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and energy characterization of the functional
units of genomic DNA†
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Genomes of most organisms on earth are written in a universal language of life, made up of four units –

adenine (A), thymine (T), guanine (G), and cytosine (C), and understanding the way they are put together has

been a great challenge to date. Multiple efforts have been made to annotate this wonderfully engineered

string of DNA using different methods but they lack a universal character. In this article, we have investigated

the structural and energetic profiles of both prokaryotes and eukaryotes by considering two essential geno-

mic sites, viz., the transcription start sites (TSS) and exon–intron boundaries. We have characterized these

sites by mapping the structural and energy features of DNA obtained from molecular dynamics simulations,

which considers all possible trinucleotide and tetranucleotide steps. For DNA, these physicochemical proper-

ties show distinct signatures at the TSS and intron–exon boundaries. Our results firmly convey the idea that

DNA uses the same dialect for prokaryotes and eukaryotes and that it is worth going beyond sequence-level

analyses to physicochemical space to determine the functional destiny of DNA sequences.

Introduction

With the advent of next-generation sequencing (NGS), considerable
genomic data have been generated and annotation has been
a challenge. Genome annotation, commonly known as DNA
annotation, identifies and assigns a suitable function to the
significant elements within the DNA, such as protein-coding
mRNA genes (which may further be composed of introns
and exons), non-coding RNA regions, promoters, enhancers,
and silencers.1–3 Molecular biology approaches provide us with
reliable sequence annotation. Compared to these experimental
methods, no other alternative methods are available to provide us
with the detailed annotation of genes and the other regulatory
elements4,5 to the same level of reliability. However, experimental
techniques are capital-intensive and time-consuming and thus
create a massive gap between sequencing and annotation.6 Recent
computation-based methods are a promising avenue for bridging
this gap.3 Computational genome annotations involve cataloguing

protein-coding and non-coding genes and additional functional
elements involved in gene expression and regulation. These are
emerging as the preferred choices for the fast characterization of
newly assembled genomes.

Over the years, scientists have been constantly working to
develop various computational algorithms for the annotation of
different DNA elements. Among the various sites, promoters and
exon–intron boundaries are a prime focus of the present
research. Promoters are one of the genome’s most essential
components. These elements commence the transcription pro-
cess by primarily binding to the RNA polymerase (RNAP).
Together with the bound polymerase, these elements undergo
several changes in their overall architecture.7 The promoter’s
function, however, is not restricted to starting transcription.
Also, these regions aid in appropriately identifying and confirm-
ing predicted genes in genome annotation. Sequence-based
methods rely on capturing a consensus sequence around pro-
moters and such approaches have been moderately successful.8,9

Machine learning-based promoter predictors are developed
through training over extensive sequence data. These tools offer
good accuracy but are highly genome specific.10–16 Despite the
many insights gained over the years from such investigations,
the creation of a promoter prediction tool capable of high
performance across diverse organisms is still a long way off.6

Eukaryotes are complex organisms that have a membrane-
bound nucleus and cell organelles. In these organisms, a gene

a Supercomputing Facility for Bioinformatics & Computational Biology,

Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
b Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana,

India
c Department of Chemistry, Indian Institute of Technology, Delhi, India.

E-mail: bjayaram@chemistry.iitd.ac.in

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d2cp04820e

Received 15th October 2022,
Accepted 9th February 2023

DOI: 10.1039/d2cp04820e

rsc.li/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 1
0 

fe
br

uá
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

02
4.

 0
7.

 1
5.

 1
9:

57
:4

8.
 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-4030-0951
https://orcid.org/0000-0002-5495-2213
http://crossmark.crossref.org/dialog/?doi=10.1039/d2cp04820e&domain=pdf&date_stamp=2023-02-23
https://doi.org/10.1039/d2cp04820e
https://doi.org/10.1039/d2cp04820e
https://rsc.li/pccp
https://doi.org/10.1039/d2cp04820e
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP025010


7324 |  Phys. Chem. Chem. Phys., 2023, 25, 7323–7337 This journal is © the Owner Societies 2023

is composed of two essential elements, viz., introns and exons.
Introns are the noncoding regions of a gene (or mRNA) that are
removed before the maturation of the mRNA through a process
called splicing. The segments of the DNA (or mRNA) that finally
become part of the mature mRNA and thus code for the
proteins are exons.7 Like promoter identification, detecting
accurate intron–exon architecture within a gene is essential
and has recently received significant attention in eukaryotic
genome annotation.17 The primary focus of categorization was
on the splice sites (SSs) and junction sequences. Convention-
ally, it includes a G–T nucleotide pair at the 50 end of the intron,
and an A–G nucleotide pair at the 30 end.7,17 With the contin-
uous characterization of SSs, many sequence alterations occur
at these sites. Further, the identification of the exon–intron
junctions becomes challenging due to the presence of alternative
splicing. These challenges significantly reduce the reliance on SSs
for detecting exon–intron boundaries.18 Computational algorithms
have been developed to recognize these junctions within the
genes. Some tools use a score to predict the splice site, calculated
against matrices created from vast sets of splice sites.19–22 Other
approaches, such as the Genscan23 and Genomescan,24 compare
the splice site sequence signal (at the intron–exon boundaries) to
known protein sequences in an integrated manner. Programming-
based tools for ab initio gene prediction like Genomewise,25

Augustus,26 Fgenesh,27 GeneParser,28 GeneID29 are built using
advanced computational models like HMM or Dynamic model.
These methods learn the characteristics of the huge training
sequences and produce good results for a particular species or
organism. For a sequence not in the training dataset, their accuracy
decreases considerably.

Since there exists no universal model for the identification
and characterization of these genomic elements, it is necessary
to come up with a chemistry-based approach to annotation. In our
previous research communications,6,17,30–34 we have elucidated the
importance of the structural and energy-based profiling of the DNA
elements. Likewise, other groups have also focused on capturing
the structural and energy signals of various regions by considering
properties like free energy, A-philicity, curvature, bendability, inter-
BP properties, and DNA duplex stability under stress.80–84 Through
these structural and energetic parameter analyses, it became clear
that there are unique structure profiles and energy profiles for every
component within the DNA. These profiles are universal for a
particular element and thus can be utilized for their efficient
recognition. Though the di-nucleotide-based parameters provide
a specific structure and energy description of the genomic sites in
consideration, they do not take into account the neighbouring
effect of the flanking nucleotides. Thus, we miss out on the
adjacency effects. We have utilized higher nucleotide steps in the
present study, advancing our previous work.

Compared to our previous research,6,17 which utilizes the
X-ray-based dinucleotide data of B-DNAs to profile the TSSs in
prokaryotes and exon–intron boundaries in humans, in this
present work, we have taken into consideration the neighbouring
effects by mapping structural and energetic parameters of all the
unique tri and tetra-nucleotide steps.6 The biophysical features
utilized in this research have been computed through micro-

second-long molecular dynamics (MD) simulations on all the
possible tri- and tetranucleotide steps. Unlike the dinucleotide-
based study, the total number of B-DNA structures currently
available in the Nucleotide Database (NDB) does not describe the
instances of all possible tri- and tetranucleotide steps. Atomistic
molecular dynamics (MD) simulations used in this study are
currently the only way to obtain robust and transferable
parameters.35 The profiling distinctly delineates the TSSs in
both prokaryotes and eukaryotes and the exon–intron boundaries
of all the protein-coding genes in humans. These increased
nucleotide steps incorporate neighboring effects from the adja-
cent nucleotide and have provided us with new insights into the
structure and energetics of DNA, different from the dinucleotide-
based characteristics. The current study is concerned with the
recognition and characterisation of the physicochemical signals at
the TSS and exon–intron transitions. Our future aim is to develop
a method for predicting these sites; hence, it is currently not
viable to benchmark the current prediction algorithms. However,
a thorough comparison of the three dimensions, viz., sequence,
energy and structure-based analysis made here, will strengthen
the importance of using the physicochemical-based approaches
as a ubiquitous model for annotation.

For this study, the influence of the neighbouring step has
been accounted on the base pair and backbone structure/
dynamics, and thus for more accurate calculations, these para-
meters (nine backbone and four BP-axes) have been mapped
over all the possible trinucleotides (64), while the six intra-BP
and three energy parameters were considered for all the unique
trinucleotides (32). The inter-BP parameters have been computed
over all the unique tetra-nucleotide steps (136) (represented in the
parameter details file, ESI†).78,79 The numerical values for the
structural parameters are extracted from the m-second long MD
simulations, while in-house software is used to calculate the energy
parameters. The sequence datasets comprise 16 519 and 197 356
primary TSS sites for promoter analysis in prokaryotes and eukar-
yotes, respectively. For a similar characterization of exon–intron in
the human genome, we have used B0.33 million exon–intron
boundaries for the exon start site and exon end site. Users can
download the data from: https://www.scfbio-iitd.res.in/Tri_Tetra/
data.html. The structural and energy-based descriptions of these
DNA elements give us unique signatures for their characterization.
To establish the universality of these biophysical signals, a fair
comparison at the same sites has been made with a few widely used
sequence-based genome annotation approaches (described in the
Methods section). Our results firmly convey that the structural and
energy signal patterns can undoubtedly be hidden signals within
the DNA of both the prokaryotes and eukaryotes through which the
genome conveys information about its functional features.

Experimental
Materials and methods

Parameters for characterizing genomic sequences. For the
present study, we have considered 28 parameters. These include
25 structural and 3 energy variables. Among the structural

Paper PCCP

Pu
bl

is
he

d 
on

 1
0 

fe
br

uá
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

02
4.

 0
7.

 1
5.

 1
9:

57
:4

8.
 

View Article Online

https://www.scfbio-iitd.res.in/Tri_Tetra/data.html
https://www.scfbio-iitd.res.in/Tri_Tetra/data.html
https://doi.org/10.1039/d2cp04820e


This journal is © the Owner Societies 2023 Phys. Chem. Chem. Phys., 2023, 25, 7323–7337 |  7325

parameters are nine backbone parameters (Alpha, Beta, Gamma,
Delta, Epsilon, Zeta, Chi, Phase and Amplitude), six intra-BP
(Shear, Stretch, Stagger, Buckle, Propel and Opening), and four
BP-axis (X-displacement, Y-displacement, Inclination and Tip),
which have been mapped over the 64 possible trinucleotide
steps. The values of the six inter-BP step structural parameters
(Shift, Slide, Rise, Roll, Twist and Tilt) have been defined for
all the 136 unique tetra-nucleotide steps. The values of these 25
parameters were obtained by averaging the last 500 ns from
microsecond-long MD simulations following the methodology
in ref. 35. Here, 13 oligomers, each with a length of 18 bp and
GC terminals on each end were used. The reduced number of
oligonucleotides relative to earlier training libraries makes it
more feasible to produce multi-microsecond trajectories under
different simulation environments.35 These oligonucleotides
containing all the instances of possible trinucleotides (64) and
unique tetranucleotides (136 of a total of 256 tetranucleotides)
were created using the leap program of AMBERTOOLS36 and
simulated using the pmemd.cuda37 code from AMBER14.36

Canonical duplexes for these oligonucleotides were generated
using the Arnott B-DNA fiber parameters.38 These were then
solvated using an SPC/E39 water model, maintaining a minimum
distance of 10 Å from the edge of the defined box. The systems
were neutralized by adding K+Cl� or Na+Cl� ions (150 mM),
using the PARMBSC140 force field and Dang’s parameters41 to
describe the DNA and the ions, respectively. Systems were then
simulated in the NPT ensemble by using Particle–mesh Ewald
corrections42 and periodic boundary conditions for 1 ms. Bonds
involving hydrogen were constrained using SHAKE.43 The tra-
jectory files are available at the BIGNASim44 Server: https://mmb.
irbbarcelona.org/BIGNASim/. The trajectories were processed
using the cpptraj45 module of AMBERTOOLS36 and NAFlex.46

CURVES+ and CANAL programs47 were used to measure and
analyze the helical parameters and backbone torsional angles as
per the ABC (Ascona B-DNA Consortium) standards.48–51 Hydrogen
bond energy, stacking energy and solvation energy constitute
the energy parameters included in our study, and their values
were derived as per the methodology reported in our previous
work.52 File 1 (ESI†) contains the values of all 28 parameters for

the unique tri and tetra-nucleotide steps that were computed
above. All numerical conversions in this study have been made
using this Table.

Sequence datasets for the various studies. For the promoter
analysis, 16 519 primary TSS sites53–64 from 12 bacterial species
belonging to 6 different phyla (Table 1) were retrieved to provide
the sequence, structural, and energetic profiles around the TSS in
prokaryotes. For a consensus sequence-based analysis, sequences
of 101 nucleotides in length, covering �95 to +5 nucleotide
positions, with the actual TSS at 0, were extracted from respective
genome sequences. For the structural and energy-based charac-
terization, sequences of 1001 nucleotides in length surrounding
each selected TSS were retrieved from their respective genome
sequences (from�500 to +500 nucleotides, with TSS positioned at
0). Similarly, to compare the profiles, Coding Sequences (CDS)
with a length of 41500 nucleotides from the 12 microorganisms
were considered to generate a control set of 6218 CDSs; a central
section of 1001 nucleotides from these CDS sequences was
considered for structural and energetic comparison with the TSS
regions. Eukaryotic promoters were subjected to a similar inves-
tigation. For the characterization, 197 356 primary TSS sites65

from all the chromosomes of 8 yeast species, covering both the
Hemiascomycetes (budding yeast) and Schizosaccharomycetes
(fission yeast), were retrieved from the YeasTSS web server65

(Table 2 and Table S1, ESI†). Here, a 101-nucleotide-long sequence
dataset, spanning �80 to +20 with TSS at 0, for the consensus
study and a 1001 nucleotide long TSS, from �500 to +500 with
TSS at 0 and CDS sequence dataset (comprising 16 715 CDS
sequences, satisfying the 41500 nucleotide length condition)
for the biophysical profiling were obtained following the exact
methodology of prokaryotes.

To characterize the intron–exon boundary junctions, the
human genome annotation file was retrieved from the GEN-
CODE database. From this file, the start and end positions of
328 368 exons from all the protein-coding genes were consid-
ered. A series of exon–intron boundary sequence datasets were
constructed using these genomic locations. For the sequence
study, two datasets, each containing sequences of 51-nucleotide
length, were created using the exon-start and exon-end, placed

Table 1 Prokaryotic species studied along with their TSS and CDS data

Phylum Species Genome size (Mb) Number of primary TSS Number of CDS

Euryarchaeota Methanolobus psychrophilus 3.07 1463 355
Thermococcus kodakarensis 2.08 1248 208
Halofrex volcanii 3.93 1723 425

Actinobacteria Mycobacterium tuberculosis H37Rv 4.38 1440 626
Streptomyces coelicolor A3 9.05 2771 1201

Proteobacteria Helicobacter pylori 1.63 227 227
Salmonella enterica serovar Typhimurium 5.067 1871 624
Escherichia coli 5.17 1222 577
Pseudomonas aeruginosa PA14 6.58 2118 853

Firmicutes Bacillus amyloliquefaciens 3.95 1062 393
Chlamydiae Chlamydia pneumonia CWL029 1.22 357 198
Cyanobacteria Synechocystis sp. PCC6803 3.57 430 531
Total 16 519 6218
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at the 26th position, respectively. These datasets were organised
based on the location of the genes on chromosomes (Table S2,
ESI†) and were then used to identify a consensus sequence around
the positions of concern. Different from the sequence datasets, two
new datasets were created for the structural and energy-based
characterization of the exon start and exon end regions, each
containing 328 368 exon–intron boundary sequences. Dataset I
had sequences of 401 nucleotides in length; these sequences were
created by extracting 200 nucleotides upstream (representing
the exon sequence) and downstream (representing the intron
sequence) from the exon end position placed at 0. Similar to
Dataset I, Dataset II was generated by considering the exon start
positions; these sequences represent intron and exon sequences
from �200 to �1 and +1 to +200, respectively. For the control
dataset, we extracted sequences with similar lengths from the
middle region of the exons that were longer than 1000 nucleotides
(30 140 out of 328 368).

Sequence, structural and energy profiling. A consensus
sequence around TSS for each prokaryotic and eukaryotic species
was obtained for the 101 nucleotide long extracted regions using
WebLogo3 software.66 Likewise, to identify a consensus sequence
around the exon start and exon end sites, we used the Jalview
software67 on a randomly selected gene of each chromosome from
the sequence datasets comprising the 51 nucleotides. Based on
the results and to get an exact consensus, we considered 2 trimer
and 2 pentamer motifs viz. �1, 0, 1 and �2, �1, 0 for trimer
motifs and �2, �1, 0, +1, +2 and �4, �3, �2, �1, 0 for pentamer
motifs (0 being the exon start or end position, and motif position
selected after trying various combinations). To get a comprehen-
sive picture, we also did a position-specific percentage analysis of
the undecamer sequence at the start and end sites.

All relevant sequence datasets were analyzed to obtain the
structural and energy profiles corresponding to the TSS in
prokaryotes and eukaryotes and intron–exon interfaces in the
human genome. These datasets include the 1001 nucleotide
long sequences containing TSS in prokaryotes and eukaryotes
and the 401 nucleotide long sequences of Dataset I and Dataset
II obtained from the exon-end and exon-start sites, respectively.
A sliding window of one nucleotide was used to cover the whole
sequence. The values of the trinucleotide and tetra-nucleotide

parameters were utilized at each sliding window to convert the
sequence into 28 numerical series. These numerical profiles of
all sequences relating to a specific parameter were averaged for
each position after applying a sliding window of 25 base pairs.
A similar methodology was applied to the control sequences
(CDS) in each category. The resulting 28 averaged profiles
(corresponding to each parameter) were then used to plot and
visualize the structural and energetic changes occurring around
the TSS (in prokaryotes and eukaryotes) and exon–intron
boundary sites.

Examining individual sequences for signal threshold. To
explore the granularity of the signal trend in individual
sequences, a threshold analysis was done. The threshold analysis
validates the occurrence of patterns, as evident through the
average plots corresponding to each parameter on individual
sequences.

For both prokaryotes and eukaryotes, respective sequence
datasets containing TSS were considered for each parameter.
Based on the location of the pattern observed in the average plot of
a particular parameter, positive (TSS) and negative (CDS) vectors
were created from the individual sequences. For the positive vector,
a window of 100 spanning�50 to +50 with TSS at 0 was considered.
For the negative vector, a similar-sized window was taken after
traversing 200 nucleotides downstream of the TSS.

In parallel, for a threshold analysis on the intron–exon
boundaries, discrete sequences of the exon-start and exon-end
datasets for each parameter were used. A 60-nucleotide long
vector spanning �30 to +30 was extracted around the exon start
and end positions to create the positive set for the respective
group. To create a negative set corresponding to each position
and sequence within both exon-start and exon-end datasets, we
traversed 150 nucleotides from the positive position towards the
exon region and extracted a similar length vector. For each pair
of positive and negative sets, the area enclosed between them
was compared with different threshold values for each para-
meter in the above-mentioned respective datasets. The idea is
that those pairs in which the area confined within the vectors are
small, i.e., less than two standard deviations from the mean, and
will have indistinguishable signals but the remaining pairs will
have distinct profiles with significant magnitudes. As a result,

Table 2 Yeast species investigated along with their TSS and CDS sites

Group Species Chromosomes
Number
of TSS

Number
of CDS

Budding
yeast

Candida albicans Chr1, Chr2, Chr3, Chr4, Chr5, Chr6, Chr7 and ChrR 26 545 2329
Kluyveromyces lactis ChrA, ChrB, ChrC, ChrD, ChrE and ChrF 34 655 1910
Lachancea kluyveri ChrA, ChrB, ChrC, ChrD, ChrE, ChrF, ChrG and ChrH 17 411 2086
Naumovozyma
castellii

Chr1, Chr2, Chr3, Chr4, Chr5, Chr6, Chr7, Chr8, Chr9 and Chr10 19 189 2144

Saccharomyces
cerevisiae

ChrI, ChrII, ChrIII, ChrIV, ChrV, ChrVI, ChrVII, ChrVIII, ChrIX, ChrX, ChrXI, ChrXII, ChrXIII,
ChrXIV, ChrXV and ChrXVI

17 925 2223

Saccharomyces
paradoxus

ChrI, ChrII, ChrIII, ChrIV, ChrV, ChrVI, ChrVII, ChrVIII, ChrIX, ChrX, ChrXI, ChrXII, ChrXIII,
ChrXIV, ChrXV and ChrXVI

29 690 2184

Yarrowia lipolytica ChrA, ChrB, ChrC, ChrD, ChrE and ChrF 27 793 2365

Fission
yeast

Schizosaccharomyces
pombe

ChrI, ChrII and ChrIII 24 148 1474

Total 197 356 16 715
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signals that fulfil the two standard deviation threshold
criteria indicate that a TSS signal or exon–intron boundary
signal is present in those specific sequences. The area under
the curve calculations and the evaluation of thresholds are

specified in the methodology in S1a and S1b and in Fig. S12–
S15 (ESI†).

Normalization of parameter values. Using normalization,
the values of all the parameters were made dimensionless.

Fig. 1 Sequence consensus for Helicobacter pylori, a prokaryote (as obtained using WebLogo software), from position �95 to +5 with respect to TSS at 0.
Some consensus is evident at position �10. However, on comparing the sequence consensus from all 12 organisms (ESI†), no specific pattern emerges.

Fig. 2 Structure and energy profiles of Helicobacter pylori, a prokaryote. TSS sequences are shown in green, whereas red lines represent CDSs. The
numeric value of the parameter is represented by the ordinate, while the nucleotide position relative to the TSS is shown by the abscissa. Parameters
are represented in the parameter details file (ESI†). The correlation among the parameters (for the entire dataset) and the important features are present
in the ESI.†

PCCP Paper

Pu
bl

is
he

d 
on

 1
0 

fe
br

uá
r 

20
23

. D
ow

nl
oa

de
d 

on
 2

02
4.

 0
7.

 1
5.

 1
9:

57
:4

8.
 

View Article Online

https://doi.org/10.1039/d2cp04820e


7328 |  Phys. Chem. Chem. Phys., 2023, 25, 7323–7337 This journal is © the Owner Societies 2023

These normalized values were used to generate a combined
single plot of all structural and energy parameters.

Results and discussion

The profiling of the promoters and the intron–exon boundaries
was carried out by inspecting three dimensions, viz., sequence,
structure, and energy. The results are detailed below in two
separate sections corresponding to each element.

Promoters in both prokaryotes and eukaryotes present unique
signals at the TSS

In prokaryotes, we considered the TSS containing promoter
sequences from 12 different organisms belonging to archae-
bacteria and eubacteria. The consensus analysis was carried out
around the TSS on the nucleotide sequences. For each organism,
sequences were aligned from position �95 to +5, with the TSS at
0, and a consensus was derived using the WebLogo3 software.
Fig. 1 shows a graphical representation of the consensus
sequence for Helicobacter pylori (the results for the 11 other
organisms are available in Fig. S1, ESI†). These graphs show that
there is a consensus sequence specific to each organism, and
no universal pattern is apparent. It is also well known that there
is considerable promiscuity at the sequence level. Since it is
evident from contemporary studies related to transcription that
RNA polymerase’s binding event and mechanism of action
remain the same throughout the prokaryotic species, a universal
signal within the DNA must exist for the precise binding of these
enzymes to the promoter sites. To reveal this hidden signal,
which is not evident from the consensus analysis of the com-
bined sequences, we investigated the structural and energy
profiles of the promoter sequences.

Our Lab has been investigating the energetics of DNA for the
past 20 years, and we have demonstrated the importance of
solvation, stacking, and hydrogen bond energy in identifying
the distinct genomic functional units.30–34,52,68,69 Apart from the
energy parameters, in recent years, we have explored the com-
plete structural profile of DNA in and around various important
motifs by taking into consideration the individual parameters
belonging to four major DNA structural categories.6,17,30 For
each energy and structural parameter, individual TSS and CDS
sequences from respective organisms were converted to their
numerical profiles; these were then averaged at each position
and were used for plotting (Fig. 2 and 3). Fig. 2 shows that for all
the parameters, a unique pattern is observed around the TSS
(present at the 501th position and marked as 0 on the abscissa in
the graphs) in comparison to the CDS and the extreme upstream
and downstream regions of the TSS sequences for Helicobacter
pylori (results for the remaining species are available in Fig. S2,
ESI†). Fig. 3 is the combined graph for the structural and energy
patterns obtained for all the sequences from all 12 organisms.
These results support the scientific theories stating that the
overall stability of DNA sequences, both evolutionary and
thermodynamic, decreases near the promoter region.30,70–74

The energy profiles in Fig. 2 and 3 show that the hydrogen bond
energy is increasing, thereby reducing the melting temperature
of DNA at the TSS site. The graph of stacking energy shows that
the DNA at the TSS region becomes stiffer to provide a stable
platform for RNA polymerase binding. The solvation energy is
reduced as DNA makes a tertiary structure near the TSS region.
A similar trend is observed for the structural parameters while
proceeding toward the TSS region. Out of the total 25 structural
parameters, an overall rise at or around the TSS is noticeable for
the 10 parameters (Alpha, Gamma, Zeta, Amplitude, Twist,
Shear, Opening, X-displacement, and Tip). The other 15 proper-
ties (Beta, Delta, Epsilon, Chi, Phase, Shift, Slide, Tilt, Roll,
Stagger, Buckle, Propel, Y-displacement, and Inclination) show
a decrease in their pattern at the TSS region. Different from our
previous study related to di-nucleotides (Fig. S3, ESI†), here, 11
parameters show a different pattern of values upstream and
downstream of the TSS, which may be a result of the neighbour-
ing effect, which was not pronounced in the dinucleotide motif
dataset; this may be helpful in better predicting the TSS sites.6

To strengthen the notion, we performed a similar sequence
and biophysical profiling of the promoter sequences from
eukaryotes. For the analysis, we considered 7 budding yeasts
and 1 fission yeast. A methodology similar to the prokaryotic
promoter characterization was followed. Considering the TSS
position at 0, to obtain the consensus, we extracted 101 nucleotide
length sequences from position �80 to +20. The positions here

Fig. 3 Normalised and combined structure and energy graph for all
sequences (16 519) containing TSS from 12 prokaryotic organisms.

Fig. 4 Sequence consensus for Kluvveromyces lactis, a eukaryote (using WEbLogo software), from position �80 to +20 with respect to the TSS at 0. No
specific consensus is evident around the TSS for any species (ESI†).
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are based on the promoter architecture in yeast75 and thus differ
from what we considered for the prokaryotes. Using the Weblogo3
software, we obtained the consensus for Kluyveromyces lactis
(Fig. 4, consensus for the rest of the species is in Fig. S4, ESI†).
These figures show little or no consensus at the promoter. Just
like the prokaryotes, some consensus does occur at the organism
level and fades out when all the sequences are considered. The
consensus sequence-based approach is thus organism-specific
and fails to establish a universal signal for promoter profiling.
Structural and energy-based characterization of the eukaryotic
promoter sequences reveals distinguishing patterns around the
TSS in all species (Fig. 5, 6 and Fig. S5, ESI†). Fig. 5 depicts the

structure and energy profile of Kluyveromyces lactis, while Fig. 6
shows the trend specific to each parameter, mapped over the
combined TSS sequences and compared to the CDS sequences
from all the organisms. For each parameter, a specific pattern is
evident at the TSS. A sharp increasing or decreasing signal at
the TSS following a low intense signal around �300 to �400 can
be seen for each feature. It can be hypothesized that these
characteristic signals are due to the presence of important motifs
prior to the actual promoter; however, a thorough investigation is
essential to validate the finding. Comparing the signals from
prokaryotes with those of eukaryotes suggests that the trend for
each parameter is not the same. Here, 11 structural parameters

Fig. 5 Structure and energy profile of Kluyveromyces lactis, a eukaryote. TSS sequences are shown in green, whereas red lines represent CDSs. The numeric
value of the parameter is represented by the ordinate, while the nucleotide position relative to TSS is shown by the abscissa. Parameters are represented in the
parameter details file (ESI†). The correlation among the parameters (for the entire dataset) and the important features are present in the ESI.†
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(Alpha, Beta, Epsilon, Zeta, Amplitude, Slide, Twist, Shear, Stretch,
Opening, and X-displacement) show decreasing behaviour at the
TSS. An increasing nature at the TSS is evident for the rest of
the 14 parameters (Gamma, Delta, Chi, Phase, Shift, Rise, Tilt,
Roll, Stagger, Buckle, Propel, Y-displacement, Inclination, and
Tip). This different behaviour of parameters can be attributed
to the complex nature of eukaryotic promoters, which in the case
of prokaryotes, have minimal motifs and regulatory elements;
further investigation is necessary to comment on this contrasting
behaviour of parameters. With the idea that a signal is said to be
indispensable for usage only if it is captured at the basal level, we
characterized the sequences on the chromosome level. Fig. S6
(ESI†) indicates that the structural and energy signals are also
evident at the chromosome level in all the yeast species. Since
yeasts are simple unicellular eukaryotic organisms that form a
connecting link between the prokaryotes and the higher eukar-
yotes, it is necessary to characterize a multicellular higher eukar-
yote to see the pertinence of our approach. Caenorhabditis elegans
is a common eukaryotic multicellular experimental model in
biology.76 For the structural and energy characterization of this
multicellular eukaryote, we obtained the potential TSS sites for all
the chromosomes of Caenorhabditis elegans77 (TSS site informa-
tion is in Table S7, ESI†). The CDS sites were also retrieved from
the respective genome annotation files. Following the biophysical-
based prokaryotic and yeast promoter characterization methodol-
ogy, these sites were used for obtaining the 1001 nucleotide length
sequences. The structural and energy profiling at the TSS of
Caenorhabditis elegans for the combined sequences and chromo-
some sequences are presented in Fig. 7 and Fig. S7, S8 (ESI†). The
signals are very smooth and the parameter plots reveal that the
structural and energy profiles change at the TSS. The weak
intensities of the signal can be attributed to the complexity of
the higher eukaryotic promoter sites or the lower TSS sites known
and considered for the study. However, the presence of a pattern
corresponding to each parameter at the TSS sites indicates the
robustness of the characterization approach. Based on the various
results from the promoter characterization in both prokaryotes and
eukaryotes, the structural and energy-based characterization
approach outperformed the consensus sequence-based approaches,
which tend to be organism-specific and non-universal. The

promoter characterization for both the prokaryotes and the
eukaryotes delineates the fact that several sequence variations
occur at the TSS sites, and these cannot be followed for their
efficient recognition. Despite sequence alterations at these
sites, the physicochemical profiles for these regions are con-
served and can be exploited for comprehensive annotations.
Since the figures presented so far are the average plots (for all
sequences throughout all organisms in prokaryotes and eukar-
yotes, all sequences at the organism level in prokaryotes and
eukaryotes, and all sequences at the chromosome level in the
case of eukaryotes only), it is crucial to know the comprehen-
siveness and sensitivity of this study on individual sequences.
On applying the threshold methodology as explained in the
Methods section, it was observed that for the specified position,
where the trend was evident in the averaged plots, 498% of
sequences in both prokaryotes and eukaryotes followed a
similar trend. These results are detailed in Tables S3 and S4
and Fig. S12 and S13 (ESI†), with the graphs depicting the area
enclosed for each pair of TSS and CDS vectors from prokaryotes
and eukaryotes (a distribution plot of the area calculated for
each pair of TSS vector and CDS vector is infeasible given the
large volume of data).

Structural and energy profiles at intron–exon junctions

To widen the scope of our physicochemical characterization
and to highlight its universality at all levels of the genome, a
study similar to the promoters, incorporating the sequence,
structure and energy characterization, was carried out for the
more complex elements. Intron–exon profiling was done for the
protein-coding genes in humans following the promoter char-
acterization approach.

Using the Jalview software and the annotation dataset
acquired from GENCODE, we conducted a consensus analysis
of 328 365 human exon start/end sites. To achieve a particular
sequence consensus, we characterized the exon start and exon
end regions of a randomly selected gene from each chromo-
some. The results of the consensus analysis are presented in
Fig. S8 (ESI†). From the results at the exon start and exon end,
it is evident that there is a consensus, most likely in the form
of a trimer or pentamer unit. To reveal these consensuses, we

Fig. 6 Normalised and combined structure and energy graph for all
sequences (197 356) containing TSS from the 8 eukaryotic species.

Fig. 7 Normalised and combined structure and energy graph for all
sequences (5561) containing TSS from Caenorhabditis elegans.
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carried out trimer and pentamer motif frequency analyses
for the 51-nucleotide-long sequence dataset by placing the
exon start/end site at the 26th position (considered as the 0th
position for reference).

For the trimer motif analysis, we considered �1, 0, +1 and
�2, �1, 0 positions and for the pentamer �2, �1, 0, 1, 2 and
�4, �3, �2, �1, 0 positions were selected. From the frequency
analysis of trinucleotide motifs (Fig. 8), the occurrences of TAA
and TGA were higher at the �1, 0, and +1 positions than any
other trimer, while GTA and GTG were higher at the �2, �1,
and 0 positions of the exon-end sites, confirming the conven-
tional wisdom of the occurrence of these nucleotides at the said
sites.7–17 These motifs undoubtedly have the potential to aid in
the prediction of exon-end sites. However, taking into consid-
eration the total size (328 364) of the data, the frequency of
occurrence is not high, and further, there is no consistent motif
to rely on. Contrary to this, trinucleotide motif-based exon-start
site analysis at position �1, 0, 1 clearly showed a high occur-
rence of GGT trimer, while at position �2, �1, 0, there was a
higher occurrence of the AGG trimer motif; the frequency,
however, is still low considering the size of the data. A similar
frequency analysis was performed at both sites for two penta-
nucleotide motifs with positions�2,�1, 0, 1, 2 and�4,�3,�2,
�1, 0. The results show (Fig. 9) that the motif AGGTA (�4, �3,
�2, �1, 0) has a higher frequency, and is better for predicting
the exon end sites. At the exon start site, there was again a
higher occurrence of the AGGTA pentanucleotide for the motif
�2, �1, 0, 1, 2, facilitating the prediction of the concerned sites
and confirming the conventional belief of the occurrence of the

A–G nucleotide at the 30 end of the intron.7–17 To gain deeper
insight into the nucleotide sequence pattern frequency at the
exon–intron boundaries, an undecamer position motif extending
from �5 to +5, with the exon start/end site positioned at 0, was
considered (Fig. 10). The probability of the occurrence of A, T, G
and C at each position was obtained. We found that G, G, and A
were present with more than 50% probability at positions �4, 0
and 1, respectively, at the exon start. At the exon end, at only the
�2 position, we had a greater than 50% occurrence of G. From
the sequence-based analysis, various trinucleotide and pentanu-
cleotide motifs occur frequently at the exon-start and exon-end
regions. However, there was no specific consensus at these sites,
and the occurrence is not uniform at the exon-start and exon-end
sites. Since we could not find specific motif sequences with an
absolute high consensus, we extended our study to the structural
and energetic profiling of the exon–intron boundary elements by
considering two separate datasets for exon start and exon end
positions, respectively.

Using the trinucleotide and tetranucleotide parameter table,
the 328 368-nucleotide sequences in both the exon-start posi-
tion dataset and the exon-end position dataset, just like the
promoter sequences, were converted to 25 structural and 3
energy numerical strings. For each parameter, these numerical
profiles were averaged over all sequences and plotted. From the
structure and energy description provided in Fig. 11 and 12 for
exon start and exon end, respectively, the hydrogen bond
energy showed a sudden increase in its value followed by a
crest. It can be inferred from this trend that the structure at the
boundary position initially became unstable and then restores

Fig. 8 Trimer frequency analysis (for all 328 364 sequences) at the exon start and exon end. (A and B) Represent trimer frequency at the exon start for
position coordinates �1, 0, 1 and �2, �1, 0 respectively. (C and D) Are the trimer frequency at the exon end with position coordinates �1, 0, 1 and �2, �1,
0 respectively. The ordinate represents the frequency of a particular trimer, whereas the abscissa represents all the possible trimers (64).
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its balance with the passage of the start/end sites. The stacking
energy showed a peak at the boundary junction, thus decreas-
ing the stiffness of DNA and making it more flexible. A sharp
drop in solvation energy implies the formation of a secondary
structure at the exon–intron boundaries. Contrary to these
observations in the energy parameters, the middle portion of
the exons (in red) has a constant energy profile throughout
their lengths. These energy changes at the exon–intron junc-
tions support the notion that the boundary elements are
involved in the formation of a secondary structure in the RNA
space, which facilitates the splicing event, and the DNA ana-
lyses here anticipate these events.

Since energy changes are not entirely responsible for bring-
ing out the changes occurring at various sites in the genome, it

is their union with the structural features that bring about
any functional changes within the DNA. The structural profile
of the exon start/end sites also supports the notion of the
formation of a secondary structure. From the plots, it is evident
that for all the parameters, there is a signature pattern at the
exon start and end sites (in green) in contrast to the middle
region of exons (represented in red), which mostly have a
constant nature. Compared to the gradual rise and fall, as seen
for most of the parameters near TSS regions, a combination
of sharp peaks and clefts is observed at the intron–exon
boundaries. For the 13 parameters (Alpha, Beta, Gamma, Chi,
Slide, Shear, Buckle, Opening, Y-displacement, Inclination,
Twist, Stretch, and X-displacement), a peak followed by a
crest is evident from the sequences containing exon–intron

Fig. 9 Pentamer frequency analysis (for all 328 364 sequences) at the exon start and exon end. (A and B) Represent pentamer frequency at the exon start
for position coordinates �2, �1, 0, 1, 2, and �4, �3, �2, �1, 0, respectively. (C and D) Represent pentamer frequency at the exon end for position
coordinates �2, �1, 0, 1, 2, and �4, �3, �2, �1, 0 respectively. The ordinate represents the frequency of a particular pentamer, whereas the abscissa
represents all the possible pentamers (1024).

Fig. 10 Undecamer analysis (for all 328 364 sequences) at position�5 to +5 for (A) exon start and (B) exon end. The ordinate represents the frequency of
A, T, G, or C, whereas the abscissa represents the nucleotide position relative to exon start/end site (at 0).
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boundaries and a crest followed by a peak for the remaining
12 parameters (Delta, Epsilon, Zeta, Phase, Amplitude, Tilt,
Stagger, Propel, Tip, Rise, Roll, and Shift). An absolute rise and
fall were not observed for any of the parameters. The adjacency
effect is evident for some of the parameters on comparing the
exon start and exon end profiles with the dinucleotide-based
profiles (Fig. S11, ESI†). These observations highlight the fact
that the overall structural change is sudden at the boundary
element of the exon and intron, and this change is not carried
over larger distances. The observation made from all the
physicochemical profiles emphasizes the fact that the intron–
exon boundary elements are solely involved in the splicing
event, and the structural and energy changes occurring in these
regions facilitate the event. From all the graphs, it is apparent

that the patterns of these parameters are highly similar at both
the exon start and end sites. The threshold analysis results for
the exon–intron and intron–exon junctions are presented in
Tables S5, S6 and Fig. S13, S14 (ESI†). The analysis shows that
for each parameter, the signal is evident for 498% of sequences
and thus supports the notion that the signals are universal.

Conclusions

The molecular dynamics-derived trinucleotide and tetranucleotide-
based structure and energy parameter characterization of TSS and
exon–intron boundaries of both prokaryotes and eukaryotes point
to the existence of a signature profile for these elements. Our

Fig. 11 Structure and energy profiles at exon start sites (for all 328 364 sequences). Sequences containing exon start sites are shown in green, whereas
red lines represent CDSs. The numeric value of the parameter is represented by the ordinate, while the nucleotide position relative to the exon start is
shown by the abscissa. Parameters are presented in the parameter details file (ESI†). The correlation among the parameters (for the entire dataset) and the
important features are presented in the ESI.†
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analysis reveals that while sequences may show variations at
various sites within the DNA, the structure and energy profiles
imparted by these sequences are always conserved. By building
in the neighbourhood effects as compared to the dinucleotide,
the tri- and tetranucleotide-based intrinsic signals investigated
here appear to be more robust and unique. These intrinsic
signals can assist in efficiently identifying and confirming the
desired sites. Also, these signals could be utilized for designing
improved genome annotation tools.
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54 D. Jäger, K. U. Förstner, C. M. Sharma, T. J. Santangelo and
J. N. Reeve, Primary transcriptome map of the hyperther-
mophilic archaeon Thermococcus kodakarensis, BMC Geno-
mics, 2014, 15, 1–15.

55 J. Babski, K. A. Haas, D. Näther-Schindler, F. Pfeiffer,
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