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Rapid depletion of fossil fuels and increased energy scarcity have paved the way for the use of
electrochemical energy storage devices, such as rechargeable batteries and supercapacitors, to power
electronic devices. Ultrathin two-dimensional (2D) materials have attracted significant research interest
due to their prominent characteristics, including large surface area, lightweight, good electronic
conductivity, and good chemical and electrochemical properties. Metallenes are emerging class of 2D
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DOI: 10.1039/d55u00085h materials with an atomic thickness and consisting of metals or alloys with a well-controlled surface
atomic arrangement. 2D metallenes are invariably used as electrode-active materials in energy storage

rsclifrscsus devices such as rechargeable batteries and supercapacitors in the literature. Since metallenes consist of
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metallic 2D sheets, charge storage is limited by electrode kinetics and the electrode is more prone to
corrosion when used in electrolytes. This motivated us to examine the truth behind these fascinating

materials. We critically analysed the various types of metallenes available to date, their synthesis

methods, and the mechanism of charge storage in rechargeable batteries and supercapacitors for better

clarification.

Sustainability spotlight

The current energy demand requires sustainable and renewable electrochemical energy storage devices with features such as mobility, high specific energy, low
cost, and safety. Electrochemical energy storage devices, such as rechargeable batteries and supercapacitors, use nanostructured electrode-active materials for
charge storage. Metallenes-based electrodes are a versatile option for developing sustainable batteries and supercapacitors. These devices will achieve the UN
Sustainable Development Goal 7: Affordable and clean Energy. Metallenes-based electrodes may revolutionize the world of sustainable electrochemical energy
storage devices because they are robust, stable, low-cost, high performance and safe to use.

1. Ultrathin 2D metallenes

Ultrathin two-dimensional (2D) layered materials have received
significant research interest due to their large surface area,
suitable plane for charge transfer and quantum-size effects."*
After the discovery of graphene, research has been conducted to
synthesize various types of 2D materials, with conductivity
spans from an insulator to a semiconductor toward
conductors.”” 2D materials are different from their bulk coun-
terparts in terms of properties.*® The peculiar properties of 2D
materials such as physical, chemical, optical, electronic,
thermal, and mechanical properties enabled them to be utilized
in a variety of applications, including catalysis, energy storage,
and sensors.'”™ Almost hundreds of 2D materials have been
explored to date, and some examples are transition metal
dichalcogenides,*™* layered double hydroxides,* graphitic
carbon nitride," and MXenes.'”*® In the literature, materials
ending with “ene” refer to ultrathin 2D materials, e.g., bor-
ophene, silicene, germanene (Ge-ene), phosphorene, stanene
(Sn-ene), antimonene (Sb-ene), and bismuthene (Bi-ene) to
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name a few. Among these, silicene and phosphorene are
semiconductors, whereas borophene, Ge-ene, Sn-ene, Sb-ene,
and Bi-ene are considered metallenes. A “metallene” is a hypo-
thetical class of materials that would be analogous to graphene
but are composed of metals or alloys. Metallenes are good
conductors of electricity with thicknesses in the range of one or
several atomic layers.

In comparison with other metals that are widely used, met-
allenes have high conductivity and they are highly promising
materials for catalysis, supercapacitors, and batteries." Beyond
other non-2D materials and their bulk counterparts of metals,
metallenes possess extraordinary properties ranging from
conductivity to superconductivity.”® Atomically thin architecture
of metallenes exhibits a large surface-area-to-volume ratio,
which facilitates coordination with other atoms through
unsaturated metal atoms present on the surface and edge sites.
In comparison with surface atoms, coordinated edge atoms are
unsaturated due to the formation of defects and dislocations,
thereby achieving high electrochemical activity for electro-
chemical energy storage.” > Metallenes have a higher
percentage of surface unsaturated metal sites that behave as
active sites, making them an efficient candidate for energy
storage applications.® Large specific surface area and increased
surface energy (as it promotes greater number of active sites) of
metal atoms promote adsorption mechanisms, making them
suitable for ubiquitous charge storage. The ultrathin feature of
metallenes reduces the diffusion distance of electrolyte ions in
the electrolyte medium. Beyond these features, the capability
for surface functionalization of metallenes allows tuning their
electronic  structure, electrochemical  stability, and
hydrophilicity.**

Although metallenes possess several advantages, research on
metallenes is still in its infancy. The thermodynamic instability
and limited synthesis routes available make their application
limited. Hence, obtaining a free-standing layer remains a chal-
lenge in the case of metallenes.> To demonstrate the wide
acceptability of the metallenes as ultrathin materials for energy
storage applications, we planned to investigate the truth behind
the acceptability of this class of materials. The statistical
representation of number of publications related to metallenes
is shown in Fig. 1. The number of citations received for these
publications in each year is presented as an inset graph in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Number of publications (inset: number of citations received in each year) related to metallenes for the past 15 years (source: web of

science; keyword: "metallenes”).

Fig. 1. From this graphical representation, it can be observed
that there exists only a very small number of publications and
studies with respect to metallenes in the literature, but a rapid
increase in research related to metallenes can be observed over
the past 5 years.

The depletion of fossil fuel resources and the ever-increasing
global population have led to a severe energy crisis. Although
various renewable energy conversion technologies have been
developed, such as solar cells, windmills, and tidal turbines,
their intermittent nature necessitates the need for energy
storage technologies. Among the various choices available, the
most promising energy storage is electrochemical energy
storage. This includes capacitors, batteries, and super-
capacitors. Conventional capacitors or dielectric capacitors are
good candidates for high power density, but very low energy
density. On the other hand, supercapacitors exhibit high
specific capacitance, high power density and moderate energy
density. Batteries are the most common examples of electro-
chemical energy storage devices that are used in daily life.
Rechargeable batteries, such as metal-ion batteries,” metal-
sulfur batteries,”® and metal-air batteries,>” are the most
extensively explored battery types. Electrode and electrolyte
materials play crucial roles in determining the voltage window
and electrochemical performance of batteries and super-
capacitors.”®*® Detailed reviews of various advanced materials
for energy-storage applications are available in the literature.
However, the salient features of using 2D metallenes in energy
storage have not been explored to date. This motivated us to ask
the following research question: “Ultrathin 2D metallenes for
energy storage is a myth or reality?”. This review critically
evaluates the salient features of metallenes capable of use in
energy storage applications such as supercapacitors and
batteries. We review the fundamental properties of metallenes,
their synthesis routes and their exemplary applications in the
field of electrochemical energy storage.

© 2025 The Author(s). Published by the Royal Society of Chemistry

2. 2D metallenes for supercapacitors

There are different types of metallenes explored to date, most of
which have been explained theoretically, and only a small
number have been experimentally investigated. After the
discovery of graphene in the year 2004, it became a fascinating
material of choice for many electronic device applications due
to its tunability in the electronic structure, number of layers,
and surface functionalization. Graphene and its derivatives are
invariably used in energy storage because of their unique
features, such as 2D architecture, large surface area, good
chemical and electrochemical stabilities, and good capacity.*
Graphene is a perfect choice for semiconducting devices,
whereas metallenes are not suitable because of their zero
bandgap.** However, ligand-functionalized metallenes may be
complementary to graphene in the future.*” Ge-ene-based
materials received prominent attention in the field of electro-
chemical energy storage, particularly for electric double-layer
capacitors (EDLCs). Similar to graphene, monolayered Ge-ene
has a honeycomb buckling structure, which can store charges
via the formation of a double layer, as theoretically studied.
Researchers have conducted simulation studies such as
hydrogenation, functionalization, organic functional group
termination, and exogenous doping of elements. From these
studies, it is observed that the physical and chemical features of
Ge-ene can be altered.™ A recent study comprising experimental
and theoretical analysis of low-dimensional materials such as
carbon nanotubes and graphene unveils that the overall inter-
face capacitance is a series combination of a double-layer
capacitance and quantum capacitance (Cq).** From this study,
it is clear that Cq has a significant influence on the total
capacitance. At a reduced applied potential, the Cq, of graphene
limits the performance of EDLC. A variation in the Cq, affects the
overall capacitance of the electrode-active material. Xu et al.**
evaluated the Cq of pristine and defect-induced Ge-ene through

RSC Sustainability, 2025, 3, 3841-3862 | 3843
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first-principle calculations with the aid of a projected
augmented wave potential approach using the Vienna Ab initio
Simulation Package. In this study, the exchange-correlation
energy of the interacting electrons were obtained by a general-
ized gradient approximation functional with the Perdew-
Burke-Ernzerhof (PBE) functional. Here, the integral k-space
and the plane wave basis set with a cut-off energy of 450 eV are
properly selected to achieve overall convergence of the energy at
1 meV per level. Here, a Monkhorst-Pack with a higher k-point
density is used to evaluate k-points in the Brillouin region.
Using sp®/sp” hybridization, the buckled honeycomb structure
held by Ge-ene holds a lattice constant of 3.84 A with a Ge-Ge
bond length of 2.268 A. The authors of this work observed that
pristine Ge-ene exhibits linear dispersion near the Fermi level
with a Dirac point, the same as that of graphene. A Stone-Wales
defect (SW defect) makes Ge-ene to have a linear dispersion

80
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near the Fermi level, breaking the degenerate state near the I’
region. In comparison with the density of states of bulk Ge-ene,
for the SW defect, there exists a peak at 0.3 eV above the Fermi
level (or the Dirac point) through the introduction of SW flat
bands. These flat bands and degenerated states breaking near I"
reveal that there exists a partial distortion in the network of
states due to Ge atom p(z) hybridization. Thus, it produces
a quasi-localization state near the SW defect. The injected
charge carriers gather near the Ge ring pentagon-heptagon,
which is introduced from the decomposed band charge density
isosurface. Moreover, a state near I' point indicates a higher
number of additional charges distributed in the Ge crystal
lattice. The Cq, values of the pristine and six different defective
Ge-ene electrodes were further evaluated at a temperature of
300 K, as shown in Fig. 2a-f. The Cq profile of each Ge-ene
electrode is similar to the density of state shape in thermal
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Fig.2 (a—f) Cq for pristine Ge-ene and defective Ge-ene; (g and h) surface charge density variation with respect to potential drop having @ in the

range of 0.0 to 0.6 V and —0.6 to 0.0 V. The results were evaluated in the supercell 6 x 6 and it possesses a defect concentration of 1.39%.
Reproduced with permission from ref. 33. Copyright (2020), the American Chemical Society.
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the American Chemical Society.

broadening. The Cg is increased with an increase in |@| and it
reaches 60 uF cm™ > at @ = 0.6 V for the pristine Ge-ene. For all
six defect-induced Ge-ene electrodes, a higher irregular Cqy was
observed near the neutrality point. The Cq of pristine Ge-ene
significantly increases, and this peak corresponds to the
above-mentioned quasi-localized p(z) state. In this present
point of view, the overall accumulation of charge (Fig. 2g and h),
the double vacancy (DV) defects V, (9-4-9) and the V, (5-4-5)
holds an increase in effect during a positive bias, but with
a negative bias, the accumulation of charges increases rapidly
for defects V, (5555-6-7777), V, (5-8-5) and the SW defect.

To evaluate the electronic structure of metal-doped Ge-ene, the
charge density isosurfaces with band decomposition of Ti and Cu
doping were analysed. For states occupied with energy levels
between the —0.5 eV and the Fermi level, the distribution of
charges is intensive over the Ti (Cu) atom and the three nearby Ge
atoms. In Ti doping, these proposed states originate from the Ge
p(z) and Ti 3d(z%) orbital contributions. In doping Cu, these given
states are introduced from the Cu 3d(x* — y*) orbitals, and the Ge
4p orbital consists of p(x), p(y) and p(z). If the band is in an
occupied state above the Fermi level and smaller than 0.5 eV, the
given charge also makes the distribution mainly over Ti (Cu)
atoms with nearby Ge atoms in the complex. In Ti doping, two
groups of localized bands appear. The localized band near the
Fermi level was derived from the Ge p(z) and Ti d(xy)/d(x* — °)
orbital contributions. Here, the second group present in the
localized band is introduced from the Ti d(z*) orbital. With simi-
larity to metal-atom-doped graphene, an overlap exists between Ge
quasi-sp” and the Ti d(xz)/d(yz) orbitals out-of-plane resulting in
o-o* states (o is from Ge p(x)/p(y) and o* is from Ti d(xz) and Ti

© 2025 The Author(s). Published by the Royal Society of Chemistry

d(yz)). In Cu doping, the Fermi level shifts down with respect to Cu
3d electron deficiency. The Cu 3d orbital does not hold any
contribution from the conduction band, it arises specifically from
the 7o* state of the Ge p(z) orbital. For the adsorption of Cu atoms
on pristine Ge-ene, charges are transferred from Cu to Ge atoms,
which are localized at a region near three atoms in the upper
surface with higher symmetry, but for Cu doping with single
vacancy (SV) Ge-ene, the introduction of chemical bonds present
between the Cu and Ge atoms occurs. In the electrode’s operation
state, the stability of the metal adsorption system on bare Ge-ene
is changed by following the injection/removal of electrons because
this stability is controlled by the transfer of charges. With respect
to the removal of electrons during operation, there is a reduction
in the transfer of charges, and there is a decrease in the adsorption
stability. During metal adsorption on SV Ge-ene, stability does not
cause any prominent changes in the operation state with respect
to the orbital hybridization as the primary factor. The influence of
SV Ge-ene with respect to various metal adsorbates depends upon
Cq is analysed in Fig. 3a. To analyse the effect of doping on Cq
using various elements such as aluminum (Al), silver (Ag), gold
(Au), copper (Cu), and titanium (Ti) on pristine and SV Ge, is
shown in Fig. 3a. In the case of the SV Ge-ene, the Cq of the
pristine Ge-ene makes an improvement. This is attributed to the
presence of a localized state near the Dirac point generated by the
metal dopant complex and SV. The localization effect of states
near the Fermi energy of a doped system is evaluated by the
temperature dependency of Cq, as shown in Fig. 3b. By changing
the temperature of the system in the range of 0 to 400 K, the
authors of this work evaluated the Cq, at zero bias. In this case, it
was observed that the pristine Ge-ene did not undergo any

RSC Sustainability, 2025, 3, 3841-3862 | 3845
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changes and exhibited a value of ~1.96 PF cm™2. For systems Au,
Ti, Cu, Ag, and Al combined with SV, no significant change in Cq
of SV Ge-ene was observed within the temperature region. For the
local electrode potential function, a change in Cq of the Ti- and
Cu-doped SV Ge-ene were observed at various concentrations is
depicted in Fig. 3c and d. When the Ti concentration was
increased from 2% to 8.3%, Cq increased from 48.9 uF cm ™2
(—0.14 V) to 141.1 uF em > (—0.38 V). In comparison with pristine
Ge-ene, the electronic structure of doped Ge-ene was not affected
by a reduced dopant concentration. For a 5.6% doping concen-
tration, Cq reached a maximum value of 110.2 pF cm 2 at
a temperature of 300 K in Ti-doped Ge-ene (Fig. 3c) where C,, was
evaluated with respect to @ at various concentrations. At reduced
concentrations, a localized energy state is introduced through the
defects, which begin to hybridize and expand via quasi-localiza-
tion phenomena.

Stanene (Sn-ene) is another member of the family, composed
of a single layer of tin (Sn) atoms arranged in a 2D manner. Sn-
ene exhibits prominent features like room temperature spin
hall quantum effect, topological superconductivity behaviour,
thermoelectricity, etc. to name a few.** Sn-ene monolayer can be
prepared over Bi,Te; (111) via molecular beam epitaxy.** The
alloy-terminated surface was found to be a template for the
growth of higher-scale Sn-ene film. Zhou et al.** studied the
influence of vacancy-defect, doping of single-element and co-
doping of multiple elements on the Cqy of Sn-ene electrodes.
The authors of this work have selected two different types of
dopants, such as light-element dopants (B, N, Al, Si, P, and S)
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and metals such as Ti, V, Cr, Mn, Fe, and Ni. Their investigation
unveiled that Sn-ene exhibits high Cq under vacancy at 0 V. The
capacitance was found to be increased with co-doping in
comparison with single-atom doping. Sn-ene with a co-doped
atomic framework possesses an efficient C, for negative
potential for positive bias, suggesting that it acts as an effective
cathode material for supercapacitors. The partial density of
states suggest that Cq curve shifting was mainly due to the
contribution of the transition metal, the light element dopant,
and the Sn atom. This study suggests that Sn-ene-based elec-
trodes are efficient candidates for supercapacitor application.
Antimonene (Sb-ene) is another important metallene that
has received great interest for electrochemical applications
because of its isolation from conventional layered allotrope
forms. It is possible to synthesize few-layered Sb-ene via liquid-
phase exfoliation.*® There is a modified synthesis approach that
involves an initial step of ball-milling procedure conducted at
3000 rpm for a milling period of 180 minutes.*” The initial step
involves a prominent reduction in the size and homogenous
maintenance of the Sb crystal's morphology. Using SEM
imaging, it was confirmed that the prepared Sb power possesses
uniformity in structure. To evaluate the electrochemical charge
storage properties of this material, a Sb-modified screen-
printed electrode (SPE) was prepared and the morphology was
analysed by SEM analysis. SEM images show that Sb forms
flakes with a lateral dimension of ~200-400 nm. The super-
capacitor performance of the prepared electrode was evaluated
in a two-electrode cell configuration using 0.5 M H,SO,
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Fig. 4 (a) CV curves of AC, Bi-ene/Sb-ene at a scan rate of 10 mV s~ (b) CV curves of the HSC at different scan rates; (c) Nyquist plot of HSC
(inset: equivalent circuit model); (d) GCD profiles of the HSC at different current densities; (e) capacitive retention (in %) and coulombic efficiency
(in %) of the HSC; (f) comparison of the energy density and power density of the HSC with other reports in the literature. Reproduced with
permission from ref. 38. Copyright (2022), the American Chemical Society.

3846 | RSC Sustainability, 2025, 3, 3841-3862

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5su00085h

Open Access Atrticle. Published on 05 junius 2025. Downloaded on 2025. 10. 17. 18:12:55.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Tutorial Review

electrolyte. The authors of his work observed both reduction
and oxidation peaks in the cyclic voltammetry (CV) curves,
which is due to the oxidation and reduction of Sb-ene. Hence, by
faradaic phenomena, Sb-ene electrode-active material contrib-
uted to the total capacitance. The supercapacitor electrode
prepared with 36 ng of Sb-ene exhibited a specific capacitance of
1578 Fg~ ' at a current density of 14 A g~ *. The charge/discharge
stability of this electrode undergoes 1000 galvanostatic charge/
discharge (GCD) cycles and achieves good capacitance reten-
tion. The supercapacitor delivered an energy density of 20 mW h
kg ' at a corresponding power density of 4.8 kW kg™’

A high-performing supercapacitor with bismuthine (Bi-ene)/
Sb-ene was synthesized through the injection of interactions
between adjacent layers through hydrogen bonding, van der
Waals forces, and covalent bonds.*® The covalent bonds between
these two metallenes provide efficient combined dynamics and
structural stability, which is induced through a standard liquid-
phase exfoliation approach. A hybrid supercapacitor was assem-
bled using Bi-ene/Sb-ene as the positive electrode and activated
carbon (AC) as the negative electrode. The SEM image of Bi-ene
shows 3D microspheres with a rough surface morphology and
an average particle size of 400 nm. The exfoliated Bi-ene exhibited
thin nanosheets laterally aligned with a mean lateral dimension
of 120 nm. The SEM image of bulk Sb contained several cubic
nanocrystals with smooth surfaces, and their diameters varied
between 300 and 500 nm. The exfoliated Sb-ene consists of large
nanosheets that are randomly stacked with smooth surfaces with
a mean sheet length of 80 nm. There exists a random distribution
of Bi-ene and Sb-ene nanosheets with perfectly defined sheet
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boundaries, with surfaces having a smooth morphology and
a mean sheet diameter of ~100 nm. An asymmetric hybrid
supercapacitor with Bi-ene/Sb-ene as the positive electrode and
AC as the negative electrode was assembled with optimized
potential windows of —1.0 to 0.0 V and 0.0-0.6 V, for negative and
positive electrodes, respectively. The CV curves obtained at a scan
rate of 10 mV s~ are shown in Fig. 4a. The hybrid supercapacitor
achieved an operating potential window of 0.0-1.5 V and the CV
curves obtained at different scan rates are shown in Fig. 4b.
Because the hybrid supercapacitor uses both an EDLC electrode
and a pseudocapacitive electrode, the net charge storage is
a combination of both types of mechanisms. Since the positive
electrode has a 2D nanostructure, battery-type charge storage is
anticipated since a higher degree of intercalation/deintercalation
of electrolyte-ions between Bi-ene/Sb-ene interlayers is possible,
which gives rise to an enhancement in charge storage. This in turn
enhances the ionic conductivity, leading to higher electro-
chemical activity for an enhanced charge storage. A large area
under the CV curve is an indication of amount of charge stored, as
the area under the curve is directly proportional to the specific
capacitance (or specific capacity in the case of supercapatteries).
The high electronic conductivity of the Bi-ene/Sb-ene electrodes
along with hierarchical 2D architecture are responsible for the
high-rate performance of the hybrid supercapacitor. The Nyquist
plot of the hybrid supercapacitor, along with the fitted equivalent
circuit model as an inset image, is shown in Fig. 4c. The Nyquist
plot reveals low charge transfer resistance, that eventually leads to
attaining high ionic conductivity and faster ion diffusion kinetics.
The series resistance (R;) and charge transfer resistance (R.) of the

(a) Pictorial representation of the stacked structure of Ge; (b) XRD spectrum of Ge, showing a stacking peak present at ~15.4° and other

peaks represent characteristic Ge elemental impurities; (c) SEM image of Ge. Reproduced with permission from ref. 41. Copyright (2017), the

American Chemical Society.
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hybrid supercapacitor were 0.438 and 3.372 Q, respectively. The efficient ionic and electronic conductivity. The asymmetric
GCD curves obtained at different current densities for the hybrid  supercapacitor possessed a specific capacitance of 172.6 Fg ™" at
supercapacitor are shown in Fig. 4d. The hybrid supercapacitor ~a scan rate of 5 mV s~ " and delivered a higher energy density of
exhibits a specific capacity of 560 and 176 C g ' at a current  84.79 W h kg~ " with a corresponding power density of 20.6 kW
density of 2 and 10 A g, respectively. This supercapacitor kg .

exhibits a capacitive retention of 86.2% after 3000 charge/

discharge cycles with a coulombic efficiency of 124.12%, as

shown in Fig. 4e. The supercapacitor delivered an energy density 3. 2D metallenes for recha I’geable

of 131.44 W h kg™ with a maximum power density of 8262.2 W pgtteries

kg™, evident from the Ragone plot (Fig. 4f).**

Mariappan et al* introduced a core-shell structured 3D 2D layered metallenes have significant advantages for
nickel (Ni) core and Sb-ene dendrite as shell. This hierarchical —rechargeable batteries because of their good structural stability,
structure was prepared via an electrochemical deposition large surface area, and fast intercalation/deintercalation of
technique. The Sb-ene particles were dispersed over the 3D-Ni  electrolyte-ions between the layers. The efficient synthesis of 2D
surface after an electrochemical deposition period of 5 s. A metallenes, such as Ge-ene, silicene and Sn-ene has a profound
further increase in the deposition time, such as 10 and 15 s, interest in rechargeable batteries. Sharma et al.** evaluated the
resulted in the generation of dendritic nanostructures of Sb-ene ~ €lectrochemical performance of monolayered and bi-layered
with varied densities. The electrochemical performance of the Ge-ene as an anode for lithium (Li)-ion batteries (LIBs) using
supercapacitor electrode synthesized at a deposition period of first-principle calculation with DFT. The authors of this work
15 s exhibited higher specific capacitance despite the dense observed a single-atom Li adsorption on monolayered Ge-ene.
dendritic structure of the electrode. The electrochemical Here, the Li atom at the hexagonal ring H-site has three near-
performances of the electrode material were evaluated in a two- neighbour Ge atoms with a bond length of ~2.70 A. The
electrode cell arrangement using Sb-ene/Ni as the positive formation energy in this particular direction is —0.43 eV. For the
electrode and graphene as the negative electrode in 1 M LiOH  adsorption with two Li atoms, there are two chances; the first
aqueous electrolyte. The CV analyses show that there is no one is the adsorption of both of these two Li atoms above Ge-
distortion in the curves even at higher scan rates, indicating ene and the second option is that one Li atom above and the

other below the Ge-ene. In the second case, the calculated

(@)o.s (b)
| ——GeH
——Bulk Ge 1P
0.2 —_—
5 4 3
< 0.0 S
) >
E o] 2
= -0.27 o
> ] 9 e
(&) J c Pristine
-0.4 -
-0.6 T T T T T T T T T T
00 05 10 15 20 25 150 350 550 750
Potential (V vs Li/Li*) Raman Shift (cm™)
1600 =
(E) 2.5 ) 1" i 100 2
£ 257 100 eaen eene reee teen 00 e g
S 204 T 1200] cro S— p 8
2 ] E 1000-]3%225,_C55 cHo S
> - < 800 °%eon cp2 sompg 160
: 10_ .é. - ='lll w
g ] g e s © 3
8 057 § 400 - E
[<} e m_’ L LTTT] =S
o .
i S P — 1, 8
0 200 400 600 800 1000 1200 5 10 15 20 25 30 35
Capacity (mAh/g) Cycle Number

Fig. 6 (a) Comparison of CV diagrams for GeH and bulk Ge anode cycled between potentials of 2.5 and 0.1V at a scan rate of 0.1 mV s™*: (b) ex
situ Raman spectra for pristine (blue, top) and the Li-cycled (bottom, green) Ge anode, which shows indication for change in the structure
associated in the delithiation driven amorphization of GeH sheet; (c) GCD profiles for GeH anode at different charge and discharge rates within
a potential window of 0.1-2.5 V vs. Li/Li*; (d) insertion and the extraction capacity retention for GeH anode plotted with a black square and red
circle, respectively, and coulombic efficiency variation with respect to cycle number plotted with blue circles. The insertion and extraction
capacity contributions from the carbon fiber/carbon black and poly(acrylic acid) binder are plotted as black and red lines, respectively.
Reproduced with permission from ref. 41. Copyright (2017), the American Chemical Society.
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formation energy is —0.54 eV, which is smaller by 0.04 eV with
respect to the first case. Thus, adsorption of greater than one Li
atom over Ge-ene is more favourable. To evaluate the adsorp-
tion of Li by the bilayer Ge-ene, the same evaluation was opted
as in the monolayer Ge-ene. For the single-atom case, the Li
atom is adsorbed on the hexagon structure H-site, delivering
a formation energy of —0.75 eV. By increasing the number of
atoms, this formation energy increases when compared with
single-atom adsorption of Li and attains a value of —0.70 eV for
two atoms. Further increasing the number of atoms to 4, 8, and
12, the formation energy becomes —0.74, —0.79, and —0.64 eV,
respectively. Using this theoretical approximation, the authors
of this work found that both the monolayer and bilayer Ge-ene
were covered with several Li atoms. By increasing the number of
Li atoms, there exists a push nearto Ge atoms by the new Li
atoms that creates a lattice distortion. To reduce the distortion
of the lattice, a particular adatom is placed above the favourable
adsorption site rather than in the film. Increasing the number
of atoms creates numerous electronic charges around the Ge
atoms. In the case of completely lithiated monolayer and bilayer
Ge-ene, there exists a repulsion for further adsorption of Li
atoms, and it gets stabilized thenafter. Therefore, the overall
energy held by the system moves toward higher values. With the
aid of this theoretical calculation, the authors found that the Li-
adsorbed monolayer and bilayer Ge-ene hold a specific capacity
of 369 and 276 mA h g™, respectively. A layered and stable Ge-
ene hydride (GeH) was synthesized in large-scale by exfoliation
and purification approach and further used as an anode mate-
rial in LIBs.** Here, CaGe, was synthesized in an argon (Ar)
atmosphere to minimize water concentration and the possible
oxidation otherwise. Later, a stoichiometric quantity for Ge and
calcium granules was homogeneously mixed by ball-milling and
the resultant powder is loaded into an aluminum crucible and
sealed in a quartz ampule under vacuum condition. Further, the
as-prepared samples were annealed at a melting point greater
than the individual binary elements at a temperature of 1000 °C
for 24 h and allowed to cool to room temperature. The prepared
product was intercalated with HCI at a temperature of —20 °C
for 5 days to prepare a layered GeH. The stacked Ge layered
structure is schematically shown in Fig. 5a. X-ray diffraction
(XRD) analysis of CaGe, agreed with JCPDS card no. #00-013-
0299. There exist calcium oxide and germanium impurities due
to the higher reactivity of calcium with a trace quantity of
oxygen at elevated temperatures. Calcium oxide can be easily
removed by subsequent HCI etching. The XRD spectrum of
layered GeH (Fig. 5b) exhibits a peak positioned at a 26 value of
~15.4°, which corresponds to the (002) peak, indicating an
interlayer spacing of 5.7 A. Also, the spectrum shows some
indication of crystalline Ge. The SEM image of the GeH powder
reveals a layered architecture with a width in the range of ~1
um, as shown in Fig. 5c.

The micro- and nanoscale characteristics of solution-
exfoliated GeH sheets and their degree of exfoliation and
degradation were measured. Exfoliated GeH sheets tend to
aggregate in the dry state and show a prominent reduction in
the lateral size through the forces introduced during ultra-
sonication. Transmission electron microscopy (TEM) imaging

© 2025 The Author(s). Published by the Royal Society of Chemistry
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shows that GeH exfoliated sheets tend to aggregate during
solvent evaporation, and there exists a reduced number of iso-
lated single sheets. Here, the polydispersed solution contains
clear single sheets ranging in the lateral dimension from 40 to
200 nm, and the stacked sheets range from 40 nm to 1 pm. The
authors of this work used GeH in LIBs by preparing a composite
with carbon to reduce the solid electrolyte interphase (SEI) layer
formation as well as to increase electronic conduction. After
exfoliation, carbon nanofibers and carbon black were added to
the GeH dispersion. Carbon nanofibers provide large surface
areas and carbon black helps increase electronic conductivity.
The as-prepared mixture was sonicated at a temperature of 15 °©
C for 30 minutes, and the resultant black product was drop-
casted and kept for drying. After preparing the slurry, the
oxygen atoms present in poly(acrylic acid) facilitate hydrogen
bonding between the binder and hydrogen on the surface of
GeH. The prepared slurry was subsequently introduced to
a stainless steel mesh with an area of 0.5 x 0.5 cm”> and kept for
drying under vacuum at room temperature for 12 h. The fabri-
cated electrode was folded and further pressed under a force of
10 000 lbs, resulting in an electrode thickness of <0.2 mm. The
GeH mixture mass loading on electrodes was ~3-5 mg cm ™ 2.
The control sample was prepared using pure Ge powder along
with carbon nanofibers and carbon black. The electrochemical
analysis was performed in an Ar-filled glovebox containing an
oil mixture at O level <1 ppm. The LIB cycling study was con-
ducted using LiClO, (1.0 M) in a 95:5 mixture of anhydrous
propylene carbonate and fluoroethylene carbonate. The use of
anhydrous fluoroethylene carbonate as an additive provides an
enhancement in SEI layer stability. Here, Li metal was used as
the reference and auxiliary electrode. The CV curves of the
exfoliated GeH and bulk Ge anodes at a scan rate of 0.1 mV s~
obtained in the second cycle are shown in Fig. 6a. There exist
two characteristics of the lithiation process; a broader peak
present at ~0.3 V and a steady increasing current at a low
potential that terminates at the cutoff voltage of 0.1 V vs. Li/Li".
The delithiation process is represented by a broader peak
between 0.4 and 0.6 V vs. Li/Li". T