance was detected
using an Infinite M1000 Pro microtiter plate reader (Tecan,
Switzerland). Centrifugation was performed on a Neofuge 18R
centrifuge (Hongkong, China). The KQ2200 ultrasonic appa-
ratus was provided by Kunshan Ultrasonic Instruments Co., Ltd
(Kunshan, China). Shake-incubation was carried out on a TS-A
shaker (Jintan, China), and magnetic separation was per-
formed on a magnetic separator (Tianjin, China). The results of
BSA-IMB were validated with Aglient 1260 HPLC equipped with
a fluorescence detector (Wilmington, DE, USA).

2.2 Preparation of magnetic microspheres-antigen

The bioconjugation strategy between carboxylic group-modified
magnetic microspheres and amino-groups of the antigen AFB;-
OVA was achieved via the EDC/NHS method."*® Briefly,
carboxylic group-modified magnetic microspheres (50 pL, 50
mg/10 mL) were first ultrasonically dispersed and activated by
incubating with EDC (200 uL, 50 mg mL™ ") and sulfo-NHS (200
uL, 94.3 mg mL ') in 550 pL MES buffer. The mixture was
stirred for 30 min at room temperature and then magnetically
separated; next, the supernatant was discarded. Activated
magnetic microspheres were resuspended and washed twice
with 2 mL MES buffer and then resuspended with 950 pL MES
buffer. AFB,-OVA (dialyzed against MES buffer, 50 pL, 6 pg
mL ") was added and stirred overnight at 4 °C. After another
step of separation and washing, 2% bovine serum albumin
solution in PBS buffer (1 mL, containing 0.05% sodiumazide)
was added to block nonspecific sites on magnetic microspheres
for 2 h at 4 °C and then, the product was stored at 4 °C.

2.3 Preparation of biotinylated-McAb

Biotinylated-McAb was prepared according to a previously re-
ported method with modifications.*® Anti-AFB; McAb was dis-
solved and dialyzed in CBS (0.1 mol L ™", pH 9.2) for 4 h. BNHS
was dissolved in 200 pL. DMSO and adjusted to 38 mg mL
then, 10-fold molar excess against 2 mg mL~ " McAb was added.
The mixture solution was stirred at room temperature for 6 h
and dialyzed against PBS buffer overnight at 4 °C. Finally, the
biotinylated-McAb sample was preserved in PBS buffer (con-
taining 3% bovine serum albumin, 50% glycerol) and stored at
—20 °C.

2.4 Procedures of immunoassays

For ELISA. The procedures of ELISA were followed according
to the classic method.** After the coating and blocking steps,
either standard serial concentrations or samples of AFB, in PBS

This journal is © The Royal Society of Chemistry 2018
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containing methanol (50 pL per well) were added, followed by
addition of optimal McAb dilution (50 pL per well, in PBS) for
1 h at 37 °C. After further washing, GAM-HRP dilution (100 pL
per well, in PBS) was dispensed into each well and incubated for
1 h at 37 °C. Then, the plates were washed again. TMB solution
(100 pL per well) was added to the plates and incubated for
15 min at 37 °C. Then, the reaction was stopped with 2 mol L™*
sulfuric acid (50 uL per well), and the absorbance was measured
at 450 nm.

For IMB. The magnetic microsphere-antigen dilution (50 pL
per tube) was added, followed by adding standard serial
concentrations or samples of AFB; in PBS containing methanol
(50 pL per tube) and optimal McAb dilution (100 pL per tube, in
PBS) together for 20 min at 37 °C. After magnetic separation and
washing with PBST, GAM-HRP dilution (100 pL per tube, in PBS)
was added and incubated for 20 min at 37 °C. After another
separation and washing, the HRP activity of complexes was
studied by adding TMB solution (100 pL per tube). The reaction
was stopped with 2 mol L™" sulfuric acid (50 uL per tube) after
10 min of incubation at 37 °C, and the absorbance was
measured at a wavelength of 450 nm.

For BSA-IMB. The schematic diagram of the BSA-IMB
procedures for determination of AFB, is shown in Fig. 1. The
optimal dilutions of magnetic microspheres-antigen (50 puL per
tube), standard serial concentrations or samples of AFB; (50 pL
per tube), and biotinylated-McAb (100 pL per tube) were added
in order, and competing reactions proceeded for 20 min at
37 °C. Following another signal amplification reaction of the
BSA system by adding streptavidin-HRP dilution (100 pL per
tube, in PBS) and incubating for 10 min at 37 °C, peroxidase
activity was revealed, and the absorbance was measured using
the same procedure as that used in the above-mentioned
method.

Standard curves. A series of AFB, standards were prepared by
diluting AFB,; standards in PBS buffer containing methanol.
Determinations were carried out in triplicate, and the mean
values of B/B, (B: absorbance signal with analytes; B,: absor-
bance signal in the absence of analytes) were plotted against the
logarithm of analyte concentration to obtain the competitive
curves. The half-maximal inhibition concentration (ICs,), limit
of detection (LOD, IC,,) and detection range (IC,,-ICgy) were
obtained from a four-parameter logistic equation of the
sigmoidal curves using the Origin Pro 7.0 software.

Optimization of experimental parameters. The experimental
parameters such as concentrations of magnetic microspheres-
antigen, McAb, biotinylated-McAb, = GAM-HRP, and
streptavidin-HRP as well as ionic strength, contents of organic
solvents and pH were studied to improve the sensitivity of
immunoassays. Solutions with series concentrations of analytes
and varied experimental parameters were tested. The By/ICs,
ratio and ICs, values were used as primary criteria to evaluate
immunoassay performances; the highest ratio of By/IC5, and
the lowest value of IC5, were the most desirable.

Cross-reactivities. Additionally, cross-reactivities (CRs) for
compounds structurally related to AFB; were used to evaluate
the selectivity of BSA-IMB. The CR values were calculated as
follows:

This journal is © The Royal Society of Chemistry 2018
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CR% = (ICsq of analyte/ICs, of analogue) x 100

2.6 Analysis of spiked samples by BSA-IMB

Agricultural product samples (rice flour, wheat flour, corn flour,
corn and peanuts) certified as free of AFB; were used for matrix
effect and recovery studies. These homogenized agricultural
product samples were finely chopped. Then, the agricultural
product samples (5 g) were spiked with AFB, at 0.1, 0.5, 2.5, and
10 ng g~ " and stored overnight to allow drug-matrix interaction.
Next, the extraction solution (20 mL of methanol-PBS, v/v, 3 : 2;
and 20 mL of n-hexane) was added. The tubes were shaken with
a vortex mixer for 20 min and then allowed to stand for 30 min.
The solutions were filtered, diluted to an appropriate multiple
using the optimized working solution, and analyzed by BSA-
IMB. Each analysis was performed in triplicate.

To analyze the effects of matrix on sensitivity, the extracted
agricultural product samples were analysed by a series of dilu-
tions with PBS (containing 5% methanol). The matrix effects
were determined by comparing standard curves of AFB,;
prepared in matrix extract and standard curves of AFB,
prepared in PBS buffer free of matrix.

2.7 Evaluation of BSA-IMB with HPLC-FLD

To test the effectiveness of the developed BSA-IMB, authentic
agricultural product samples were chosen from flour factories
and marketplaces and prepared with the same procedure
described above. Then, each sample was divided into two
portions: one was analyzed using BSA-IMB, and the other using
HPLC-FLD. For HPLC-FLD, the extracted solutions were
adjusted to pH of about 6.0-7.0 and then cleaned and concen-
trated through AflaTest immuno-affinity columns (Vicam, USA).
In the step of derivatisation, 200 pL of n-hexane and 100 pL of
trifluoroacetic acid were added to the purified and evaporated
residue; after 30 s of vortex mixing and 15 min of derivatisation
at 40 °C in a water bath, it was dried under nitrogen. The residue
was dissolved in 200 pL of acetonitrile and filtered through
a membrane filter (0.22 um). Then, 100 puL supernatant was
injected into HPLC-FLD for analysis. HPLC-FLD analysis was
performed on an Eclipse XDB2-C18 column (250 mm x 4.6 mm
x 5 um) using a mixture of water, methanol and acetonitrile
(11 : 4:5, v/v) as the mobile phase at a flow rate of 1.0 mL min~*
at 35 °C. The excitation wavelength and detection wavelength
were set at 355 nm and 430 nm, respectively.

3 Results and discussion

3.1 Optimization of immunoassay conditions

As shown in Table 1, the parameters for IMB and BSA-IMB were
optimized. The concentrations of biochemical reagents were
first optimized. The optimal concentrations of magnetic
microspheres-antigen were 0.2 ng mL~* for IMB and 0.1 ng
mL ™" for BSA-IMB. The optimal concentrations of McAb and
biotinylated-McAb were 1.3 ng mL ™" and 0.6 ng mL~ " for IMB

RSC Adv., 2018, 8, 26029-26035 | 26031
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Table 1 Optimization of the parameters for immunoassays

Factors IMB Factors BSA-IMB
Magnetic microspheres- 0.2 ng mL ™" Magnetic microspheres- 0.1 ng mL™*
antigen antigen

McAb 1.3 ng mL™* Biotinylated-McAb 0.6 ng mL ™"
GAM-IgG-HRP 1:8000 Streptavidin-HRP 1:38 000
Methanol (v/v, %) 5 Methanol (v/v, %) 5

Na* (mol L) 0.5 Na* (mol L") 0.5

pH value 7.4 PpH value 7.4

and BSA-IMB, respectively. We used 1 : 8000 of GAM-HRP and
1:38000 of streptavidin-HRP for IMB and BSA-IMB,
respectively.

Organic solvent, ionic strength and pH were investigated to
optimize immunoassays (Fig. S11), and the optimal results are
summarized in Table 1. Methanol was selected to improve the
solubility of analytes and evaluate its effect on the immunoas-
says. The values of By/ICs, tended to decrease with the increase
in methanol, and the ICs, values showed drastic increase when
the methanol content was above 5% for IMB and BSA-IMB. The
change in Na* concentration from 0.1 to 0.6 mol L™ influenced
immunoassays dramatically. The highest By/IC5, and lowest
IC5, values were acquired at 0.5 mol L' Na* for IMB and BSA-
IMB. In addition, pH did not have a notable effect on the
sensitivity of the immunoassays. On the basis of these results,
5% methanol, 0.5 mol L' Na* and pH 7.4 were chosen as
optimal IMB and BSA-IMB conditions.

3.2 Sensitivities

The calibration curves of AFB,; using immunoassays were con-
structed under optimum conditions. The graph between
percent binding (% B/B,) and the logarithm of concentration of

100
| Ao  ELISA
80 = |JMB
_ e BSA-IMB
g 60 1
@O p
@ 40
20 -
0 T LR | LU | T "T""_l AL
0.01 0.1 1 10

Concentration of AFB, (ng/mL)

Fig. 2 Immunoassay calibration curves for AFB;.
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AFB, (ng mL~") was plotted (Fig. 2). IMB for AFB, was shown to
have LOD of 0.0335 ng mL™ "', IC5, of 0.606 ng mL ™', and
detection range (IC,,-ICgo) of 0.0690-5.32 ng mL~'. BSA-IMB
showed higher sensitivity, with LOD value, IC5, value and
detection range of 0.00579, 0.573 and 0.0183-17.9 ng mL /,
respectively. Using same McAb, the ELISA results for AFB,
exhibited LOD of 0.0440 ng mL ™, ICs, of 0.245 ng mL ™', and
a detection range of 0.0681-0.879 ng mL™". The chromogenic
results of BAS-IMB in standard serial concentrations of AFB, are
shown in Fig. S3.1 As can be seen from the diagram, the colours
of solutions gradually deepened with the decrease in AFB,
concentration, and these results were reversed by increasing the
concentrations of AFB;. Finally, the developed BSA-IMB method
was selected for follow-up research and determination.

As LODs of ELISA, IMB and BSA-IMB were below MLs of
AFB,, the sensitivity of the developed immunoassays can meet
the requirements for detecting AFB,. Using popular materials of
magnetic microspheres, new load and separation techniques
have been achieved. Thus, the detection patterns of heteroge-
neous ELISA can be changed to those of homogeneous IMB and
BSA-IMB in this study. Through the use of new labeling tech-
niques and signal amplification strategies, the detection effi-
ciency and convenience of immunoassays can be improved,
which are popular requirements desirable in the detection of
harmful substances.

In this study, LODs showed clear improvements (LODs of
BSA-IMB improved 7.6-fold and 5.8-fold over those of ELISA and
IMB, respectively). Moreover, the detection range of BSA-IMB
(covers 4 orders of magnitude) was wider than those of IMB
and ELISA, which is more convenient and practical for detecting
AFB,;. Without the use of special instruments and expensive
reagents, higher sensitivity and wider detection range of BSA-
IMB could be achieved after coupling with the BSA system,
which has strong signal amplification capability. Compared to
the reported instrument-based detection methods and immu-
noassays for AFB,, the developed BSA-IMB method possessed
high sensitivity, which should be feasible and worthy of wide
use. Therefore, the proposed BSA-IMB format was selected for
further research and applications in the detection of AFB; in
agricultural product samples.

Objectively speaking, instrument-based detection methods
often require complicated cleanup procedures, and it is diffi-
cult to achieve high-throughput screening for a large number
of samples; ELISAs need a long period of analysis time and
complex separation processes. Compared with the ELISA for

This journal is © The Royal Society of Chemistry 2018
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Table 2 The parameters of immunoassays for AFB; using the same McAb

LOD 1Cso Detection range Detection time
Immunoassay (IC10, ng mL ™) (ng mL™) (IC50-ICgp, ng mL ™) (min) Detection step
ELISA 0.0440 0.245 0.0681-0.879 180 5
IMB 0.0335 0.606 0.0690-5.32 50 3
BSA-IMB 0.00579 0.573 0.0183-17.9 40 3

AFB,, which requires 180 min of analysis time by multistep
reactions (5 steps), homogeneous BSA-IMB can be achieved in
3 steps in 40 min without complex incubation and washing
steps. Thus, the developed BSA-IMB method exhibits great
improvement with regard to shortening the overall testing
time and analytical procedures (Table 2).

The reasons for these observations might be that McAb
binds more easily to the target compounds in BSA-IMB
because they are distributed more uniformly in the liquid
reaction system than in the solid-phase ELISA system. In
addition, the BSA-IMB system, as an immobile phase pattern,
has larger surface area than the flat base of a microtiter plate,
which can immobilize a high number of antibodies.'®**
Moreover, the volume of the sample loaded in magnetic
microspheres is larger than that in conventional ELISA, which
enables more free targets to occupy the antibody binding sites
and improves the sensitivity of the immunoassay. In summary,
due to numerous potential advantages of BSA-IMB, it is
a straightforward, rapid and highly efficient testing method.

3.3 Selectivity

BSA-IMB showed negligible CRs with analogues (Table 3).
Different levels of CRs were found between AFB; and its
analogues in some reports.>**” In this BSA-IMB study, CRs of
AFB, for AFM;, AFG, and AFB, were 3.82%, 3.67% and 0.53%,
respectively; the CR value was lower than 0.06% for AFG,.
Therefore, negligible CRs between AFB; and its analogues
guaranteed the use of BSA-IMB for specific determination of
AFB,.

3.4 Matrix effects

Matrix effects are one of the most common challenges while
performing immunoassays on complex samples. Sample dilu-
tion is the easiest and most immediate way to minimize matrix
effects. Different sample matrices have different effects on the
sensitivity of immunoassays. The matrix effects of 5 agricultural
product samples on the sensitivity of BSA-IMB are shown in
Fig. S2.f With the increasing dilution multiples, the matrix
effects on sensitivity were reduced. The scheme of dilution was
as follows: 8-fold dilution of rice flour sample and 10-fold
dilution of wheat flour, corn flour, corn and peanut samples.
These dilution schemes were also applied for subsequent
experiments.

This journal is © The Royal Society of Chemistry 2018

3.5 Accuracy and precision

Recoveries and relative standard deviations (RSDs) were
calculated to evaluate accuracy and precision of BSA-IMB. As
illustrated in Table 4, the recoveries of AFB; for BSA-IMB
ranged from 89.6 to 118.2% with RSDs between 3.4 and
13.2%. These results indicated that the accuracy and precision
of the developed BSA-IMB were satisfactory for the qualitative
and quantitative determination of AFB; in agricultural
products.

Table 3 Cross-reactivity of AFB; toward its analogues by BSA-IMB

Compound Structure ICso (ng mL ™) CR (%)
AFB; 0.573 100
AFM, 15.0 3.82
AFG, 15.6 3.67
(0}

Q

Q
AFB, _ 108.1 0.53

5
O O

AFG, >1000 <0.06
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Table 4 Accuracy and precision of AFB; in agricultural products by BSA-IMB
Sample Spiked (ng g~ ', n = 3) Dilution times Mean recovery £ SD (%) RSD (%)
Rice flour 0.1 8 94.8 + 6.2 6.5
0.5 103.0 £ 5.1 4.9
2.5 101.9 £ 10.7 10.5
10 102.4 £ 12.3 12.0
Wheat flour 0.1 10 99.9 + 9.5 9.5
0.5 109.6 £ 6.2 5.6
2.5 95.6 + 12.6 13.2
10 114.1 £5.7 5.0
Corn flour 0.1 10 105.3 + 6.5 6.2
0.5 115.7 £ 4.0 3.4
2.5 115.6 £ 3.9 3.4
10 103.9 £ 8.0 7.7
Corn 0.1 10 108.8 £ 7.5 6.9
0.5 89.6 + 5.8 6.5
2.5 96.1 +£7.9 8.2
10 90.2 + 8.8 9.8
Peanut 0.1 10 97.6 + 3.8 3.9
0.5 104.8 £ 3.7 3.5
2.5 118.2 £ 6.1 5.2
10 101.6 £+ 11.8 11.6
500 results further demonstrated that AFB, in authentic samples
y= 0.9885x + 2.0781 cban ll:l)e simply, Zapldly, homogelile(i)usly and efficiently detected
2 y the proposed BSA-IMB method.
400 R™=0.9928 ®
— .
ch 4 Conclusions
£ 300 . .
~ In summary, a simple and efficient BSA-IMB method for the
5 determination of AFB; was successfully developed by coupling
= 1200 the BSA system with the IMB system. Using this simple BSA-
8 IMB system, the detection of AFB; contamination was real-
o ized in a simple, efficient, and sensitive manner in a wide
= 100 detection range. The detection of AFB; by BSA-IMB was ach-
ieved in 40 min (ELISA needs at least 180 min). The accuracy
and precision of BSA-IMB met the requirements of AFB,
1 1 1 1

0 100 200 300
BSA-IMB (ng/g)

Fig. 3 Correlation between BSA-IMB and HPLC-FLD for detecting
AFB; in authentic samples (n = 3).

400 500

3.6 Correlation of BSA-IMB with HPLC-FLD

Comparative analyses of the samples of agricultural products
naturally contaminated with AFB; were performed by both the
developed BSA-IMB method and reference method of HPLC-
FLD. Using BSA-IMB, we found that the samples suffered
varying degrees of contamination by AFB;, which ranged from
1.25 to 425.8 ng g '. Subsequent HPLC-FLD gave largely
consistent results when compared with BSA-IMB, and the
positive results ranged from 1.73 to 400.2 ng g '. Good
correlations were obtained between the results of BSA-IMB and
HPLC-FLD (y = 0.9885x + 2.0781, R*> = 0.9928) (Fig. 3). These

26034 | RSC Adv., 2018, 8, 26029-26035

analysis. The studies of agricultural product samples were
conducted using both BSA-IMB and HPLC-FLD to demonstrate
the reliability of BSA-IMB in AFB, assessment. Moreover, the
developed BSA-IMB method was found to be ideal as less use of
antigen and antibody was observed. The developed BSA-IMB
method is a sensitive and economical method for large-scale
screening and monitoring of AFB; in agricultural product
samples. In future studies, BSA-IMB can be developed to assay
more analytes and different matrix samples; thus, the deter-
mination of harmful substances will be achieved through
a more sensitive, inexpensive and alternative method.
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