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The article focuses on the design of ionic liquid (IL) -solvent mixtures with high ionic 
conductivity. To realize the objective, the approach adopted here involves developing a 
machine learning model that correlates the experimental ionic conductivity data for a large 
number of IL-solvent mixtures extracted from NIST ILThermo database. We considered 
~23,000 data points covering 549 ILs represented by 308 cations, 96 unique anions and 
approximately 80 solvents. After testing the accuracy of the model on the test data set, we 
leveraged the machine learning approach to predict ionic conductivity of unique 
combinations of cation, anion, and solvent mixtures as a function of IL mole fractions. The 
approach resulted into roughly 2.5 million unique IL-solvent systems and 12.5 million data 
points at room temperature. Out of these data points, close to ~19,000 IL-solvent mixtures 
were found to exhibit ionic conductivity greater than 2.0 S/m (threshold based on the ionic 
conductivity for current electrolytes containing LiPF6 as the salt in 1:1 mixture of ethylene 
carbonate and dimethyl carbonate) in comparison to only 88 IL-solvent mixtures showcasing 
ionic conductivity greater than 2.0 S/m, considerably expanding the design space as 
potential electrolytes for the next-generation Li-ion batteries and energy storage devices.
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Abstract

Ionic liquids (ILs), which are a class of materials with versatile nature and growing popular-

ity, are facing impediments toward wide-spread usage as electrolytes due to various factors

such as low ionic conductivity, high viscosity, high market price etc. One of the ways these

limitations can be addressed is by mixing ILs with another molecular solvent. In a combi-

natorial sense, there exists an immense number of specific IL-solvent combinations. An ex-

haustive experimental or even simulation-based investigation of the chemical space spanned

by such combinations can be extremely time-consuming, expensive, and nearly impossible.

An alternative approach is to employ machine-learning based models developed from existing

databases. Although there exists prior literature that integrates machine learning to investigate

mixtures of specific solvents with ILs, these models lack generalization necessitating develop-

ment of a large number of ML models to handle various solvents. To remedy this shortcoming,

as a part of designing green electrolytes with high ionic conductivity that can have potential

applications in next-generation batteries and solar cells, this work aims to develop a unified

machine learning model to predict ionic conductivity of any IL-solvent mixture system. In this
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regard, three models, namely, Random Forest, extreme gradient boosting (XGBoost), and ar-

tificial neural network (ANN) were formulated using a diverse dataset curated from the NIST

ILThermo database. The dataset contained 549 unique ionic liquids from 16 cation families

and 81 unique solvents, representing a total of 23691 datapoints. SHAPLEY additive explana-

tion (SHAP) method was used to assess the impact of various features on model prediction and

their significance was compared with literature to gain physical insight about the model behav-

ior. Finally, using the developed models, approximately 2.5 million IL-solvent mixtures at five

different compositions were screened at room temperature. The high-throughput screening

yielded nearly 19,000 IL-solvent mixtures for which ionic conductivity was found to exceed

the ionic conductivity of conventional Li-ion battery electrolyte.

Introduction

The development of novel molecules and materials is critical for scientific, technological, and so-

cietal growth. Ionic liquids (ILs) are a specific type of material that are comprised entirely of

cations and anions and can be designed to exist in a liquid state below 100◦C.1 A large number of

ILs exhibit favorable characteristics such as high thermal and electrochemical stability, negligible

volatility, low melting point, etc. which are appealing for their usage as green solvents in appli-

cations such as battery electrolytes, atmospheric carbon dioxide absorption, chemical separation,

catalysis etc.2–4 Additionally, the ability of tuning their structures by changing the cation and/or

anion type, and functional groups on cation and anion to tailor properties for a desired application

imply that the ILs are designer solvents.

However, despite these attractive properties, the industry-wide adoption of IL is still lagging be-

hind. One of the key challenges is that a large number of ILs tend to be highly viscous due to strong

electrostatic and hydrogen bonding interactions.5 The high viscosity is a hindrance for the charge

transport resulting into low ionic conductivity.6 Additional impediment toward the widespread

industrial usage of ILs are their limited biodegradability,7 high cytotoxicity, and relatively high

2
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market price.3

One of the viable ways some of these limitations can be addressed is by formulating IL-IL mix-

tures, which significantly expands the available chemical space for the discovery of new ILs. Over

the last few years, several researchers have shown that the interaction such as hydrogen bonding

dynamics,8 structure,9–11 transport properties,12 and phase-equilibria13,14 can be tuned by adopt-

ing such a strategy. Although our research group has previously leveraged ionic conductivity of

pure ILs and linear combination of molecular descriptors to estimate the ionic conductivity of IL-IL

mixtures.15,16 Experimental data for IL-IL mixtures is still scarce, making it challenging to per-

form and evaluate data-driven discoveries. A possible alternative is to add organic solvents which

can potentially break the hydrogen bonding network and reduce electrostatic interaction in ILs,

facilitating an enhancement in transport properties.5 In almost all instances, there is a significant

decrease in viscosity while a maximum in ionic conductivity can be obtained using an appropriate

concentration of an IL and organic solvent such as ethylene glycol.17 acetonitrile,18 and ethanol.19

Additionally, there exist a large amount of data for properties of IL-solvent mixtures in the litera-

ture enabling us to perform a data-driven study by creating machine learning models. Furthermore,

these kinds of mixtures open up a new dimension for tuning, resulting in a larger chemical space

to explore.

To come up with particular IL-solvent systems for specific use cases, it is necessary to under-

stand the interaction between various ILs and solvents. Also, in industrial applications, ILs are

often accompanied by a molecular solvent and the property of those mixtures are significantly dif-

ferent than pure IL or pure solvent.6 Therefore the necessity of a study dedicated to predicting and

understanding the properties of IL-solvent mixture is substantial. However, so far the studies in this

field have been limited to specific IL-solvent combinations,6,20–22 resulting in the vast potential of

IL-solvent mixtures relatively underdeveloped. Experimentally exploring this large combination

space is nearly impossible. Physics-based computations such as molecular dynamics simulation

3
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and density functional theory calculations have good accuracy, but their high computational cost

is prohibitive for large scale screening tasks. Thermodynamic models such as Statistical Associ-

ating Fluid Theory (SAFT) and Conductor-like Screening Model for Real Solvents (COSMO-RS)

can study complex fluids like ionic liquids and their mixtures. However, they require a separate

transport model (such as Nernst Einstein or Einstein model) to calculate ionic conductivity, and

these models are dependent on ion-specific parameter tuning.23 Hence, the developed model will

be relevant to certain ion families, but may lack generalizability. An alternative approach is to

exploit machine Learning, which has wide application as a screening tool across various fields of

science and engineering.24 Machine learning models rely on the data to detect complex patterns

associated between property output and structural information encoded as inputs. Once a model is

developed, predictions of properties of novel combinations are several orders of magnitude faster

than experiments or computational approaches, as long as the structural space is, at least partly,

learned when the model is trained. The performance of machine learning models may depend on

various factors, i.e. algorithm type (parametric or non-parametric, tree-based or kernel based or

neutral network based etc.), featurization type (group-contribution based, descriptor-based, sigma-

profile based, fingerprint-based, graph-based etc.), and last but not least the size and diversity of

the dataset.25

Many works in the literature have employed machine learning to predict properties of pure

ILs.15,16,26 Datta et al. created an artificial neural network (ANN) using RDKit descriptors as fea-

tures to predict the ionic conductivity of pure ILs.26 Their dataset was obtained from the NIST

ILThermo Database and was comprised of 406 unique ILs and a total of 4259 datapoints. They

also compared two types of splitting methods namely, random split and IL-split and showed how

conventionally used random split can overestimate the results. Venkatraman et al. created a virtual

library of over 8 million synthetically feasible ILs with 12 predicted properties.27 Abdullah et al.

presented the effect of featurization toward prediction of ionic conductivity by comparing graph

convolution and RDKit descriptors.28 They showed that graph convolution outperformed RDKit

4
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features, but it was only by a small margin. Dhakal et al. developed support vector machine (SVM)

and ANN models to predict the ionic conductivity of imidazolium-based ILs,15 and showed how

learning from pure ILs could be translated to generate a large number of IL-IL mixtures exhibiting

non-ideal behavior; mixtures for which the ionic conductivity was enhanced (suppressed) relative

to those for the pure counterparts. In their subsequent paper, they developed a generalized model

with 10 different cation families using multiple linear regression, Random Forest, and extreme

gradient boosting (XGBoost) algorithms.16 In both of these papers they employed RDKit descrip-

tors as featurization technique and random split as their splitting technique. Chen at el. generated

COSMO-RS driven quantitative structure property relationship (QSPR) models to predict conduc-

tivity and then used Random Forest and XGBoost models to correlate QSPR prediction to actual

conductivity.29 This two-step methodology significantly improved their initial QSPR results. Re-

cently, Mohan et al. optimized four machine learning models (polynomial regression, support

vector regression, feed-forward neural network and categorical boosting) to predict the viscosity

of pure ILs.30 They used a combination of COSMO-RS and RDkit-derived features and showed

an improvement in the prediction capability over the models trained only on RDkit features.

Although an impressive amount of work has been carried out with respect to developing ma-

chine learning models for predicting the ionic conductivity of pure ILs, a research gap and the

necessity of machine learning models capable of predicting properties of IL-solvent mixtures still

remain. As many ILs are hygroscopic in nature, absorption of water will modify their properties,

which the models developed on pure IL properties would not be able to capture. Furthermore, due

to the relatively high cost of ILs compared to conventional molecular solvents, it is likely that ILs

will be deployed as mixtures. Unfortunately, studies involving IL mixtures are limited in com-

parison to those that focus on pure ILs. In fact, among the very few studies that report properties

of IL mixtures, most of them are limited to one or two common molecular solvents.31–34 Hezave

et al. used ANN to predict the electrical conductivity of the ternary mixtures involving IL, water

and another organic solvent.31 Their dataset only had 104 datapoints with single IL and two sol-

5
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vents, making it difficult to generalize for other solvents of ILs. Lashkarblooki et al. developed

ANN model to predict the viscosity of ternary mixtures comprised of IL, water and an organic

solvent.32 Similar to the work by Hezave et al., the model development relied on rather a small

dataset containing only 729 datapoints for five ILs. Chen et al. developed ANN using group con-

tribution method as features to predict the viscosity of IL and water mixtures.34 Duong et al. used

variants of multiple linear regression and ANN to predict the ionic conductivity of protic ILs that

can account for water content upto 5 wt%.33 Among the very few studies that aimed at developing

generalized models to predict the properties of IL-solvent mixtures, Liu et al. focused on heat

capacity and density35 while Lei et al. studied surface tension and viscosity.35,36 In both of the

works, three machine learning models (ANN, XGBoost and light gradient boosting) with group

contribution methods were employed.

Figure 1: General workflow of our work

To address the gaps identified above in the literature, our objective in this work was to develop a

generalized machine learning model capable of predicting the ionic conductivity of any IL-solvent

mixture. To achieve this target, we formulated a diverse dataset of 549 unique ILs from 16 cation

families, 81 unique molecular solvents and 7123 unique IL-solvent mixtures resulting in a total

6
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of 23691 datapoints. Using this dataset, three machine learning models, namely Random Forest,

XGBoost and ANN were trained. A schematic of our workflow is presented in Figure 1. We used

RDKit descriptors as our featurization technique. We used two splitting techniques, stratified-

IL split and random split, the detail behind these selections is presented in the methods section.

To the best of our knowledge as of writing this paper, this is the first study that addresses the

development of a generalized data-driven model for the prediction of ionic conductivity of IL-

solvent mixtures. Based on this work, a web tool was developed that can be found in https:

//ionicliquid.streamlit.app.

Method

Parsing, cleaning and formulating an ionic conductivity dataset

The dataset was created by downloading the ionic conductivity data from the NIST ILThermo

database37,38 using a modified version of the pyILTkj2 library.39 A schematic of data collection,

cleaning and dataset formulation process can be found in figure 2. The downloaded data for IL-

solvent mixture was from a total of 1079 publications. Then we acquired the Simplified Molecular

Input Line Entry System (SMILES) strings40 for ILs and solvents using two python wrappers: Pub-

ChemPy41 and CIRpy.42 PubChemPy uses the Pubchem database,43 and CIRpy uses the Chemical

Identifier Resolver (CIR)44 web service provided by the NCI/CADD group at the National Insti-

tute of Health. We only retained datapoints for which the SMILES of the components could be

found in the either of the two databases. Following this step, all the SMILES were canonicalized

using the RDkit to ensure uniformity. We observed that the ionic conductivity was reported either

in terms of either electrical conductivity or molar conductivity. Similarly, the concentration was

expressed in a number of ways: mole fraction, weight fraction, volume fraction, molar ratio, mass

ratio, molarity, and molality of either the IL or the solvent. We found that the mixtures included not

only IL-solvent but also IL-IL, IL-salt, and IL-gas mixtures. In the NIST ILThermo database, ionic

conductivities collected from various papers are termed as electrical conductivity. It is not apparent

7
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Figure 2: A brief illustration of the dataset formulation pipeline

to us the reasoning why the developers of the NIST ILThermo Database preferred to use electrical

conductivity; however, we ensured that the original publications list these conductivities as ionic

conductivity. In our dataset, we elected to use ionic conductivity (reported as electrical conductiv-

ity (S/m) in the NIST database) for IL-solvent mixtures excluding those in which the composition

was provided either in terms of molarity or volume fraction due to the absence of density or molar

volume data for IL-solvent mixtures. For the same reason, we removed datapoints for which molar

conductivity was reported instead of ionic conductivity. We further enhanced the diversity of our

dataset by adding the ionic conductivity data for pure ILs reported in the NIST ILThermo database.

We represented pure ILs as "mixtures" by pairing each IL with two randomly selected solvents.

For these mixtures, the mole fraction of the IL was set to unity. This was adopted to make our

models agnostic of solvent identity while predicting ionic conductivity for pure ILs. This proce-

dure of augmenting the dataset resulted in a significant increase in the number of datapoints (from

17,535 to 27,910) and in the number of unique cation families (from 10 to 16). For multiple data

8
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entries for a given IL or IL-solvent mixtures, we retained the datapoint with the smallest uncer-

tainty, which is reported as the δ parameter in the NIST database. We also eliminated datapoints

for which the δ parameter was higher than 0.5. As our primary objective was to identify IL-solvent

mixtures exhibiting high ionic conductivity, we set the lower bound for ionic conductivity to 0.001

S/m. The final dataset contained a total of 23,712 datapoints that represented 16 cation families,

549 unique ILs, 308 unique cations, 96 unique anions and 81 unique solvents. The temperature

ranged from 233 K to 528.55 K. The distributions of ionic conductivity and temperature of the

dataset is presented in supplementary Figures S1 and S2.

Featurization

After creating the dataset, we calculated RDkit descriptors45 separately for cations, anions, and

solvents using their SMILES strings. These descriptors include physical properties such as molec-

ular weight, topological properties (e.g., Kappa, VSA_Estate, Balabanj), molecular fingerprints

densities (FpDensityMorgan), presence of fragment groups and specific structures (fr_AL_OH,

fr_imidazole, NumAromaticRings) etc. Initially, we obtained 209 descriptors for each of the

cations, anions and solvents for a total of 627 features. As a large number of features can result

in over-fitting and degrade predictive capability of the model, we trimmed the number of features

using a number of techniques. Any feature containing less than five unique values was removed.

Additionally, we kept only one of the two features that showed high correlation for which we set

the correlation coefficient threshold to 0.8. These strategies led to a considerable decrease in the

number of features for each of the species: 46 features for cations, 43 features for anions, and 53

features for solvents. As we used temperature and mole fraction as additional features, there were

a total of 144 features for the machine learning model development.

Scaling

The ionic conductivity values in the dataset spanned six orders of magnitude ranging from 0.001

S/m to 140.6 S/m (Figure S1). Such a wide range of ionic conductivity values necessitated that
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the prediction range be narrowed for which we log-transformed the values using base 10. For

improved training accuracy, we applied standard scaling to each feature while developing neural

network-based model. However, tree based models are non-parametric which operate by simple

if-else logic and do not require any weight matrix. For those models, scaling is not necessary, and

hence we did not perform any feature scaling for Random Forest and XGBoost models.

Splitting

For data splitting, we used random split and a modified version of the stratified split. For both

split types, 10% of the original data (IL-solvent mixtures without augmentation) was set aside for

final testing while the remaining data was used for training and validation. Random split is most

commonly seen in literature, but it carries a significant caveat. As this type of split is carried out

without regard to the identity of IL (or chemical structures), it is possible that the split results into

the same IL structure being present in both training and test datasets, for example, at a different

temperature(s) or mole fraction(s). This may result in a model primarily learning to capture the

temperature and/or composition dependence rather than the impact of inherent structural diversity

on the target property. Therefore, the accuracy of the predictions for the test dataset may be overly

optimistic. A possible remedy is to split the dataset ensuring that a given IL structure is present

exclusively either in the train or the test dataset; the split is referred as IL-split in the literature.26

A key feature of this type of splitting method is that it evaluates the ability of the model to capture

the structural dependence as well as the system variable (temperature and pressure) dependence.

Our modification of the IL-split stems from diversity of the dataset, which contains 16 cation

families and a significant imbalance in the number of datapoints for each family (Figure 3). An

exact stratified split would have ensured the retainment of the 90-10 split in specific cation fami-

lies as well. (For example, 90% of imidazolium in training set, 10% of imidazolium in the test set,

90% of ammonium in the train set, 10% of ammonium in the test set and so forth) However, the

stratified-IL split that we used in this work combines both IL-split and stratified split. As different
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Figure 3: Percentage of cation families present in the train and test set after stratified-IL split.
Cations that have small presence in the dataset(<2%) are not included in the test set. Stratified-IL
split ensures that the train and test sets maintain almost similar distribution of families and they do
not possess the same cation.

ILs in each cation family have unequal number of datapoints, an exact 90-10 split for all the cation

families was not possible. For that reason, cation families (piperidinium, triazolium, guanidium,

pyrazolium, thiophenium) that have only a few datapoints are not included in the test dataset. By

performing a startified-IL split, we guarantee that both the train and the test set correctly represents

the distribution of the overall dataset (Figure 3) and a specific cation is present in either train or test

set. A similar imbalance in the anions and solvents can be seen (Figure 4). However, there are a

large number of structurally unique anions compared to cation families. Therefore, the stratified-IL

split was carried out based solely on the cation family.

Model Development

We developed two separate sets of three models (Random Forest, XGBoost and ANN) for the

two different splitting types. For the Random Forest and XGBoost models optimization of the

hyperparameters was carried out using a grid-search method and five-fold cross validation. The

final sets of hyperparameters for the models are reported in supporting information. ANN was

manually tuned to determine the optimum number of hidden layers and number of nodes in each
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of the hidden layers. The procedure led to six hidden layers for each of the models developed

using the random and stratified-IL splits. However, the number of nodes in each of the hidden

layers differed for the two splits such that 1000 units were required for the random split while

only 100 units were necessary to correlate the data using stratified-IL split. Ridge regression

(L2) and dropout of 0.2 was used as regularization parameters. Detailed architecture along with

improvement of train and validation scores with respect to epochs can be seen in supplementary

information. After that, the performances of the models were evaluated in 10 random validation

sets. Finally the models were evaluated on the held out test sets. The learning and predicting

capability of the three models were tested using two performance metrics: Correlation coefficient

(R2) and Mean Absolute Error (MAE).

Results and Discussion

Dataset Diversity

The dataset that we gathered consisted of 308 unique cations from 16 cation families, 96 unique

anions and 81 solvents. Figure 4 depicts the diversity of cations, anions, and solvents present

in the dataset. It is evident that, from the 16 cation families, imidazolium was the most stud-

ied cation type in the NIST ILThermo Database, which accounted for almost half of the data-

points. Ammonium, pyridinium, aminium, pyrrolidinium, phosphonium, and piperidinium fam-

ilies represented 15.3%, 11.2%, 8.8%, 5.3%, 4.4% and 1.3% datapoints, respectively. Several

other types of cations such as guanidinium, triazolium, morpholinium, pyrazolium, thiophenium,

piperazinium, pyrrolidone and amidium were present in significantly smaller numbers and together

formed only 2.7% of the entire dataset. For anions, the distribution was comparatively less skewed

such that bis(trifluoromethanesulfonyl)imide ([NTf2]− also commonly referred to as TFSI) , Br−

and tetrafluoroborate [BF4]− accounted for 17.8%, 13.7% and 13.6%, respectively. We observed

a gradual decline in the distribution starting from Cl− (5.5%) to [ClO4]− which was present only

at 4× 10−4%. To characterize the diversity of solvents, we separated the solvents into various
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Figure 4: Diversity of (a) cation families, (b) anions and (c) solvents in the dataset

families based on their structure and functional groups (Figure 4(c)).46,47 For structures contain-

ing multiple functional groups, we used the priority list for IUPAC naming of compounds.48 For

example, a solvent containing both an amine group together with an alcohol moiety would be clas-

sified as aminoalcohol. We observe that approximately one third of the datapoints involved water

as a solvent. The remaining datapoints were for organic solvents with alcohols, acids, and esters

leading the list. A gradual decrease in the fraction of datapoints containing amide to ether can be

seen. About 4% of the datapoints were for solvents such as nitro compounds, diketones, amines,

organosulfurs and diazoles.

Additionally, we performed Tanimoto similarity analysis to gauge the extent of structural diver-

sity of the chemical constituents in our dataset.49 A Tanimoto similarity score of 1 denotes no

similarity and 0 implies lowest similarity.50 Among a wide range of similarity fingerprints avail-

able, Extended Connectivity Fingerprints with diameter 4 and 6 (ECFP4, ECFP6) are the best

performing fingerprints for ranking diverse structures.51 In this work, we calculated the Tanimoto

similarity score of all possible pairs of cations, anions, ionic liquids, and solvents using Morgan

Fingerprint with diameter 6 (radius = 3), which is an RDKit implementation of ECFP6.52 As an

example, for 81 solvents, we calculated the Tanimoto similarity index for each pair of solvents,
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resulting in an 81×81 matrix. As such a matrix is symmetric, we removed the entries in the diago-

nal (self-self), and only retained the upper triangle of the matrix. Results from such a computation

are presented for the cation, anion, ILs, and solvents as a violin plot in Figure 5. It can be seen

Figure 5: Tanimoto score distribution of cation, anions, ILs, and solvents in the dataset; the three
dotted lines inside each of the violins represents quartiles.

that the Tanimoto similarity index spans the entire range from 0 to 1. However, a large fraction of

the similarity indexes fall within 0 to 0.2 as evidenced by a width of the violin plots in this range,

suggesting structural diversity in cations, anions, ILs, and solvents. For a given violin plot, the

probability of the Tanimoto similarity index exceeding 0.5 is significantly diminished as indicated

by a very narrow region above this value. Also, anions and solvents exhibit even greater dissimi-

larity with more than 25% of the pairs showing similarity close to zero. Overall, a broad chemical

diversity of the dataset is apparent from our analyses.

Model Performance

We evaluated the performance of the three models developed in this work along with the influence

of the type of data splitting in terms of correlation coefficient (R2) and the mean absolute error

(MAE) computed in terms of predictions expressed in log values on a base-10 scale. The values
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for the two metrics for a given model and the way data was split in the training and test datasets are

summarized in Table 1. Comparing three models, we notice that the tree-based models (Random

Table 1: Performances of the three models in train, validation and test set according to the two
split types. Here, train and validation incorporate average scores and standard deviations of that
score after ten shuffles of train-validation (90:10) splits. There was only one test set, which was
held out from the beginning. Hence there is no standard deviation of test scores. The evaluation
metrics used here are correlation coefficient (R2) and mean absolute error (MAE).

Model Dataset Random Split IL Stratified Split
R2 MAE R2 MAE

Random
Forest

Train 0.996±0.0004 0.028±0.00 0.995±0.0004 0.028±0.001
Validation 0.971±0.004 0.073±0.002 0.674±0.137 0.295±0.049

Test 0.98 0.051 0.857 0.259

XGBoost Train 0.991±0.0003 0.053±0.0006 0.992±0.0006 0.049±0.001
Validation 0.972±0.003 0.079±0.002 0.79±0.055 0.273±0.037

Test 0.98 0.067 0.875 0.252

ANN Train 0.889±0.015 0.150±0.01 0.78±0.042 0.212±0.016
Validation 0.89±0.017 0.150±0.011 0.196±0.222 0.588±0.259

Test 0.857 0.297 0.613 0.481

Forest and XGBoost) yielded almost similar performance. The R2 values and MAE obtained in

this work are in line with those obtained in our previous work on correlating ionic conductivity

for pure ionic liquids using Random Forest and XGBoost methods.16 The accuracy of the ANN

model developed here is somewhat lower than that of the tree-based models, which is consistent

with literature reports on IL property predictions comparing the two models.30,36 Although both

the tree-based and ANN models attempt to capture nonlinear structure-property relationship, neu-

ral network-based models tend to outperform other models when a large amount of data is used

so that the model can discover complex relationships between features and targe variables. On the

other hand, the if-then-else logic-based tree models can be used with significantly less amount of

data. Despite the fact that our dataset is large and structurally diverse compared to other works in

the literature, it shows limitation for the ANN model, but it appears adequate for the tree-based

models.

For Random Forest and XGBoost models, the training accuracy is similar for both the random
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split and stratified-IL split approaches, while the training accuracy degrades when stratified-IL

split is employed in developing the ANN model. On the other hand, the accuracy in predictions

for all the models is considerably lower for the test dataset in the case of stratified-IL split. In

terms of random split, it was found that all the ILs (175 in total) present in the test set were also

included in the train set. Therefore, the models developed using such a split have already learned

IL structures, so rather than capturing structural diversity, the models tend to express the depen-

dence of temperature, mole fraction or pressure on ionic conductivity. This was the primary reason

underlining the high predictive capabilities of the models when random split was used. Whereas

in stratified-IL split, structures included in the test dataset were unseen in the model development.

This feature enabled the models to take into account structural dependence along with system

variable dependence, which is primarily the intent of developing machine learning models for IL

property predictions. This variation in results for two different type of splits agrees with the work

of Datta et al. and Bilodeau et al.26,53

Due to their higher prediction capability, hereafter, we will discuss only the Random Forest

and XGBoost models. For better generalization capability, we will consider only the stratified-IL

split. The performances of Random Forest and XGBoost models on stratified-IL split is visually

presented in Figure 6 in logarithmic scale. Results in actual scale can be found in Figure S3. In

Figure 6a and Figure 6c, we observe that the models predict reasonably well the experimental data

on the training set. In addition, both the models satisfactorily generalize on test sets with greater

accuracy in the high-conductivity region as compared to that for low conductivity. Given that our

interest is in discovering high ionic conductivity IL-solvent mixtures, both models can be used

with good accuracy. Figure 6e depicts the average error in the ionic conductivity predictions on

the test set for different cation families while Figure 6f presents the average error as a function

of solvent families. We observe that the contribution of imidazolium-based ILs to the overall

error is the largest across all the IL families. This can be due to the fact that the quantity and

diversity of imidazolium cations were much broader compared to other cation families. In terms

of solvents, mixtures containing water are the primary contributors to the overall error, which can
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Performance analysis on stratified-IL split: (a) Random Forest, training dataset; (b)
Random Forest, test dataset; (c) and (d) XGboost on training and test datasets, respectively. Figures
(a)-(d) also include the information on the MAE for each of the quartiles. (e) and (f) depict MAE
calculated for representative cation and solvent families, respectively.
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be attributed to the fact that water is the only inorganic solvent in the dataset while the rest are

organic in nature. Therefore, it is possible that significant structural disparity between water and

organic solvents gives rise to the high average errors for water. As a significant fraction of the

dataset is due to imidazolium-water mixtures, developing specific models instead of generalized

models encompassing all the ionic liquid families and solvent types could improve the accuracy

of predictions. Additionally, it can be seen that different model can favor different solvents. For

example, average errors of diketone and nitro compounds are much lower for XGBoost model

compared to those of the Random Forest model, whereas for nitriles and amines exhibit an opposite

(Figure 6f) Hence, for future work, multiple models could be combined so that their strengths for

accurately predicting ionic conductivities for different solvents can be leveraged to develop an

overall model that performs much better than a single model. Furthermore, we observed that data

augmentation did not have any beneficial effect in the model performance (Figure S4). This can

be due to the fact that model did not properly learn pure IL systems which is evident by the large

prediction spread observed for same IL coupled with different solvents at mole fraction of IL set

to unity (Figure S5). However, data augmentation improved the overall diversity of the dataset,

providing more cation families for the high-throughput screening.

Model Interpretation

To interpret the effect of features and determine the important features influencing model perfor-

mance, we carried out Shapley Additive Explanations (SHAP) analysis of the Random Forest and

XGBoost models. Figure 7 displays the SHAP feature importance for the two models. For each

feature, a positive SHAP value indicates that the contribution of the feature for the given datapoint

to ionic conductivity prediction is positive while negative SHAP value indicates otherwise. The

spread of the SHAP values for a given feature also points to the extent to which a given feature

affects the prediction over the mean prediction. Additional insight into the directionality of the

effect of a feature can be gleaned based on the color of the scale. In the present case, blue denotes

low values while red color is indicative of the high value of the features. We see that temperature
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(a)

(b)

Figure 7: SHAP feature importance for (a) Random Forest and (b) XGBoost model

is one of the most important features for both of these model. Temperature is also predicted to be

positively correlated with ionic conductivity, which captures the well-known trend that the ionic

conductivity increases with an increase in the temperature. The SHAP values of temperature vary

over a wide range, which implies that the strong influence of temperature on the ionic conductivity

prediction. The mole fraction of ILs is ranked very high in terms of feature importance (second

in the Random Forest model and the first in the XGBoost model). Unlike other features that are

either positively or negatively correlated with ionic conductivities, the influence of mole fraction is

rather unique. For example, high values of mole fractions result into decreasing ionic conductivity
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trends, which can be understood from the observation that these mixtures correspond to nearly

pure ILs for which ionic conductivities are low. On the other hand, intermediate mole fractions

are positively correlated while the low values lead to a decreasing trend of ionic conductivities.

A decreasing trend in the ionic conductivity when the ionic liquid mole fraction is low can be at-

tributed to low concentrations of ions available in the system. This behavior suggests that the ionic

conductivity passes through a maximum which agrees well with the findings of Chuahan et al.17

The features Kappa3, Balabanj and Ipc provide a measure of branching and structural complexity

of molecules.54–56 As branching tend to increase viscosity, these three features are inversely cor-

related to ionic conductivity, which is evident in Figure 7. Similarly increasing molecular weight

increases the bulkiness of the molecule and decreases conductivity. Quantitative Estimation of

Drug Likeness (QED) gives a measure of hydrophobicity and non-polar nature.57 We see that low

values of cation QED negatively affect ionic conductivity, meaning highly polar cations yield low

ionic conductivity. VSA_Estates are the sum of electrotopological state indices in specific van

der waals surface domains.16,58 Anion VSA_Estate2 shows positive correlation but estate 3 shows

negative correlation to model prediction. MaxAbsEstateIndex and MinAbsEstateIndex are max-

imum and minimum absolute estate index in the molecule and they show positive and negative

correlation respectively. The correlation that we observed for XGBoost model agrees well with

Dhakal et al.16 However, the priority of features changed due to the inclusion of solvent features.

For example, mole fraction of IL is the most important feature in our model instead of tempera-

ture. Some features such as cation Ipc, Chi0, BertzCT, anion MaxAbsPartialCharge have too low

impact in our model and cannot be seen in the list of top 10 important features in the SHAP plot.

Another thing to observe from the SHAP plot is that the composition of solvent is a much more

important feature compared to the type of solvent used or, more specifically, the structure of sol-

vent. This phenomenon for mixture systems agrees with the findings of Seddon et al.59 that the

physicochemical properties of ionic liquids are influenced greatly by the amount of a solvent rather

than its type.
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Screening

In an effort to expand into the unexplored chemical space and discover novel IL-solvent mixtures

for their applications as electrolytes, we performed a high-throughput screening using hyper pa-

rameters of the XGBoost model developed in this work refitted with all the available datapoints.

The selection of XGBoost was motivated by the fact that the model yielded the best performance

on both validation and test sets among the three models. First, we created a screening dataset from

all the possible combinations of unique cations, anions, and solvents. Five intermediate mole frac-

tions [0.1, 0.3, 0.5, 0.7 and 0.9] were sampled for a given IL-solvent combination, which resulted

into approximately 2.5 M unique IL-solvent systems and 12.5 M data points; the temperature for

the screening was set to 298 K.

For an IL-solvent mixture to be considered as a potential electrolyte, it has to exceed or at

least match the ionic conductivity of the conventional electrolyte used in practice. The current

conventional electrolyte in Li-ion batteries is LP30, which is a mixture of 1M LiPF6 in a 1:1

ethylene carbonate and dimethylcarbonate.60,61 At room temperature (298 K), LP30 has an ionic

conductivity of 1.26 S/m. Therefore, for an IL-solvent system to be a potential for replacement

of LP30, it should exhibit ionic conductivity ∼ 2 S/m, as the addition of of Li salt is expected to

reduce the conductivity by 30-50%.16 The original dataset used to develop ML models contained

only 88 unique IL-solvent mixtures exceeding 2.0 S/m ionic conductivity at room temperature.

After carrying out the high-throughput screening with our XGBoost model, the number of such

IL-solvent mixtures increased dramatically to ∼ 19,000. Figure 8 depicts two heatmaps: one

generated from the original dataset (Figure 8a) and the other obtained from the high-throughput

screening (Figure 8b). Both the heatmaps show cation and solvent families of IL-solvent mixtures

exhibiting ionic conductivities higher than 2.0 S/m. For each pair of cation family-solvent family,

the maximum conductivity found is reported in the corresponding heatmaps. All the combinations

presented in Figure 8b are listed in the supplementary information. We observe that the screening

leads to a considerable expansion in the number of potential cation and solvent families that can

be combined to produce electrolytes with desired ionic conductivities. In fact, the model predic-
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(a)

(b)

Figure 8: Heatmap of IL-solvent mixtures with ionic conductivity higher than 2.0 S/m, from
(a) original dataset, (b) high-throughput screening of all possible combinations of cations, anion,
solvents. Five mole fractions 0.1, 0.3, 0.5, 0.7, and 0.9 were used to represent IL-solvent mixtures.
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tions for some of the cation-solvent families are almost an order of magnitude higher than 2.0 S/m

suggesting exciting opportunities for further investigation.

We, however, note that the screening is only based on predicted ionic conductivities of ionic liquid-

solvent mixtures at 298 Kand does not necessarily represent the capability of any of those mixtures

to be used as a battery electrolyte. Apart from ionic conductivity, the actual application as battery

electrolyte will depend on various factors such as battery type, viscosity, electrochemical stabil-

ity, reactivity, melting point etc. For example, mixtures that contain water as molecular solvent

may cause stability issues in Li-ion batteries despite their large ionic conductivities. Also, all the

mixture systems presented in Figure 8 may not be liquid at the operating conditions of the battery.

For instance, the performance of a particular combination needs to be tested over a range of tem-

peratures in which batteries are likely to be operated. Therefore, to fully exploit the applicability

of a mixture as electrolytes, a multi-objective optimization approach or multiple machine learn-

ing models targeting desired properties (e.g., viscosity, melting point, etc.) is required. As our

primarily objective in this work is only on the ionic conductivity, this is beyond the scope of this

paper. Interested readers are suggested to refer to the work of Chen et al. where pure ionic liquids

were screened with consideration for multiple constraints such as melting point, viscosity, thermal

decomposition temperature, toxicity and heat capacity.62

Conclusion

This work aimed to address the lack of an all encompassing general model to predict ionic conduc-

tivities of IL-solvent mixtures. To address the research gap, a diverse dataset of IL-solvent mixtures

was developed based on the data extracted from the NIST ILThermo Database. Pure ionic liquids

were represented as "mixtures" with solvents with mole fraction of the IL set to unity. Three ma-

chine learning models, viz. Random Forest, XGBoost and ANN were developed based on random

split of the data and novel stratified-IL split that partitioned a given ionic liquid exclusively into the
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training dataset or test data set to handle imbalanced data and improve generalization. The results

showed that the evaluation metrics for the random split were significantly higher than those for

the stratified-IL split, which was attributed to the models capturing trends of temperature and mole

fraction rather than structural diversity. Out of the three models, Random Forest and XGBoost out-

performed the ANN model, which could be due to the limited amount of data. Feature importance

gleaned from the SHAP analysis revealed that the models were capable of capturing complex non-

monotonic dependence of ionic conductivity on IL-solvent mole fractions. The SHAP analysis

also correctly identified a positive correlation between temperature and ionic conductivity.

In order to identify potential IL-solvent electrolytes exceeding the ionic conductivity of the conven-

tional electrolyte LP30 for Li-ion batteries, a high-throughput screening of all the possible com-

binations of cations, anions, and solvents at various mole fractions was carried out. The approach

yielded approximately 19,000 unique IL-solvent candidates with some showing ionic conductivity

as high as 70 S/m at 298 K. Although promising and exciting, one limitation of our work is the ex-

clusive focus on ionic conductivity. For an IL-solvent mixture to be considered as potential battery

electrolyte, various properties such as electrochemical stability, melting point, chemical reactivity,

etc. should also be considered in addition to ionic conductivity. In future work, we plan to develop

additional models that can predict relevant properties for electrochemical applications, providing

multiple constraints to the high-throughput screening, which will result in a narrower list of poten-

tial candidates. These candidates can then be subjected to experimentation.

As the primary objective of the present work was to obtain a generalized machine learning model

encompassing all available solvents. Therefore, water, as the only inorganic solvent, was included;

however, these mixtures contribute significantly to the overall error, which would suggest model

development without the inclusion of water. Although this may reduce the overall error in the ionic

conductivity prediction, such an approach would also eliminate a large number of data points. Ad-

ditionally, the high-throughput screening shows that a large number of IL-water systems with high
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ionic conductivity can be envisioned, potentially reducing the cost of battery electrolytes. There

is also an evidence that IL-based electrolytes can tolerate large amounts of water without showing

stability issues.63 So, inclusion or exclusion of water will require a thorough inspection, which

will be a subject for a future study.
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