Issue 2, 2021

Nanozyme's catching up: activity, specificity, reaction conditions and reaction types

Abstract

Nanozymes aim to mimic enzyme activities. In addition to catalytic activity, nanozymes also need to have specificity and catalyze biologically relevant reactions under physiological conditions to fit in the definition of enzyme and to set nanozymes apart from typical inorganic catalysts. Previous discussions in the nanozyme field mainly focused on the types of reactions or certain analytical, biomedical or environmental applications. In this article, we discuss efforts made to mimic enzymes. First, the catalytic cycles are compared, where a key difference is specific substrate binding by enzymes versus non-specific substrate adsorption by nanozymes. We then reviewed efforts to engineer and surface-modify nanomaterials to accelerate reaction rates, strategies to graft affinity ligands and molecularly imprinted polymers to achieve specific catalysis, and methods to bring nanozyme reactions to neutral pH and ambient temperature. Most of the current nanozyme reactions used a few model chromogenic substrates of no biological relevance. Therefore, we also reviewed efforts to catalyze the conversion of biomolecules and biopolymers using nanozymes. By the efforts to close the gaps between nanozymes and enzymes, we believe nanozymes are catching up rapidly. Still, challenges exist in materials design to further improve nanozymes as true enzyme mimics and achieve impactful applications.

Graphical abstract: Nanozyme's catching up: activity, specificity, reaction conditions and reaction types

Article information

Article type
Review Article
Submitted
28 Օգս 2020
Accepted
21 Հկտ 2020
First published
21 Հկտ 2020

Mater. Horiz., 2021,8, 336-350

Nanozyme's catching up: activity, specificity, reaction conditions and reaction types

Y. Li and J. Liu, Mater. Horiz., 2021, 8, 336 DOI: 10.1039/D0MH01393E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements