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Traditional drug discovery suffers from high costs and low productivity, with compounds frequently
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failing due to insufficient efficacy or off-target binding. Structure-based approaches aim to address

these challenges by directly incorporating protein target information during molecule design, po-

tentially reducing late-stage failures.

In this review, we focus on current deep learning methods

for structure-based drug discovery. We discuss the range of approaches used to encode and utilise

protein structural information, from early shape-based approaches to more recent co-folding models

that predict protein and ligand structures as a single task. We aim to provide insight into how deep

learning approaches that incorporate structural information can be used to design molecules with en-

hanced binding potential while maintaining chemical and physical plausibility and offer suggestions

as to the future directions of the field.

1 Introduction

Traditional drug design is costly and time-consuming, with the
average expense of bringing a drug from discovery to market esti-
mated at $2.2 billion'l. This is largely due to the high failure rate
of candidate compounds, meaning that each successful drug must
offset the financial burden of numerous unsuccessful attempts<.

The reasons for these failures are multifaceted. A 2019 study™
reported that in Phase II of clinical trials (where a drug’s effective-
ness is first tested in patients) a lack of efficacy was the primary
cause of failure in over 50% of cases. In Phase III (in which drugs
are compared with the best currently available treatment) this
figure rose to over 60%. While it might be tempting to assume
this simply means the drug does not bind sufficiently strongly to
its target, the reality is more complex; failure can also stem from
poor “ADME” (Absorption, Distribution, Metabolism, and Excre-
tion) properties. For instance, the drug may be destroyed by
stomach acid or be unable to cross the blood-brain barrier. Al-
ternatively, the initial target identification may have been flawed,
meaning that modulating the chosen biomolecule does not pro-
duce the desired therapeutic effectd,

The other primary cause of failure is safety. The same 2019
study® reported that safety concerns consistently accounted for
approximately 20-25% of failures across both of these phases.
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These issues arise from off-target binding, where a drug inter-
acts with unintended biological molecules. Such interactions can

lead to adverse reactions=.

Accounting for every potential point of failure is practically im-
possible, not only due to the hugely complex nature of biologi-
cal systems, but also because negative data from clinical trials is
rarely disclosed publicly®®. Consequently, there is limited sys-
tematic data on why and how frequently novel agents fail in late-
stage development, making it difficult to learn from failures and
reduce them. Given these challenges, a practical strategy to im-
prove the overall success rate is to increase the number of high-
quality candidates entering the clinical trial pipeline. The goal
is to start with molecules that are already high-affinity, specific
binders to the target of interest, thereby improving the odds of
success from the outset.

In drug discovery, the design of effective compounds is guided
by information about the biomolecular target. This information
can be sourced directly from the target’s 3D structure in structure-
based drug design (SBDD), or indirectly from molecules known to
bind to it (known as ligands) in ligand-based drug design (LBDD).
Historically, LBDD has been widely employed when a solved struc-
ture is unavailable®12, This remains a common necessity; for
example, despite significant advances in structural biology13-12]
entire families of pharmacologically vital targets are still largely
inaccessible. The most prominent are membrane proteins, which
account for over 50% of modern drug targets1®17 Their res-
idence within the cell’s lipid membrane creates significant ex-
perimental hurdles for structural determination81% creating a
major discrepancy: while they are a dominant class of drug tar-
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gets, they constitute only a small fraction of the structures in the
PDB2%2L, This practical reality ensures that ligand-based design
remains an important tool, but it does not negate the method’s
inherent limitations.

The fundamental limitation of ligand-based methods is that the
information they use is secondhand. The difference between the
two approaches can be illustrated with an analogy: LBDD is like
trying to make a new key by only studying a collection of existing
keys for the same lock. One infers the requirements of the lock
indirectly from the patterns common to the keys. SBDD, on the
other hand, is like being given the blueprint of the lock itself. It
allows a key to be engineered by measuring the precise position
and nature of each internal tumbler. This direct approach is free
from the biases imposed by the original set of keys; for instance,
known ligands may possess large chemical substructures that are
non-essential for binding or may only probe a limited subset of
possible interactions. By avoiding these secondhand inferences,
SBDD is inherently more capable of producing truly novel solu-
tions.

While the direct approach of SBDD is powerful, its practical
application comes with its own distinct challenge. The feasibil-
ity of this approach has greatly increased in recent years as pro-
tein structure determination methods—both experimental®% and
12123 have advanced. However, a complete protein struc-
ture contains a vast amount of information, much of which is ir-
relevant to the binding of a specific compound. Therefore, the
central challenge in modern SBDD is not just obtaining the struc-
ture, but effectively encoding it: distilling the critical structural
and chemical features of the binding site from the noise of the
surrounding protein. This task of identifying and representing the
most significant elements has led to the development of a diverse
range of methods.

Machine learning (ML) has emerged as a powerful tool for
SBDD, owing to its capacity for pattern recognition and its ability
to extract key information from complex data?%2>, Early ML ap-
proaches built upon physics-based foundations, relying on molec-
ular docking20"28 and shape-based ligand generation2239 but in-
volved manual interventions, such as defining the binding pocket
coordinates, selecting specific docking software parameters, or
selecting specific interactions for binders to make. As ML mod-
els have scaled®!, they have become increasingly autonomous,
learning to incorporate structural information directly rather than
relying on such preprocessed features22"3%, This review focuses
specifically on generative models. While many machine learn-
ing models are designed to predict properties or classify existing
data, the purpose of a generative model is to create entirely new
data. By training on a large dataset, these models learn the funda-
mental rules and patterns inherent in the data. For drug design,
this means they learn the principles of molecular structure and
binding interactions. The model can then use this knowledge to
generate novel molecules from scratch, designed to be chemically
valid and tailored to a specific protein target. 2>l

Nevertheless, a crucial question remains: to what extent do
these new approaches genuinely utilise protein information? Ev-
idence for the degree of target structure utilisation is limited,
largely due to the absence of standardised, rigorous benchmarks

in silico
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for evaluation. Additional challenges persist, including ensur-
ing the chemical and physical plausibility of generated com-
pounds®®37, achieving generalisability across diverse protein tar-
gets28, and accounting for the dynamic nature of protein flexibil-
ity in binding interactions=2.

In this review, we examine why and how protein structure can
be integrated into ML methods for three-dimensional ligand gen-
eration. Additionally, we discuss future directions and outstand-
ing challenges in the field of structure-based drug design. How-
ever, we note that the 3D methods discussed in this review are
part of a wider ecosystem of generative machine learning in drug
discovery and structural biology. Alongside them, approaches
that operate on one-dimensional data are also rapidly advancing.
Chemical language models, for example, can learn the ‘grammar’
of chemistry from SMILES strings (strings of ASCII characters rep-
resenting molecules) to generate novel compounds without struc-
tural information?, while other models now design entirely new
protein sequences by learning from evolutionary data4Y, While
these text- and sequence-based methods hold promise, they ad-
dress a different set of challenges. This review will specifically fo-
cus on the unique task of incorporating the explicit 3D geometry
of a protein target into the generative process, exploring the dis-
tinct advancements and hurdles of this structure-based paradigm.

2 Overview of Drug Discovery and Development

Before dissecting these machine learning methods, it is impor-
tant to understand the broader drug discovery pipeline in which
they operate. Modern drug discovery is an inherently multi-stage
process that integrates biology, chemistry, and clinical research.
While strategies vary between therapeutic areas, the canonical
pipeline progresses from target identification through hit discov-
ery, lead optimisation, preclinical evaluation, and finally clinical
trials4243]

Drug design aims to optimise molecules to achieve a desired
therapeutic response by binding to and altering the activity of
a biological target, most commonly a protein®®, The identifica-
tion of this target typically relies on genetic or biochemical ev-
idence linking a biomolecule to the disease of interest4>. The
biomolecule must then be validated, confirming that it is involved
in the disease and that modulating it will lead to a therapeutic ef-
fect. Once a target is validated, hit identification methods are
employed to discover molecules capable of binding to it and per-
turbing its function. These may include high-throughput screen-
ing (HTS), fragment-based drug discovery, or in silico screening
approaches®=,

Hits are then refined via hit-to-lead and lead optimisation
campaigns, which iteratively improve properties such as bind-
ing affinity, selectivity, solubility, and ADME-T characteristics4e.
This optimisation typically follows the design—-make—test—analyse
(DMTA) cycle; the discovery cycle through which molecules are
designed, synthesised, and assayed to produce data that in turn
are analysed to inform the next iteration*”Z. Preclinical testing
further characterises pharmacokinetics and pharmacodynamics
while screening for toxicity®®. Despite this rigorous process, attri-
tion rates remain high: as per the 2019 mentioned above, fewer
than 10% of candidates entering clinical trials ultimately achieve
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regulatory approval®.

The focus of this review is the hit identification stage. Improv-
ing efficiency and reliability at this early stage has the potential
to reduce attrition downstream, lowering costs and increasing the
probability of clinical success.

3 Importance of Structural Insights

A key driver of attrition in drug development is the failure of can-
didate molecules due to insufficient potency (the amount of drug
needed to produce an effect), poor selectivity, or unacceptable
toxicity??. Structure-based drug design seeks to help address
these challenges by leveraging 3D information about the target
itself to rationally guide the design and optimisation of hits4Z/>0,

Generative approaches capable of reliably designing molecules
with high binding affinity to specific targets would be a huge ad-
vance in the field of medicinal chemistry. Their value is twofold.
First, molecules tailored to a target structure should reduce
(though not eliminate) late-stage failures from lack of efficacy.
Second, enlarging the pool of structurally informed candidates
increases the chances of identifying compounds with acceptable
safety profiles, as highly selective molecules are, by definition,
less likely to cause off-target effects=>1.,

For computational models to be effective, they must use the
structural information available for a target, rather than relying
only on indirect measures. Docking provides a rough, physics-
based estimate of how well a molecule might bind, and including
such scores can help guide models towards more realistic candi-
dates (see Section [4.3). But docking is imperfect: if models op-
timise only for these scores, they risk producing compounds that
appear broadly active but lack true specificity, similar to ‘frequent
hitters’ in screening experiments that give false signals across
many assays®<. On the other hand, ignoring docking altogether
and training only on known active molecules can trap models in
familiar chemical space, biasing them towards existing scaffolds
and limiting the discovery of new ones.

Thus, an essential challenge for SBDD in the generative mod-
elling era is twofold: (i) to develop representations and training
strategies that faithfully encode protein-ligand interactions, and
(ii) to establish rigorous, standardised benchmarks for evaluating
the novelty and specificity of generated compounds. Achieving
the right balance between specificity and novelty is critical if com-
putational design is to deliver clinically promising candidates.

4 Practicalities of ML in Drug Design

Implementing ML methods in structure-based drug design in-
volves several practical considerations that shape the approach.
The spectrum of human involvement—from expert-guided to
fully automated systems—presents tradeoffs in bias manage-
ment, cost, and molecular plausibility. The starting point for de-
sign similarly influences outcomes: de novo generation explores
broader chemical space, while fragment-based approaches start
with small chemical fragments known to bind to the target and
then iteratively grow or link them to create a larger, more potent
molecule, which can improve synthetic feasibility at the cost of
diversity®3. Once a strategy is chosen, further complexities arise
in implementation, including decisions on protein representation

Chemical Science

View Article Online
DOI: 10.1039/D5SC05748E

techniques, dataset selection, and evaluation metrics. This sec-
tion explores these fundamental components that underpin ML-
based SBDD strategies.

4.1 Incorporating Target Information

A central challenge in SBDD is how to effectively integrate target-
specific structural information into generative models. This must
be considered in terms of the granularity of the protein descrip-
tion, the molecular encoding strategy, and the amount of expert
preprocessing applied.

Initially, to keep computations tractable, many methods used
abstract representations of the protein pocket. Shape-conditioned
frameworks such as DESERT and SC-Diffusor, for example, en-
code the binding site on voxel grids (essentially dividing the 3D
space into cubes, analogous to pixels in a 2D image) to capture
the coarse geometry required for a good steric fit3%>4 To in-
troduce chemical specificity beyond just shape, other approaches
imposed pharmacophoric constraints. These are abstract maps of
the key interaction points, such as hydrogen-bond donors and ac-
ceptors, that a ligand must satisfy to bind effectively. Methods
like DEVELOP and STRIFE pre-compute these critical points and
use them as a sparse set of anchors to guide a graph-based gener-
ator, meaning the protein is represented by a few key constraints

rather than its entire dense atomic structure®20,

While abstract representations offered computational effi-
ciency, the pursuit of higher biophysical fidelity and the de-
sire to learn interactions from the ground up led to the adop-
tion of all-atom models, which have since become the dominant
paradigm'2345758]  The way molecules are encoded for these
models has also progressed. Early work relied on voxel-based
encodings to generate continuous atomic density maps—a blurry
“cloud” of where atoms should be—which required a separate
atom-fitting step to produce a discrete molecule®?. This limita-
tion was removed as advances in geometric deep learning en-
abled direct 3D graph representations, where molecules are built
as networks of atoms (nodes) and bonds (edges) with precise
coordinates and types. This shift to graphs was a pivotal ad-
vance, as they not only represent molecules more naturally but
also provide a more robust framework for incorporating equiv-
ariance. A model is equivariant if a transformation to its input
(e.g., rotating the pocket) results in an equivalent transformation
to its output (e.g., the generated atoms rotate accordingly). E(3)-
equivariant graph neural networks, as used in Pocket2Mol and
related work3#00 guarantee this crucial physical property and
have become the standard for atomistic SBDD.

Despite this increased realism, recent systematic benchmarks
point to lingering biophysical shortcomings. The PoseCheck
benchmark, for instance, showed that seven state-of-the-art gen-
erators rarely reproduce the hydrogen-bond networks observed
in real crystal structures; for many models, the most common
number of interacting donors and acceptors in generated ligands
was zero®l, In response, the community has begun develop-
ing hybrid methods that synthesise detailed atomistic backbones
with optional expert guidance. MolSnapper and DiffSBDD, for in-

stance, explicitly condition generation on pharmacophoric points
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or the pocket geometry, coupling the expressive power of all-atom
graphs with user-defined constraints to produce more viable can-
didates33/02,

4.2 Datasets

The development of SBDD models is intrinsically linked to the
data on which they are trained, and the landscape of available
datasets reflects the field’s core challenges. The scarcity of high-
quality, unbiased experimental data has driven the creation of di-
verse resources, each with its own strengths and inherent limita-
tions.

The foundation of SBDD is high-resolution experimental data,
primarily sourced from the PDB, the foundational repository for
3D structural data of biological macromolecules, containing over
230,000 experimentally determined structures as of 2025©3.

From this vast resource, more focused subsets have been cu-
rated to train and validate models. These include the PDB-
bind dataset®* which provides experimentally measured binding
affinities for ~20,000 protein-ligand complexes; Binding MOAD
containing ~40,000 protein-ligand complexes with binding data,
curated to ensure biological relevance and structural diversity©2;
sc-PDBC, a collection of ~16,000 high-quality binding sites cu-
rated from high-resolution X-ray data from the PDB; and Bi-
oLiP°Z which combines ~200,000 structures with biological in-
sights and annotations mined from literature and other specific
databases.

However, the limited volume of experimentally determined
structures of protein-ligand complexes, coupled with literature
that tends to over-report analogues and binding compounds©®,
can lead to high similarity between training and testing datasets.
Such similarity, along with inherent biases, may cause models to
make predictions based on incorrect associations from the train-
ing data, frequently resulting in failure when faced with novel
data. Durant et al.®? highlighted that models often learn these
biases instead of the true biophysical principles underlying ligand-
protein interactions.

To supplement the limited volume of experimental structures,
the field also makes use of computationally generated datasets,
particularly for training large-scale models and for benchmark-
ing. The CrossDocked dataset’?, for instance, provides ~22
million synthetic protein-ligand poses generated through cross-
docking, typically filtered to ~170,000 high-quality poses=#7L]
to dramatically increase the scale of available training data. The
DUD-E dataset (Database of Useful Decoys: Enhanced) 72 pro-
vides ~1.4 million computationally generated ’decoys’ across 102
targets, designed to help models learn to distinguish true binders
from non-binders. More recently, the AlphaFold DB has pro-
vided >200 million predicted protein structures, with AlphaFillZ2
adding transplanted ligands and cofactors to ~1.3 million of these
structures.

While essential for building large-scale models, this reliance on
synthetic data carries a significant risk: models may learn the ar-
tifacts of the docking and generation protocols themselves, rather
than the underlying physics of binding@!.

The most recent class comprises modern hybrid and bench-
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marking datasets. These platforms aim to provide the best of
both worlds by enhancing high-quality experimental data with
advanced computational methods. For example, MISATOZ# com-
bines quantum mechanical properties and molecular dynam-
ics simulations for ~20,000 experimental protein-ligand com-
plexes, including refined structures and explicit water simula-
tions, While PLINDER - The Protein-Ligand INteractions Dataset
and Evaluation Resource”2 provides 449,383 protein-ligand sys-
tems each with over 500 annotations, similarity metrics at
protein, pocket, interaction and ligand levels, and paired un-
bound (apo) and AlphaFold2-predicted structures, and curated
train/validation/test splits for rigorous benchmarking.

Finally, a distinct set of complementary resources is the vast
ligand-only databases. As they lack protein structures, they are
not used to train the final structure-based component of a model.
Instead, their value lies in a common training strategy where a
generative model is first pre-trained on a massive and diverse
set of molecules to learn the fundamental rules of chemistry and
drug-likeness. Datasets used for this purpose include ZINCZ0,
MOSESZZ, QM978, GEOM-DrugsZ? or ChEMBL®C, After this pre-
training step, the model is then fine-tuned (further trained with a
smaller, more specific dataset) on a smaller, target-specific set of
structures such as the SARS-CoV2 Main Protease (Mpro). Com-
paring these models presents a challenge, as evaluations typically
involve comparing generated molecules solely against known lig-
ands, rather than benchmarking against other models.

Given these diverse datasets and their inherent limitations, sev-
eral challenges persist. To mitigate the issue of models learning
biases®?, it is crucial to carefully split the data, ensuring as little
overlap as possible between the test set and the training set at
both the molecule and protein target level.

4.3 Evaluation Metrics

The evaluation metrics used to benchmark SBDD methods can be
broadly divided into two categories: those that assess the quality
of molecules and those that assess the quality of the molecule’s
pose.

Assessing the Quality of Molecules tends to involve evaluating
the 2D graph representation of molecules, focusing on several key
physicochemical properties. Table [1| summarises the commonly
used metrics.

Assessing the Quality of Poses : Evaluating the quality of gen-
erated binding poses often relies on molecular docking, a com-
putational technique that predicts the preferred orientation and
conformation of a ligand within a protein’s binding site, which
can be used to estimate binding affinity. The primary metric used
is the docking score, a numerical value calculated by tools like
Vina®® or Sminal® that estimates this binding affinity. It indicates
how well a ligand fits within the binding pocket, where lower
scores typically signify stronger, more favourable interactions.
Larger molecules tend to receive more favourable (i.e., lower)
docking scores simply due to their size®?, unless specific penal-
ties for unfavourable interactions are applied. This bias can be
mitigated by using a ligand efficiency score®l] which normalises
the docking score by the number of atoms in the molecule. In
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Table 1 Metrics for assessing the quality of generated molecules.

Metric

Description

Validity

Quantitative Estimate of
Drug-likeness (QED)

Synthetic Accessibility (SA)

LogP

Lipinski’s Rule of Five

Diversity

Uniqueness

Novelty

Proportion of generated outputs that represent chemically correct
molecules. Checked using cheminformatics libraries (e.g., RDKit81) to
ensure valency and atomic connectivity rules are satisfied.

A score between 0 and 1 estimating drug-likeness by combining eight
molecular properties: molecular weight, octanol-water partition coeffi-
cient (LogP), number of hydrogen bond donors (HBDs), number of hy-
drogen bond acceptors (HBAs), molecular polar surface area (PSA), num-
ber of rotatable bonds (ROTBs), number of aromatic rings (AROMs), and
number of structural alerts (ALERTS) 62,

Measures ease of synthesis. Computed via rule-based methods analysing
molecular complexity (e.g., ring strain, rare functional groups) or
retrosynthesis-based planning of synthetic routes'®3,

Octanol-water partition coefficient, reflecting lipophilicity. Indicates dis-
tribution between aqueous and lipid phases. Optimal drug-like range:
-0.4 to0 5.654.

Heuristic for drug-likeness: molecular weight <500 Da, LogP <5, HBD
<5, and HBA <100>/66,

Structural variety among generated molecules, often quantified as av-
erage pairwise Tanimoto dissimilarity between molecular fingerprints®Z.,
Higher values imply greater chemical diversity.

Proportion of distinct molecules generated, computed as unique
molecules divided by total molecules. Reflects ability to avoid duplicates.

Proportion of generated molecules absent from the training set. Measures
exploration of new chemical space beyond memorised examples.

addition to reporting docking scores, researchers often report the
percentage of generated molecules that exhibit a better binding
affinity than a reference molecule.

A common method for evaluating machine-generated
molecules is redocking. This involves taking the newly generated
ligand, removing it from the protein pocket, and then using a
conventional docking program to place it back in. This process
can be useful for producing a physically refined structure, as
the docking algorithm may resolve issues like internal strain or
unfavourable atomic clashes that were been present in the initial,
raw output. However, this apparent benefit is also a significant
drawback. As highlighted by Harris et al.%Y, using redocking to
automatically correct these flaws masks the generative model’s
weaknesses. A model that consistently produces physically
unrealistic structures could be judged favourably if evaluated
solely on its redocked outputs, as the fundamental failures in its
generation process are concealed.

More fundamentally, for structure-based drug design, this ap-
proach misinterprets the primary goal of in-pocket generation.
The objective is not merely to generate a viable new molecule,
but to generate a molecule in a specific pose that establishes a
favourable interaction with the target: the molecular structure
and its binding pose being highly intertwined predictions. To truly
learn the principles of intermolecular binding, a model must un-
derstand not only what to build, but also where to place it. As a
full redocking can completely move the molecule from its original
pose, it prevents any assessment of whether the generative model

has actually learned the geometric and chemical rules that govern
binding.

A more direct and less disruptive method of evaluation is lo-
cal optimisation. This approach is gentler because it refines the
existing pose rather than discarding it. One strategy is energy
minimisation, where small, iterative adjustments are made to the
generated pose within a rigid protein pocket to find a more stable,
lower-energy state. This is guided by a physics-based force field
(e.g., UFF or MMFF94). Another related technique is to use the
local optimisation function available in docking software (e.g.,
Vina/smina), which uses the program’s own scoring function to
relax the pose.

Crucially, both of these optimisation techniques respect the
model’s original spatial prediction. They directly test the local
stability and physical plausibility of the generated pose, provid-
ing a much more faithful evaluation of the SBDD model’s true
capabilities.

Integrated Metrics

Shape and color similarity score evaluates the 3D molec-
ular similarity between generated molecules and a reference
molecule, by volumetric comparison and pharmacophoric feature
overlap, as detailed in2. This metric uses two RDKit®L functions,
based on the methods described in Putta et al.?2 and Landrum et
al.?3,

Physicochemical Plausibility is evaluated by tools like Pose-
Busters=®, which examines chemical and geometric consistency,
including checking for potential steric clashes.

Journal Name, [year], [vol.], 1 |5
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These fundamental components (how a protein is represented,
the data it is trained on, and the metrics used for evaluation) de-
fine the landscape of modern SBDD. They create distinct families
of methods, each with its own strengths and weaknesses, which
we will now explore in detail.

5 Current progress

In this section, we organise existing generative approaches ac-
cording to how proteins are represented in the generative process
(Figure [I). Along the left axis, methods are first separated into
grid-based and graph-based frameworks, reflecting the represen-
tation of the protein binding pocket. These pocket encodings can
vary in granularity, ranging from simplified shape-based abstrac-
tions, through intermediate pharmacophore-level features, up to
detailed all-atom representations (top axis). Along the bottom
axis, ligand representations are shown, including SMILES strings,
voxelised 3D densities, and molecular graphs. This layout pro-
vides a systematic view of the design space for generative mod-
els in SBDD, highlighting how different combinations of protein
and ligand representations define distinct methodological fami-
lies. Together, these axes define how we group and discuss the
methods in this review.

5.1 Grid-based approaches

Grid-based methods emerged early in ML-driven SBDD by dis-
cretising the continuous three-dimensional space surrounding
protein binding sites into regular voxels. This spatial context (in-
cluding electrostatic fields, hydrophobic regions, and steric con-
straints) plays a crucial role in determining binding affinity and
selectivity. By framing molecular generation as a 3D spatial prob-
lem, these approaches capture the geometric complementarity
between ligands and their targets. This section reviews recent
grid-based methods for SBDD, grouped by the level of protein in-
formation encoded in the voxel grid—while noting that ligands
may be represented using alternative modalities.

Shape-based

Pocket shape-conditioned grid-based methods discretise the
binding site environment into regular voxels, encoding geometric
and physicochemical properties—including volume, surface cur-
vature, and electrostatic fields—directly within the 3D grid repre-
sentation.

An example of a method of this type is DESERT=?, in which the
authors use ZINC? to train an encoder-decoder network which
learns to process voxelised shapes and generate 3D molecules fit-
ting within the specified shape. To address the model’s lack of
equivariance, the authors introduce random rotations and trans-
lations during training, similar to the approach taken by the au-
thors of liGAN2? (see Grid-based approaches, all atom).

The authors evaluate DESERT’s performance across 12 pro-
teins, finetuning the pocket-unconditional model using available
bound data for each protein and optimising generated structures
with Vina’s local minimisation module. Compared to liGAN=2 and
3D-SBDDZL] DESERT shows an improvement in the median Vina
score of the top 100 molecules. Moreover, DESERT achieves a
higher success rate, with 61.1% of molecules surpassing thresh-
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Fig. 1 Overview of protein pocket and ligand representations in genera-
tive SBDD. The top panel illustrates different levels of conditioning infor-
mation used to describe protein pockets, ranging from simplified Shape
abstractions to Pharmacophore features and detailed All-atom represen-
tations. The left axis highlights two main forms of pocket representa-
tions: Graph-based and Voxel-based encodings. The bottom panel shows
common ligand representations, including SMILES strings, voxelised 3D
densities, and molecular graphs. Together, these dimensions provide a
framework for organising generative methods according to how proteins
and ligands are represented. Created with https://BioRender.com

old QED, SA, and Vina score values, compared to liGAN (0.4%)
and 3D-SBDD (13.6%).

Pharmacophore-based

Pharmacophore-conditioned grid-based approaches embed es-
sential binding features as spatial constraints within voxelised
3D grids. Unlike their graph-based counterparts, these meth-
ods exploit the regular grid topology to explicitly map pharma-
cophoric patterns onto discrete spatial locations, enabling sys-
tematic exploration of chemically relevant regions through voxel-
based molecular assembly.

An example of a grid-based pharacophore-conditional method
is DEVELOP22, which integrates voxelised 3D pharmacophores
(extracted from known binders or provided by the user) with a
Convolutional Neural Network (CNN), an architecture adept at
processing grid-like data, such as images or the voxelised molec-
ular representations used in this field. It employs this informa-
tion for linker design or scaffold decoration, converting struc-
tures and pharmacophores into graph and voxel grid represen-
tations. These are encoded by Graph Neural Network (GNN) and
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CNN encoders—where the GNN is specifically designed to pro-
cess molecular graph structures— then decoded into 2D molecule
graphs by a GNN-based decoder, following Liu et al.’s frame-
work®2, The authors evaluate DEVELOP using a shape and color
similarity score. They compare generated molecules with ground
truth molecules in the PDBBind dataset, and report very high
similarity between these: 27.9% of molecules generated present
shape and color similarity of over 0.6 with the ground truth lig-
and. This is considerably higher than other linking methods they
compare against, DeLinker2®l (19.8%) and SyntaLinker?Z—a syn-
tactic pattern recognition approach using deep conditional trans-
former neural networks—(13.4%).

Another pharmacophore-based graph approach, STRIFE, uses
pharmacophoric profiles from known binders with Fragment
Hotspot Maps?® from protein apostructures to guide fragment
elaboration, offering a fully structure-based approach. The model
is a descendant of DEVELOP, and uses the same architecture, first
encoding the starting fragment and pharmacophore with graph
and voxel grid representations respectively, then decoding into
2D molecule graphs by a GNN-based decoder®>,

The authors of STRIFE conducted a large-scale docking test to
assess the binding affinity of generated molecules. They generate
molecules for 101 of the targets included in the CASF-2016 test
set??) sampling 250 elaborations for each one. They then em-
ploy standardised ligand efficiency—a metric derived from dock-
ing scores that reflects the difference between the predicted bind-
ing affinities of the ground truth and generated molecules—to
demonstrate that elaborations generated by STRIFE on average
had higher predicted affinities than the original binders. Never-
theless, as a fragment-based approach it requires explicit knowl-
edge of an active fragment, and thus explores a limited region of
chemical space, with authors reporting 37.31% uniqueness and
29.21% novelty.

All-atom

While shape- and pharmacophore-based methods simplify the
binding site, all-atom grid-based methods attempt to capture its
full complexity. They do this by discretising the entire atomic en-
vironment, including atom types and positions across a grid of
regular cells. This approach offers the potential for higher pre-
cision at the cost of greater computational and representational
challenges.

An example of this approach is LIGAN®=?, the first deep gener-
ative model aimed at producing 3D compound structures con-
ditioned on receptor binding sites. The method represents
molecules using atomic density grids and uses a conditional Vari-
ational Autoencoder (VAE) to learn 3D ligand distributions. A
VAE is a type of generative model with an encoder-decoder ar-
chitecture; the encoder compresses input data into a simplified
latent space, and the decoder learns to reconstruct the original
data from that representation, which allows for the generation
of novel samples. Using data augmentation techniques with ran-
dom rotations to address equivariance, the authors employed the
CrossDocked2020 dataset and introduced two distinct sampling
modes: posterior and prior sampling. With posterior sampling,
a real protein-ligand complex is encoded into the latent variable
parameters before drawing samples. Prior sampling, by contrast,
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draws latent vectors from a standard normal distribution, thus
having no intentional bias towards a specific real ligand. The
authors report that 98.5% of molecules generated from poste-
rior sampling were valid, while 90.9% from prior sampling were
valid. Additionally, 77.7% of posterior molecules and 99.9% of
prior molecules were unique.

Generated molecules were also evaluated through energy min-
imisation experiments using the Universal Force Field (UFF),
with the authors assessing the decrease in energy from the gen-
erated pose to the minimised pose. Energy decreased on the
order of -10% kcal/mol and -10% kcal/mol for posterior and
prior molecules, respectively, compared to -102 kcal/mol for real
molecules. Moreover, during UFF minimization, the conforma-
tion changed by less than 2 Angstrom in 91.3% of posterior
molecules and 81.0% of prior molecules. Finally, 30.8% of poste-
rior molecules and 17.3% of prior molecules had lower minimised
Vina energy than the reference molecule.

The authors of LiGAN also carry out a comprehensive anal-
ysis of pocket conditionality. In a case study involving shiki-
mate kinase, the authors mutated all residues within a specified
cutoff distance from the ligand. These multi-residue mutations,
along with some key single-residue mutations, resulted in signif-
icant changes in the properties of the generated molecules. This
demonstrates that the model generates molecules in a manner
conditional on the receptor. While this analysis is primarily qual-
itative and lacks direct comparison to other methods, it remains
the sole work to date that rigorously evaluates pocket condition-
ality in this way. This study represents a step towards establishing
regular benchmarking for pocket conditionality. Assessing this as-
pect in other drug design contexts'0% has advanced methodolo-
gies and may also serve as a valuable metric in generative design.

Wang et al.l0ll were the first to introduce a model that
leverages experimental electron density (ED) maps as training
data. This approach unlocks previously untapped information,
including aspects such as non-covalent interactions (NCI), time-
averaged conformational changes, and solvent distribution. The
model operates with a Generative Adversarial Network (GAN) —a
framework that uses two competing neural networks, a genera-
tor and a discriminator, to produce realistic outputs— for ligand
ED generation and an ED interpretation module for subsequent
molecule generation. Like LiGAN, data augmentation is employed
to achieve rotational invariance. The authors evaluate the mod-
els performance on three targets, reporting improvements in QED
and SA over reference molecules for all three (QED averages of
0.54, 0.40, and 0.55 compared to 0.47, 0.32, and 0.49, respec-
tively,and SA averages of 3.0, 3.2, and 2.9 compared to 3.6,
3.2, and 3). The authors also reported similar performances in
docking score for the generated molecules and the ground truth
binders as assessed by glidel%2, Overall, this method represents
a novel advancement in using a previously untapped source of
data for SBDD. However, the richness of information from ED
maps brings about challenges associated with data complexity
and noise, which could potentially impact the accuracy of gen-
erated structures.

RELATION103] built on a VAE, takes a unique approach by
transferring geometric features of protein-ligand complexes to
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a latent space for generation. This model comprises a 3D con-
volutional encoder and an LSTM-based captioning decoder, with
pharmacophore conditioning and docking-based Bayesian sam-
pling guiding molecule generation. Despite its strengths, similar
to LiGAN and the method proposed by Wang et al.10l RELA-
TION faces challenges related to non-equivariance, resulting in a
limited capacity to generate novel binders1®*, The authors use
the ZINC Clean Lead database, then bound data for two target
proteins. They observed improved validity over LiGAN (0.994 vs
0.873), though a direct comparison between the two models is
difficult: LiGAN is designed to work on any target, trained on
diverse bound data, whereas RELATION is specifically tailored
for the examined targets. The authors also reported similar Vina
score distributions for the generated molecules and the ground
truth binders.

In summary, these recent advancements present diverse per-
spectives on directly modeling target-ligand interactions. While
each model introduces innovative features, they all grapple with
shared challenges: the lack of rotational equivariance in CNNs,
and limited voxelised resolution resulting in an inability to pre-
cisely capture specific modes or intricate patterns in the distribu-
tion of atom distances10>,

5.2 Graph-based approaches

Graph-based methods emerged next as a dominant paradigm in
SBDD due to their natural representation of molecular structures,
where atoms serve as nodes and bonds as edges. As topolog-
ical encodings matured, the field shifted toward more flexible
graph neural networks that explicitly model chemical interac-
tions. These frameworks support rich annotations—atom types,
bond orders, partial charges—and can integrate protein context
at both the residue and all-atom levels. This section reviews re-
cent graph-based methods for SBDD, grouped according to the
level of protein information incorporated.

Shape-based

The simplest graph-based methods utilise only the geometric
shape of the protein pocket to guide molecule generation. SQUID
exemplifies this approach, using point cloud networks and graph
neural networks (GNNs) to encode shape and chemical identity;
an approach that addresses equivariance and reduces the mem-
ory usage of the model. It comprises a fragment-based generative
model based on a variational autoencoder, which sequentially de-
codes fragments to enhance the validity of generated molecules.
Once generation is complete, it further modifies the generated
conformers by adjusting acyclic bond distances and fixing acyclic
bond angles using heuristic rules. As it is a shape-based model,
the model is trained on unbound data; specifically, a subset of the
MOSES datasetZZ. The model is first assessed via ablation exper-
iments to see if including equivariance improves the model’s per-
formance, and it is found that removing equivariance reduces the
percentage of generated molecules that have the desired shape
by 33%. To assess performance, the authors employ a shape sim-
ilarity metric that estimates the likeness of the molecules gen-
erated to the desired shape. Rather than using docking scores,
they compare SQUID’s performance to a baseline that searches

8 | Journal Name, [year], [vol.], 1

View Article Online
DOI: 10.1039/D5SC05748E

the training set (>1M 3D molecules) for the molecule with the
highest property score among those that satisfy a shape similarity
threshold to the target—a strategy akin to shape-constrained vir-
tual screening—and find improvements in shape matching across
six different targets.

Pharmacophore-based

Building beyond pure geometric constraints, pharmacophore-
based methods incorporate specific chemical feature require-
ments into the generation process. An example of this approach
is PGMG12t which relies on user-supplied pharmacophores, using
a GNN and a transformer decoder to generate molecules. Since
pharmacophores and molecules have a many-to-many relation-
ship, PGMG introduces latent variables to model such a relation-
ship to boost the variety of generated molecules. In addition, a
transformer structure is employed as the backbone to learn the
implicit rules of SMILES strings to map between latent variables
and molecules. The authors demonstrate that 83.6% of gener-
ated molecules achieve matching scores greater than 0.8 with
the given pharmacophore, with 78.6% achieving perfect match-
ing score of 1.0. Random molecules from ChEMBL, only had
matching scores centered at 0.466 with only 4.91% achieving
perfect scores. When evaluated on 15 protein targets, PGMG pro-
duced molecules with comparable docking scores to known ac-
tive compounds. In direct comparisons with Pocket2Mol (see all-
atom section) on two of these targets (AKT1 and CDK2), PGMG
achieved superior performance in several key metrics. For AKT1,
PGMG attained a 99.2% ratio of available molecules compared
to Pocket2Mol’s 87.2%, though Pocket2Mol achieved slightly bet-
ter docking scores (-7.81 vs -7.35). Similarly for CDK2, PGMG
reached 98.9% available molecules versus Pocket2Mol’s 90.2%,
with comparable docking scores (-7.48 vs -7.55). However, these
comparisons are limited to only two targets. More fundamen-
tally, requiring users to define pharmacophores, whether through
visual estimation or by referencing known ligands, reintroduces
human bias10°,

All-atom

All-atom methods represent the most comprehensive approach
to SBDD, explicitly modeling every atom in both the protein
binding site and generated ligands. Unlike shape-based or
pharmacophore-based methods that abstract away atomic details,
these approaches leverage the full structural information avail-
able from protein-ligand complexes, including precise atomic po-
sitions, chemical identities, and potential interaction sites. An
example of this approach applied with graph representations is
the work by Drotar et al.1%7 who introduced the first supervised
method for joint molecular graph and pose generation, using a
constrained graph VAE approach. Molecules are represented as
graphs with atoms defined by bond lengths and angles, guided by
crystallography data. Their method embeds all atoms in a latent
space and employs MLPs to predict angles and dihedral angles,
with bond distances calculated based on atom and bond types.
By integrating experimental ligand-protein data, their method
enhances predicted binding affinities by 8% and drug-likeness
scores by 10% compared to the baseline approach that gener-
ates 2D graphs without pocket information on the SMINA docking
benchmark.
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Another example is the work of Luo et al.ZL who introduced
3DSBDD, an autoregressive generative model that uses the pro-
tein pocket as a conditioning constraint to sample ligands. This
model calculates the atom occurrence probability density in 3D
space of the binding site. It then employs an auto-regressive sam-
pling algorithm, sampling one atom at each step using Markov
Chain Monte Carlo sampling. 3DSBDD infers bonds heuristically
from the generated atomic point clouds and uses a point cloud
representation for both ligand and protein. Compared to the CNN
baseline liGAN®? (see Grid-based approaches, all-atom), 3DSBDD
improved the QED (0.525 vs 0.371), SA (0.650 vs 0.570 , and
Vina Score (-6.200 vs -6.100) metrics on the CrossDocked dataset.

Liu et al. proposed GraphBP®?, representing the protein bind-
ing pocket and the partially constructed ligand as a single graph.
At each step, a 3D graph neural network uses this evolving graph
to predict the next atom’s type and 3D coordinates, embedding
both geometric structure and chemical interactions. GraphBP cre-
ates a local coordinate system for new atom placement, ensur-
ing equivariance, and uses a flow model for atom type and po-
sition prediction. This approach enables continuous atom place-
ment, offering greater flexibility compared to methods like 3DS-
BDD. GraphBP also generates more valid molecules (99.7% com-
pared to 98.5% for liGAN), with better predicted binding affinity,
with 27% generated molecules having higher predicted binding
affinity than their corresponding reference molecules compared
to 15.4% for liGAN.

Peng et al.*% developed Pocket2Mol, an evolution of 3DSBDD.
In Pocket2Mol, bonds are predicted directly during sequential lig-
and generation. Pocket2Mol’s E(3)-equivariant graph neural net-
work architecture respects 3D spatial symmetries and efficiently
captures spatial and bonding relationships without the need for
Markov Chain Monte Carlo methods, which are typically less effi-
cient. This innovation means Pocket2Mol is the current state-of-
the-art for the SA (0.765) and QED (0.563) metrics on the Cross-
Docked dataset.

In contrast to the above atom-based methods, the FLAG
modell%8 selects fragments from a predefined motif vocabulary
based on protein structure and iteratively assembles them into a
complete ligand. Using a 3D graph neural network, FLAG encodes
contextual information, facilitating the selection and combina-
tion of motifs for an optimised ligand-target interaction. This ap-
proach then generates molecules fragment by fragment, requiring
fewer steps and thus offering faster processing. The authors com-
pare FLAG to LiGAN (section Grid-based approaches, all-atom),
Pocket2Mol, and GraphBP, and report improved Vina Scores (-
7.247 compared to -6.129, -7.113 and -7.012, respectively) and
SAs (0.745 compared to 0.612, 0.733 and 0.706). These re-
sults are computed after the generated molecules are redocked:
a method which the PoseCheck work®! highlighted as masking
clashes between the ligand and the protein and increasing inter-
actions between them, resulting in inflated docking scores.

Overall, graph-based approaches have emerged as a power-
ful paradigm in structure-based drug design, offering several key
advantages. Their natural representation of molecular topology
enables efficient learning from irregular geometries while main-
taining permutation invariance—ensuring consistent predictions
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regardless of atom ordering. From shape-based methods like
SQUID to sophisticated all-atom approaches, these models have
demonstrated some ability to generate valid, drug-like molecules
with promising binding affinities across diverse protein targets.

5.2.1 Diffusion models

Recent research has shifted towards diffusion models’?? due to
their ability to capture both local and global atomic interac-
tions by placing all atoms simultaneously, rather than generat-
ing molecules atom by atom in prior autoregressive approaches.
This holistic generation allows reasoning over entire molecular
structures in one pass and typically enables faster sampling. Dif-
fusion is a generative method rather than a new representational
class. In principle, diffusion can be applied to different represen-
tations, including voxel- and graph-based formulations. In prac-
tice, graph-based diffusion models have become the dominant ap-
proach in SBDD, and we therefore discuss them in detail within
the context of graph-based methods.

Shape-based

Pocket shape-conditioned diffusion-based methods leverage
binding site geometry through iterative denoising processes that
gradually refine molecular structures from random noise. By con-
ditioning the diffusion process on pocket descriptors—including
volume, surface curvature, and electrostatic fields—these ap-
proaches guide the reverse diffusion trajectory to generate
molecules that naturally complement the binding site architec-
ture through progressive structural refinement.

An example of this approach is ShapeMol>%, which uses an
equivariant approach, relying on an SE(3)-equivariant diffusion
model based on the work of Hoogeboom et al. 19 to generate
molecules in a point-cloud specified shape. ShapeMol does not
impose adjustments on the generated 3D conformers, enabling it
to accept any conformers as input. This increases the uniqueness
of molecules made, but combined with the flexibility to use atom-
level generation results in lower validity of generated molecules,
particularly with a diffusion model known for issues in generating
chemically sensible structures®. Following SQUID (Graph-based
approaches, shape-based), the authors of ShapeMol use a subset
of MOSES as a training dataset, and evaluate performance using
a shape similarity metric. They compare themselves to SQUID
and find improvements in this metric, though they report slightly
worse molecule connectivity (98.8% vs 100%) and QED (0.748
vs 0.766).

Pharmacophore-based

Pharmacophore-conditioned diffusion-based approaches incor-
porate essential binding features as conditioning signals within
the denoising process. Unlike grid-based methods that operate on
discrete voxels, these diffusion models use pharmacophoric con-
straints to bias the continuous sampling trajectory, enabling flex-
ible molecular generation that satisfies key interaction require-
ments through iterative noise removal.

While previous pharmacophore-conditioned methods gener-
ated 1D SMILES strings or 2D molecular graphs and then gen-
erate conformers and dock these, MolSnapper®? employs a gen-
erative diffusion model that integrates 3D pharmacophores and
protein structural information to produce 3D ligands. Specifi-
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cally, it conditions MolDiff11L] an E(3)-equivariant neural net-
work, to generate molecules that fit into a binding pocket. Evalu-
ation focused on the physical and chemical viability of the gener-
ated molecules. Results on the CrossDocked and Binding MOAD
datasets demonstrate MolSnapper’s ability to yield twice as many
valid molecules as competing methods (MolDiff1Y, SIIVR11Z
and DiffSBDD3) and offers up to a 20% improvement in shape
and color similarity to reference ligands, leading to a 30% better
retrieval of initial hits over these methods.

All-atom

All-atom conditioned diffusion-based methods condition the
denoising process on complete atomic-level representations of the
protein binding site. Rather than discretising space into grids,
these approaches use the full atomic environment—including pre-
cise atom types, positions, and chemical contexts—to guide the
continuous diffusion sampling process, enabling detailed model-
ing of protein-ligand interactions through probabilistic molecular
generation.

One such model is DiffSBDD113| a SE(3)-equivariant 3D con-
ditional diffusion model that respects translation, rotation, and
permutation symmetries. It represents proteins and molecules as
3D point clouds, using an EGNN architecture to diffuse only atom
positions and types, along with a post-hoc bond order approx-
imation. This method produces relatively diverse ligands, evi-
denced by a 0.758 Tanimoto dissimilarity among all generated
molecules for each pocket, narrowly outperforming Pocket2Mol
(0.735), TargetDiff1%2/ (0.718) and 3D-SBDD (0.742), though it is
substantially outperformed by GraphBP (0.844). It also achieves
an improved average Vina docking score at -7.333 compared to
these methods, which attain -7.058, -7.318, -5.888, and -4.719
respectively. However, it does not improve molecular properties
such as QED and SA on the CrossDocked dataset when compared
to Pocket2Mol.

TargetDiff192 conceptually similar to DiffSBDD, also repre-
sents proteins and molecules as 3D point clouds, diffusing only
atom positions and types, utilising a different diffusion formal-
ism for categorical atom types. It shows similar outcomes,
primarily improving Vina docking scores (-7.80 after redock-
ing and 58.1% molecules show better binding affinity than the
reference molecule, compared to -7.15/48.4% for Pocket2Mol,
and -6.33/21.2% for liGAN) without significantly affecting other
molecular properties.

DiffBP32 introduces a pre-generation network for the ligand’s
center of mass and atom number, followed by diffusion models
and equivariant GNNs for ligand generation. It demonstrates
high docking scores, with 40.20% of medium-sized molecules ex-
hibiting improved docking scores over the reference molecule,
outperforming 3DSBDD (14.84%), Pocket2Mol (32.53%), and
GraphBP (15.30%) on the CrossDocked dataset. The analysis and
evaluation distinctly categorise molecules into small, medium,
and large, acknowledging that larger molecules typically achieve
higher docking scores.

Existing diffusion model-based methods encounter limitations,
particularly in bond incorporation, which often results in the cre-
ation of unrealistic molecular structures’. DecompDiff>Z was
developed in response to these challenges, aiming to improve
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molecular generation by adding prior knowledge and explicitly
modeling bonds. This model employs data-dependent decom-
posed priors for SBDD, a strategy that acknowledges the natural
decomposition of a ligand molecule into functional regions such
as arms and a scaffold. These decomposed priors have led to
improvements in affinity-related metrics. However, like other dif-
fusion models, DecompDiff does not exceed the performance of
the state-of-the-art autoregressive model Pocket2Mol in terms of
QED and SA scores.

Recently, the field has begun shifting from traditional diffusion
models toward flow-matching approaches!i4—a closely related
class of generative models that offer improved training stabil-
ity and deterministic sampling without the need for iterative de-
noising. For example, FLOWR"> demonstrated improved Pose-
Busters validity (86% vs. 75% for diffusion-based models) and
better Vina docking scores (-6.36 vs. -6.06) on a benchmark de-
rived from the PLINDER dataset. Another flow-matching model,
FlexSBDD11® incorporates protein flexibility by jointly generat-
ing both the ligand and key degrees of freedom in the protein
binding site—namely the C, coordinates, backbone orientation,
and side-chain dihedral angles—to reconstruct full-atom protein
structures and better capture induced-fit effects during design.

In a recent paper, Harris et al.6l' found that diffusion-based
models tend to produce structures with higher strain energy com-
pared to those in the training dataset. This increased strain might
result from the introduction of random noise into coordinate fea-
tures during most steps of stochastic gradient Langevin dynamics
sampling, except the final step. This process complicates the ac-
curate construction of bond angles and other structural details,
potentially affecting the realism of the molecules generated.

6 Future directions

Having covered the current SBDD methods, we now propose po-
tential future areas and directions.

6.1 Assessing specificity

The assessment of binding specificity remains a critical yet under-
developed aspect of computational ligand design. Among the lim-
ited approaches in this domain, the LIGAN methodology= stands
out for introducing a quantitative framework to evaluate speci-
ficity. The authors implemented a systematic mutation analysis,
altering all residues within a defined distance from the binding
site as well as specific individual residues of interest. These con-
trolled mutations produced measurable changes in the proper-
ties of the generated molecules, providing compelling evidence
that the model’s outputs are indeed conditional on the recep-
tor’s characteristics. Unfortunately, this approach represents an
isolated example in the literature, making comparative analysis
across methodologies impossible.

The majority of current research relies heavily on docking
scores as a proxy for binding quality and specificity. While com-
putationally accessible, these scores are susceptible to optimisa-
tion strategies that do not necessarily translate to true binding
specificity in biological systems. Another common evaluation ap-
proach centers on interactions with known ligands for a target.
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While this method benefits from target-specific relevance, it in-
herently constrains exploration to chemical spaces adjacent to es-
tablished binders. This limitation effectively reduces the poten-
tial for novel discovery, approaching the constraints of traditional
ligand-based design strategies rather than enabling the broader
exploration promised by structure-based approaches.

6.2 Generalisation

The challenge of generalisation in SBDD is rooted in the nature
of its underlying data. Public protein-ligand datasets were not
curated for machine learning; they are the product of decades of
structural biology research, leading to a non-uniform sampling
of chemical and protein space with inconsistently reported meta-
datalllZ118 This creates hidden biases that are well-documented
in virtual screening®100119 byt are harder to diagnose for de
novo generation. This is in part because the virtual screening tools
used to assess generated molecules are, themselves, known to be
unreliable on the out-of-distribution examples that are the true
test of generalisation. It is therefore impossible to robustly quan-
tify a generative model’s performance on novel targets, making
it unclear if it is discovering genuinely new interactions or, more
likely, simply exploiting biases shared with the evaluation tool.

While long-term solutions involve rectifying the data land-
scapel?) a primary pragmatic strategy in the interim is to sim-
plify the task by constraining the generative process. By building
frameworks that allow users to enforce expert knowledge—-such
as specific chemical rules or pharmacophoric features=02L_the
model’s reliance on learning from biased data is reduced. This
approach of ‘informed generation’ grants greater control over the
output and provides a path forward while the field awaits more
comprehensive datasets.

6.3 Protein flexibility

Proteins are dynamic, exhibiting motions and conformational
changes that may significantly impact drug interaction and effi-
cacy2Ll, Accurate prediction of these interactions requires a thor-
ough consideration of protein dynamics12L,

Traditionally, SBDD has heavily relied on static crystal struc-
tures. However, a crystal structure represents a single snapshot
of a specific protein conformation2L. This snapshot is influenced
by factors such as the presence or absence of a co-crystallised lig-
and and may not necessarily capture the stabilised conformation
required to achieve the desired downstream bioactivity'122,

Molecular dynamics (MD) simulations are a widely used
method for modeling protein flexibility'}23. However, it’s impor-
tant to recognise that while MD simulations provide valuable in-
sights, they are computationally demanding and may not always
achieve the desired level of accuracy 24,

Several strategies are being explored to predict structures of
multiple protein conformational states. One set of methods rely
on manipulating the inputs of AlphaFold 2 (AF2)12. By al-
tering the multiple sequence alignment (MSA), researchers aim
to deconvolve coevolutionary signals for several conformational
states. Strategies like subsampling MSAs to shallower depths
have shown promise in increasing the diversity of output mod-
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els, potentially representing multiple conformations 122127,

Another approach is to improve the exploration of contact and
distance maps. Contact and distance maps predicted from MSAs
contain information about alternative protein conformations.
Predicted inter-residue distance distributions sometimes show bi-
modal characteristics, indicating conformational changes. 128122
Hou et al.130 yse the distance maps from AF2 and other tools
to construct multiple energy landscapes, identifying low-energy
solutions representing potential conformations.

Generative models, such as diffusion models and variational
autoencoders, offer a new avenue for conformation prediction
tasks131132 These models can sample distributions of outputs,
potentially generating multiple related structures for a given in-
put sequence. For example, the EigenFold3L' method, a diffusion
model, was explored for its ability to sample structures of multi-
ple conformations.

In the context of SBDD, ensuring that these methods can be
generalised to a broader range of protein structures and accu-
rately differentiate between viable models and noise remains a
significant challenge.

6.4 Cofolding methods

Most SBDD models generate ligands against a fixed protein con-
formation; however, proteins are dynamic entities that undergo
significant conformational changes upon ligand binding. Cofold-
ing methods tackle this by jointly predicting protein and ligand
structures, allowing both partners to adapt dynamically and cap-
ture induced-fit or conformational-selection effects. Cofolding
methods aim to jointly predict the three-dimensional structures of
interacting biomolecules, such as protein-protein, protein-ligand,
or protein-nucleic acid complexes. For protein-ligand interac-
tions, they typically use a known binder—usually provided as a
SMILES string—to model the complex, distinguishing them from
de novo generative methods that design new molecules from
scratch.

RosettaFold All-Atom (RFAA)133 was one of the first models to
handle proteins, nucleic acids, small molecules, and metal ions in
the same system, using a transformer architecture with chemical
element inputs. AlphaFold32% built on this by adding diffusion-
based coordinate generation, which improved accuracy across
many types of biomolecular interactions. Since then, several
open-source alternatives have appeared. Chai-1434 closely fol-
lows AF3’s transformer-plus-diffusion design but makes the code
and weights freely available and easier to train, while Boltz-113>
provides similar functionality with faster inference and lower
memory requirements. Boltz-213¢ adds further changes: more
efficient training and inference through trunk optimisation, bet-
ter physical plausibility via Boltz-steering, and new condition-
ing options (method, template, and contact/pocket conditioning)
that give users more control. It also includes a dedicated affin-
ity module to predict binding likelihoods and affinities alongside
structures. In contrast, NeuralPLexer3 is designed specifically for
protein-ligand docking, using physics-informed graph neural net-
works to model multiple binding poses, affinities, and induced-fit
conformational changes.
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A recent benchmark by Skrinjar et al.38 comprising 2,600
high-resolution protein-ligand systems released after these meth-
ods’ training cutoffs, reveals significant limitations in current co-
folding approaches. Their analysis demonstrates that these meth-
ods largely memorise ligand poses from training data rather than
genuinely predicting novel configurations, severely limiting their
utility for de novo drug design. While all methods achieve reason-
able accuracy in modeling protein structures and binding pock-
ets, ligand pose prediction remains the primary challenge. De-
spite similar architectures and training paradigms across meth-
ods, AlphaFold3 maintains a slight performance edge, poten-
tially due to methodological differences: it uniquely uses tem-
plates by default for protein modeling, while training protocols
vary significantly—Boltz-1 generates conformers only once dur-
ing training whereas others regenerate them each epoch, and
Chai-1 incorporates ESM embeddings for protein featurisation.
Nevertheless, the fundamental finding remains that current co-
folding methods are not yet suitable for de novo drug design ap-
plications.

6.5 Other challenges

Using machine learning in SBDD poses a challenge in validat-
ing the quality of generated molecules and their binding poses.
Recent methods such as PoseBusters=® and PoseCheck®! have
shown that deep learning methods, including those using diffu-
sion models, can produce physically implausible structures.

PoseBusters evaluates chemical and geometric consistency,
identifying problems such as incorrect stereochemistry, non-
planar aromatic rings, improper bond lengths, and clashes be-
tween proteins and ligands. Similarly, PoseCheck notes non-
physical features in machine-generated molecules, such as steric
clashes and hydrogen placement issues. For instance, autore-
gressive methods like 3DSBDD and LiGAN exhibit average steric
clashes of 3.79 and 3.40 with the protein, respectively, indicating
fewer steric overlaps between the ligand and protein. In con-
trast, newer diffusion-based approaches, such as TargetDiff and
DiffSBDD, report higher mean clash scores of 9.08 and 15.33, re-
spectively, indicating more frequent or severe steric clashes.

Moreover, PoseCheck’s evaluation of seven deep learning meth-
ods revealed that, in the poses generated, the most frequently ob-
served count of hydrogen bond acceptors and donors in the gen-
erated molecules forming interactions was zero. This is a serious
deviation from the expected number of interactions. This find-
ing underlines the limitations of traditional 2D-based evaluation
metrics, which may fail to capture these critical errors.

To advance SBDD, it is essential to develop benchmarks that
not only assess the plausibility of ligands but also the accuracy
of binding poses. Such benchmarks must rigorously ensure that
binding poses adhere to biophysical requirements essential for ef-
fective binding. Improving these evaluation standards is crucial
to bridge the gap between theoretical models and their practical
clinical applications, ultimately enhancing the discovery of more
effective therapeutics.
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7 Outlook

As the field of generative SBDD continues to evolve, several key
challenges and opportunities have emerged that will shape its fu-
ture application and development.

For practitioners, the current choice between different gener-
ative families involves a critical trade-off between precision and
exploratory power. Autoregressive models, such as LiGAN and
Pocket2Mol, which build molecules atom-by-atom, tend to offer
greater control. This often results in generated poses with fewer
steric clashes and more plausible interactions, making them well-
suited for tasks like lead optimisation where high-quality modi-
fications are paramount. In contrast, diffusion models excel at
rapidly generating a large and diverse set of novel chemical ideas.
While these models may produce a higher rate of physically im-
plausible structures that need to be filtered, their speed and ex-
ploratory capacity make them a powerful tool for hit identifica-
tion, where the primary goal is to discover new and promising
scaffolds.

Beyond these practical choices, a critical area for future re-
search is enhancing the overall quality and reliability of gener-
ated molecules. This involves three interconnected challenges:
ensuring physical plausibility, improving synthetic accessibility,
and establishing standardised benchmarks. Models must pro-
duce geometrically and chemically sound structures that adhere
to the physical laws of binding, as highlighted by tools like Pose-
Busters and PoseCheck. Concurrently, generated molecules must
be synthetically tractable within the economic constraints of a
drug discovery campaign. Finally, the development of rigorous,
community-wide benchmarks is essential to allow for fair com-
parison between methods and to track genuine progress in the
field.

A more profound challenge lies in accounting for the dynamic
nature of protein targets. Future models must move beyond static
structures to capture protein flexibility and the subtle conforma-
tional changes induced by ligand binding. Addressing this is key
to unlocking more sophisticated pharmacological control, such as
allosteric modulation (binding to a secondary site on the protein
to influence the main active site from a distance), and accurately
predicting a drug’s true biological effect.

Looking further ahead, a promising path involves integrating
the 3D structure-based methods discussed here with complemen-
tary approaches, such as chemical language models. Such hybrid
systems could reduce late-stage attrition by tackling multiple fail-
ure points at once, leveraging language models to optimise for
intrinsic drug-like properties (e.g., ADME/Tox) while structure-
based models ensure high-affinity target binding.

In conclusion, refining SBDD models through these various im-
provements is not just an academic exercise but a necessary evo-
lution for the field. By addressing these issues, we can lay the
groundwork for cutting-edge advances in drug design. These ad-
vancements hold the promise of delivering more effective thera-
pies to patients faster, ultimately transforming the landscape of
modern medicine.
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