Issue 35, 2022, Issue in Progress

Molecular insights into the ‘defects’ network in the thermosets and the influence on the mechanical performance

Abstract

The introduction of ‘defects’ to the thermoset crosslinking network is one of the most applicable strategies for improving the modulus and toughness simultaneously. However, the reinforcement effect disappears when the ‘defects’ proportion exceeds the threshold. The speculated mechanism was that the aggregation and entanglement of the ‘defects’ chains changed the matrix topology, making the stacking structure more compact. However, the ‘defects’ are hardly directly observed in the experiment. As the result, the relationship between the ‘defects’ proportion and the package state of the matrix, and the effect on the material's mechanical performance was not explored. Herein, the network of bisphenol-A diglycidyl (DGEBA) with diethyltoluenediamine (DETDA) as the hardener was constructed using MD simulation, and n-butylamine was decorated on the matrix by replacing a proportion of DETDA acting as the ‘defects’. The results indicated that the aliphatic chains aggregated and entangled at a low concentration, occupying the voids in the rigid aromatic crosslinking structure, thus lowering the free volume. The strong non-bonding interactions drew the matrix segments close together, thus reinforcing the resin. However, the microphases formed by the aliphatic chains no longer filled the voids but created a new free volume and loosened the network when the content increased, which reduced the mechanical performance of the material. The experimental results were consistent with the findings in the simulations. The moduli of the resin increased with the increase in the n-butylamine content first and then declined. The maximum moduli of the thermosets was 3.4 GPa in S30, which was about 25% higher compared with the control; the corresponding elongation at break was 8.9%, which was about 46% improved compared with the control.

Graphical abstract: Molecular insights into the ‘defects’ network in the thermosets and the influence on the mechanical performance

Article information

Article type
Paper
Submitted
16 Մյս 2022
Accepted
23 Հնս 2022
First published
10 Օգս 2022
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2022,12, 22342-22350

Molecular insights into the ‘defects’ network in the thermosets and the influence on the mechanical performance

F. Zhao, H. Zhang, D. Zhang, X. Wang, D. Wang, J. Zhang, J. Cheng and F. Gao, RSC Adv., 2022, 12, 22342 DOI: 10.1039/D2RA03099C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements