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oroalkyl reagents: gem-
difluoroalkyl propargylic borons and gem-
difluoroalkyl a-allenols†

Hui-Na Zou, Meng-Lin Huang, Ming-Yao Huang, Yu-Xuan Su, Jing-Wei Zhang,
Xin-Yu Zhang and Shou-Fei Zhu *

Chiral fluorinated reagents provide new opportunities for the discovery of drugs and functional materials

because the introduction of a fluorinated group significantly alters a molecule's physicochemical

properties. Chiral gem-difluoroalkyl fragments (R–CF2–C*) are key motifs in many drugs. However, the

scarcity of synthetic methods and types of chiral gem-difluoroalkyl reagents limits the applications of

these compounds. Herein, we report two types of chiral gem-difluoroalkyl reagents chiral gem-

difluoroalkyl propargylic borons and gem-difluoroalkyl a-allenols and their synthesis by means of

methods involving rhodium-catalyzed enantioselective B–H bond insertion reactions of carbenes and

Lewis acid-promoted allenylation reactions. The mild, operationally simple method features a broad

substrate scope and good functional group tolerance. These two types of reagents contain easily

transformable boron and alkynyl or allenyl moieties and thus might facilitate rapid modular construction

of chiral molecules containing chiral gem-difluoroalkyl fragments and might provide new opportunities

for the discovery of chiral gem-difluoroalkyl drugs and other functional molecules.
Introduction

Fluorine-containing compounds have unusual physicochemical
properties and have had a considerable impact on the discovery
of new medicines, agrochemicals, catalysts, and functional
materials.1 Thus, the development of uorine-containing
building blocks has recently been receiving increasing atten-
tion. The gem-diuoromethylene group is considered to be
a bioisostere2 of carbonyl groups and oxygen atoms of ethers
and can modulate the pKa of neighboring functional groups.3

gem-Diuoroalkyl groups (–CF2–R) are key moieties in many
uorine-containing drugs, including lubiprostone,4 otesecona-
zole,5 vinunine,6 and gemcitabine7 (Scheme 1a). The intro-
duction of a gem-diuoroalkyl group into bioactive molecules is
an effective strategy for studying structure–activity relationships
and tuning the pharmacological activity of drugs and drug
candidates.8

The efficient construction of chiral gem-diuoroalkyl
compounds has attracted substantial research interest over the
past few decades.9However, the types of chiral gem-diuoroalkyl
compounds are still limited in number because of lack of
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efficient synthetic methods. Since organoboron compounds,10

alkynes, and allenes11 are common building blocks in organic
synthesis, gem-diuoroalkyl-substituted chiral boron
Scheme 1 Background and strategy.
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Table 1 Optimization of conditions for rhodium-catalyzed enantio-
selective B–H bond insertion of N-triftosylhydrazone 1a with trime-
thylamine–borane adduct 2aa

Entry [Rh] Solvent Base Yield (%) ee (%)

1 4a Et2O NaH 41 31
2 4b Et2O NaH 40 70
3 4c Et2O NaH 71 85
4 4d Et2O NaH 85 89
5 4e Et2O NaH 52 11
6 4f Et2O NaH 34 11
7 4g Et2O NaH 67 63
8 4h Et2O NaH 72 12
9 4i Et2O NaH 15 26
10 4d Et2O NaOH 64 90
11 4d Et2O K2CO3 60 89
12 4d Et2O K3PO4 56 90
13 4d Et2O LiOtBu 54 86
14 4d MTBE NaH 99 89
15 4d DCM NaH 28 36
16b 4d MTBE NaH 99 93
17c 4d MTBE NaH 59 86

a Reaction conditions: 4/1a/2a = 0.0005 : 0.15 : 0.1 (mmol), 0.45 mmol
base, 2.5 mL solvent; all the reactions were complete within 24 h.
DCM, dichloromethane; MTBE, methyl tert-butyl ether. Isolated yields
are given. The ee values were determined by HPLC. b Performed at
−10 °C. c Performed at −20 °C.
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compounds and allenes are expected to become novel chiral
gem-diuoroalkyl reagents. To our knowledge, there is only one
catalytic method for the synthesis of boron-substituted chiral
gem-diuoroalkyl compounds (Scheme 1b),12 while chiral gem-
diuoroalkyl propargylic borons and chiral gem-diuoroalkyl-
substituted allenes remain unknown. Therefore, the develop-
ment of efficient, convenient methods for the synthesis of easily
transformable chiral gem-diuoroalkyl-substituted boron
compounds bearing alkyne and allene motifs would be highly
desirable. Herein, we report a method for dirhodium-catalyzed
B–H bond insertion reactions using gem-diuoroalkyl alkynyl N-
triosylhydrazones as carbene precursors for the preparation of
a wide range of novel, stable chiral gem-diuoroalkyl prop-
argylic borons in high yields with high enantioselectivities
(Scheme 1c). We also developed a method for BF3$Et2O-
promoted allenylation of aldehydes with a chiral gem-diuor-
oalkyl propargylic boron; this method offers rapid access to
a wide range of chiral gem-diuoroalkyl a-allenols with adjacent
axial and central chiralities. These two types of chiral gem-
diuoroalkyl reagents, which contain easily transformable
boron and alkynyl or allenyl moieties, have high value for
facilitating the rapid, modular construction of chiral molecules
containing gem-diuoroalkyl groups. We demonstrated the
synthetic potential of the gem-diuoroalkyl a-allenols by trans-
forming one of them into chiral gem-diuoroalkyl 2,5-dihy-
drofuran and tetrahydrofuran derivatives.

Results and discussion

Inspired by our earlier work on asymmetric B–H bond inser-
tion,13 we hypothesized that gem-diuoroalkyl alkynyl N-trio-
sylhydrazones could serve as carbene precursors for the
construction of chiral gem-diuoroalkyl reagents through
asymmetric B–H bond insertion reactions. We began by using
gem-diuoroalkyl alkynyl N-triosylhydrazone 1a as a model
substrate, trimethylamine–borane adduct 2a as a boron source,
and NaH as a base (Table 1). First, we evaluated commercially
available chiral dirhodium catalysts 4a–4i (0.5 mol%) in reac-
tions at 0 °C in Et2O (entries 1–9). Of the tested catalysts, 4d gave
the highest yield and enantioselectivity (85% yield, 89% ee,
entry 4). We evaluated several alternative bases (entries 10–13)
and found that they signicantly decreased the yield but had
little inuence on the enantioselectivity. The solvent screening
revealed that the weakly coordinating solvent methyl tert-butyl
ether improved the yield to 99% (entry 14). In contrast, the
chlorinated solvent dichloromethane substantially decreased
both the yield and the enantioselectivity (entry 15). Lowering the
reaction temperature to −10 °C had benecial effects on the
enantioselectivity: desired product 3aa was obtained in 99%
yield with 93% ee (entry 16). However, the reaction at −20 °C
gave a reduced yield and enantioselectivity (entry 17).

Under the optimal conditions (Table 1, entry 16), we evalu-
ated B–H bond insertion reactions of various gem-diuoroalkyl
alkynyl N-triosylhydrazones 1 with trimethylamine–borane
adduct 2a (Scheme 2). Reactions of N-triosylhydrazones
bearing an aryl group attached to the alkynyl moiety (1b–1t)
gave the corresponding B–H bond insertion products (3ba–3ta)
© 2023 The Author(s). Published by the Royal Society of Chemistry
in 74–99% yields with 73–99% ee. The steric properties of the
substituent on the aryl group clearly affected the enantiose-
lectivity of the reaction. A substrate with an ortho-methyl group
gave the expected product 3ba in high yield with high enan-
tioselectivity, whereas the corresponding meta-methyl-
substituted compound showed lower enantioselectivity (3ca).
However, the position of a chlorine substituent had little effect
on the enantioselectivity (3da–3fa). Furthermore, a substrate
with an ortho-uorine substituent gave the corresponding
product (3ga) with good results. Transformation of a 1-
naphthyl-substituted N-triosylhydrazone afforded product 3ha
with satisfactory results. Substrate 1i, which has a para-nitro
group, gave access to the corresponding product (3ia) in 80%
yield with 82% ee. We also evaluated substrates bearing an aryl
or a heteroaryl group attached to the alkynyl moiety. Substrates
Chem. Sci., 2023, 14, 9186–9190 | 9187

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc03266c


Scheme 2 Preparation of chiral gem-difluoroalkyl propargylic borons
by rhodium-catalyzed B–H bond insertion reactions. a Reaction
conditions: 4d/1/2 = 0.0005 : 0.15 : 0.1 (mmol), 0.45 mmol NaH,
2.5mLMTBE,−10 °C. All reactions were complete within 24 h. Isolated
yields are given. The ee values were determined by HPLC. b Performed
at room temperature. c Catalyst 4b was used.

Scheme 3 Preparation of chiral gem-difluoroalkyl a-allenols through
addition reactions of gem-difluoroalkyl propargylic boron with alde-
hydes. a (CH2O)n (10 equiv.).

Scheme 4 Gram-scale B–H bond insertion reaction and trans-
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with an electron-donating methyl group or an electron-
withdrawing uorine or chlorine atom or a triuoromethyl
group on the 1-phenyl ring were tolerated (3ja–3qa).
Compounds with a 1-naphthyl or 1-thienyl group attached to
the alkynyl moiety showed high yields and enantioselectivities
(3ra, 3sa). When 4b was the catalyst, a substrate with a methyl
group attached to the gem-diuoromethylene group afforded
3ta in good yield with moderate enantioselectivity. We also
evaluated reactions of 1a with a series of borane adducts 2 and
found that only trialkylamine–borane adducts afforded good
results (see the ESI† for details). The structure and absolute
conguration of (R)-3fa were determined by X-ray diffraction
analysis of a single crystal.

Chiral a-allenols,14 which have both axial and central
chiralities, not only are found in hundreds of natural products
but also serve as valuable synthetic intermediates in a wide
range of transformations. gem-Diuoroalkyl-substituted chiral
a-allenols have great potential as novel chiral gem-diuoroalkyl
reagents with possible applications for drug discovery. To the
best of our knowledge, chiral gem-diuoroalkyl-substituted
allenes have not been reported. Serendipitously, we found
that BF3$Et2O-promoted addition reactions between (R)-3ba
and aldehydes generated chiral gem-diuoroalkyl a-allenols,
which have axial and central chiralities (Scheme 3; see the ESI†
for optimization of the reaction conditions). Having discovered
this, we evaluated a broad array of aldehydes, including form-
aldehyde and aromatic and aliphatic aldehydes in reactions
with (R)-3ba. The addition reaction between formaldehyde and
9188 | Chem. Sci., 2023, 14, 9186–9190
(R)-3ba gave chiral gem-diuoroalkyl a-allenol 5a in good yield
with excellent regioselectivity and well-retained ee. Aromatic
aldehydes with a 4-phenyl, 4-chloro, or 4-bromo substituent
gave corresponding a-allenols 5b–5d in good yields with excel-
lent regio-, diastereo-, and enantioselectivities. However, the
yield of 5e from the reaction of 4-methoxy benzaldehyde was
relatively low. 2-Thenaldehyde and 2-furfural gave good results
(5f, 5g). Aliphatic aldehydes were also appropriate substrates,
generating the desired products (5h–5j) in good yields with high
regio- and diastereoselectivities. In addition, a-chiral amino
aldehydes derived from natural amino acids reacted smoothly
with (R)-3ba under the standard conditions, diastereoselectively
providing gem-diuoroalkyl b-amino a-allenols 5k and 5l, which
have three contiguous chiral centers. We propose that this
reaction proceeds via transition state PT (Scheme 3). Coordi-
nation of BF3$Et2O to the carbonyl group of the aldehyde
enhances the electrophilicity of the carbonyl carbon atom,15 and
formations of gem-difluoroalkyl a-allenol 5b.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the concerted addition process ensures the high
diastereoselectivity.

Next, we explored the synthetic potential of our method
(Scheme 4). We found that the B–H bond insertion reaction of
gem-diuoroalkyl alkynyl sulfonylhydrazone 1b and trimethyl-
amine–borane adduct 2a could be conducted at a gram scale
with 0.2 mol% 4d as the catalyst to afford (R)-3ba in good yield
with excellent enantioselectivity (Scheme 4a). Gold-catalyzed
cyclization of 5b stereoselectively furnished gem-diuoroalkyl
2,5-dihydrofuran 6, which has two chiral centers (Scheme 4b).
Hydrogenation of the trisubstituted olen moiety of 6 over Pd/C
afforded chiral gem-diuoroalkyl-substituted tetrahydrofuran 7,
which has three chiral centers (Scheme 4b). Recently, various
compounds containing tetrahydrofuran units bearing chiral
gem-diuoroalkyl substituents have been proposed for the
treatment of cancers and other diseases.16

Conclusions

In conclusion, we have developed two types of chiral gem-
diuoroalkyl reagents: gem-diuoroalkyl propargylic borons
and gem-diuoroalkyl a-allenols. First, a wide range of novel,
stable chiral gem-diuoroalkyl propargylic borons were synthe-
sized in high yields with high enantioselectivities by means of
dirhodium-catalyzed B–H bond insertion reactions. Then,
aldehydes (formaldehyde and aromatic and aliphatic alde-
hydes) were allenylated with chiral gem-diuoroalkyl prop-
argylic boron in the presence of BF3$Et2O for rapid access to
a wide range of chiral gem-diuoroalkyl a-allenols with two or
three contiguous chiral centers, including adjacent axial and
central chiralities. Moreover, a gem-diuoroalkyl a-allenol was
readily derivatized to afford chiral gem-diuoroalkylated 2,5-
dihydrofuran and tetrahydrofuran derivatives, demonstrating
the considerable potential utility of chiral gem-diuoroalkyl
reagents for organic synthesis.
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