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Industrialisation has deepened the water crisis in arid climates, where wastewater runoff from heavy
industry has polluted groundwater sources so heavily that traditional methods of water treatment have
proven ineffective. Photocatalysis is an emerging technology which has the potential to treat water
using only sunlight, but is unrealised using traditional, inefficient photocatalysts (e.g. TiO,). Recently, a
slew of visible light active 2D nanomaterials such as MoS, and g-CsN4, have shown great promise, with
others playing an essential supporting role in larger composites (e.g. graphene). Scalable synthesis of
these nanosheets has remained elusive, as they require careful synthesis tailored towards their role
within a photocatalytic composite. Along with recovering the nanosheets post-treatment, these remain
the greatest challenges barring the adoption of these materials more generally. Through this review, we
find that research into nanosheet-based photocatalysis should focus on developing materials from a
systems level perspective, with careful consideration taken to how the material presented is to be
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1 Motivation

Increasing populations, weather extremes and rapid industria-
lisation (with poor regulation) has led to a scarcity of clean
water sources in many developing countries, rendering them
unsuitable even for irrigation." This is especially true in arid,
drought-prone climates, where intermediate water sequestration
systems like dams and rainwater catchment are less relevant.
Egypt’s freshwater consumption for example, is much greater than
its freshwater production, and with the extra competition for water
upstream of the Nile, the crisis here is only set to deepen in the
short term.>* The WHO estimates that although the number of
people who have access to water has increased since the millen-
nium, most are drinking from polluted sources, with an estimated
three out of every ten people lacking access to clean water.” In this
vein, it is paramount to develop cost-efficient methods of water
treatment, especially for arid climates.

Traditional methods of water treatment often struggle with
the diversity of contaminants in such highly polluted waters.
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applied in clean water technologies and synthesised from its base components.

Chlorination for example has always been problematic, as it
ends up creating even more toxic by-products;* other chemical
treatments have historically been avoided due to mass-scale
unforeseen medical consequences.® Traditionally, coagulation
or adsorption are used, but by their nature simply concentrate
the contaminants which remain after processing.” Membrane
filtration systems have consistently suffered from complicated
issues stemming from the fouling of the membranes and
inefficient removal of pollutants,® leading to increased costs
incurred by using progressively smaller meshes from ultra-
filtration to reverse-osmosis.

In the context of a small community, SOlar water DISinfec-
tion (SODIS) has been touted by the WHO for its passive ability
to clean water; where post filtering, it takes 6 hours under less
than 50% cloud cover to produce clean drinking water. This
process requires low turbidity water, and kills pathogens owing
to a combination of Ultra-Violet light (UV)-induced DNA
damage, thermal inactivation, and photo-oxidative destruction.’
Some heavier pollutants such as dyes and metals require exces-
sively long exposure for inactivation, and much more intense
treatment for timely remediation.

Photocatalysis is one of a subset of Advanced Oxidation
Processes (AOPs)'® which are able to hasten the natural degra-
dation of these heavier pollutants by using light to catalyse the
reactions directly,""'* along with its own antimicrobial effect."?
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This degradation pathway has been examined using gas chro-
matography techniques, revealing phenols as the main degrada-
tion intermediary (for Methylene Blue), which subsequently
break down into CO, and H,0.'*"® Photocatalysts (PCs) have
been successfully applied to many fields beyond water treat-
ment, from water splitting,'®'® the production of ammonia
through N, fixation,"*"' to the reduction of CO, into synthetic
fuels.”>°

Conventional renewables can also be used to power high
energy light sources for photocatalysis, which can be tailored to suit
the activation range of a particular photocatalyst, whilst simulta-
neously degrading pollutants by direct UV excitation and allowing
treatment to continue at night.>” The primary byproducts of photo-
catalytic water treatment are CO, and H,0.?® Notably, hydrogen, a
sustainable fuel source, is another byproduct that can be produced
in reasonable quantities if the catalyst is optimised.>**° This is
beneficial as hydrogen from pollutant degradation is more thermo-
dynamically favourable than from photocatalytic water splitting,>
making use of would be waste products.

Photocatalytic systems offer benefits on many levels, as an
inherently clean, low-cost and environmentally friendly solution
to many of these problems.*" The cutting edge of photocatalytic
research focuses on novel, Visible Light Active (VLA) PCs, which
rely heavily on nanomaterial composites, especially those based
on 2D nanosheets. Since their application to photocatalysis, it has
been difficult to intensify the procedure, as a number of life cycle
considerations remain unaddressed:*

e Production - particularly towards 2D PCs. They are diffi-
cult and expensive to produce which currently make them
impractical at scale.

e Application - it is not clear what is best practice in
applying PCs at scale, especially 2D PCs.

e Recovery and reuse - by virtue of their size, nanomaterials
represent an intrinsic difficulty to separate photocatalyst
from solute post treatment.

From rooftop to industrial scale setups, solar-driven photo-
catalysis has the potential to fundamentally change the way
water treatment is realised. Fig. 1 provides a visualisation of
areas that would benefit the most from widespread adoption of
such a technique. Many Middle-Eastern to northeast African
countries are currently experiencing an extremely high strain
on their freshwater resources, with Egypt in excess of 1000%.
They also experience a high amount of solar radiation, making
them a prime candidate for solar photocatalysis.

Clean drinking water is a global problem, which will only come
to affect more people. New technologies are essential to keep pace
with human and climate developments. The discovery of efficient
and generalised methods of preparing, applying and reusing PCs
would open the door to this new industry, providing cheap and
accessible freshwater to many of the regions which need it the most.

2 Introduction

Since the discovery of the photocatalytic properties of TiO, in
1972,%® photocatalytic materials have garnered attention due to
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Fig. 1 Countries of the world, plotted against their strain on freshwater
resources® and average daily incident light.** Bubbles are sized by popula-
tion, and coloured by economic area denoted by the world bank. Selected
countries are all experiencing withdrawals above 40% (high water stress),
and have a population >5 million, though data is not available for all
countries. Note that withdrawals exceed 100% in a number of countries,
which indicates that the local freshwater is being sourced unsustainably
(e.g. from aquifers) or heavy use of desalination.

Incident light

their thermal stability, biocompatability and sustainability.**
In the wake of TiO, other metallic powders such as WO3, ZnO
and Bi,O; have all demonstrated the photocatalytic effect to
varying degrees.’*° TiO, has gone on to moderate success as
the only commercially available PC (P25-degussa), though it has
not broken into the the water treatment sector due to its low
efficiency and difficult recovery.

The general photocatalytic process for semi-conducting
materials can be described as follows. An incident photon with
energy greater than or equal to the PC band gap can excite
electrons from the valence band to the conduction band creating
an electron-hole pair.*>*! This electron-hole pair can interact with
adsorbed compounds to directly degrade pollutants, or to gene-
rate redox species capable of degrading organic pollutants into
CO,, water, and mineral acids.**™** It is generally agreed that the
oxidative *OH degradation pathway is dominant.** A schematic

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A schematic diagram for a heterogenous photocatalytic process over a 2D photocatalyst surface, detailing some of the many reactions that can
occur to pollutants through the use of photogenerated charge carriers. (A and D) Represent the surface adsorbed acceptor and donor species

respectively.>*

representation of this process is given in Fig. 2 for a 2D nanosheet,
and more detail on the reaction mechanisms in Section 4. The
inability to use visible light in legacy bulk PCs stems from the
large band gap required for excitation, but even when excited they
are invariably inefficient, owing for the tendency of electron-holes
to recombine at any point as they migrate to activation sites on the
surface of the photocatalyst.*®

Novel developments in nanomaterials with tunable geome-

tries have, however, opened new avenues of experimentation.
What is striking about these materials is the diversity of
structures they can take, from 0D nanospheres’®! to 1D
nanorods/nanotubes®® " and 2D nanosheets.”* > Regardless of
morphology, nano-scale PCs outperform their bulk counterparts in
all cases.”® Of these structures, many behave completely differently
in terms of photocatalysis, and 2D nanosheets in particular offer
some unique advantages arising from their structure.

(1) They have a large surface area per amount of material,
maximising the space available for photocatalytic
reactions.

(2) Their ultra-thin nature reduces the migration distance
for electrons and holes to reach active sites, increasing
the efficiency of photocatalytic reactions and reducing
the possibility of electron-hole recombination.

Nowadays, there is a large body of research discussing the

nanostructure of PCs, and it is clear that these materials offer a
much better solution than their bulk counterparts. To give an
example, TiO, nanosheets show an increase in activity when
compared to their bulk phase counterparts, accompanied by a
change in their band gap.'? Li et al.>” provides a comprehensive
review into the design of these 2D based PCs, including many
of the different construction strategies for tuning a PC’s activity
under different wavelengths of light. In the stride to boost

© 2022 The Author(s). Published by the Royal Society of Chemistry

catalytic performance, many researchers have taken to doping
graphene and 2D materials using a variety of material sources.’®
Even so, the literature tends to point towards a 2D atomic structure
being the main component in the design of future PCs.

In essence, the lack of more widespread use of nanoscale PCs is
due to the high synthesis and characterisation cost these materials
entail. Take graphene as an example, at the time of writing 100 g of
current commercial few-layer graphene costs within the region of €
200. This, coupled with the fact that only 20% of commercial
sources consist of true mono to few layered graphene® hints at the
great difficulty that the synthesis of 2D materials entails. Produc-
tion intensification and international standards for graphene®
offer a pathway to a wide range of commercial composites with
reliable and remarkably enhanced photocatalytic activity, such is
its prevalence within photocatalysis.® Importantly, 2D semi-
conductors that support solar-driven photocatalysis (e.g. MoS,
nanosheets) currently have less commercial focus than graphene-
based materials. This impacts on the availability and cost of high
quality 2D materials for use in large-scale water treatment.

Table 1, provides a summary of a number of different cost
estimations for photocatalytic reactors, which demonstrates
how much more expensive they are when compared to current
methodologies costing near € 0.39 m > on average,* (depen-
dant on the original contamination of the groundwater source).
These sources nearly all use the commercial P25-degussa,®®
which is non-optimal. The use of more efficient nano-composite
PCs would dramatically improve efficiency across the board.
Lowering the cost of these materials requires high-throughput
methods of synthesis, but this cannot come at the expense of
quality, as nanosheet quality is intrinsically linked to its
performance. Because of this, both aspects are looked at in
parallel in Section 5.

Mater. Adv,, 2022, 3, 4103-4131 | 4105
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Table 1 Operating cost values from literature (€ m~3)

View Article Online

Materials Advances

, with stated prices adjusted for inflation

Catalyst Notes

Cost Ref.

TiO, - P25
slurry reactor

TiO, - P25
slurry reactor

Measured the destruction of pesticides EPTC, butiphos and y-lindane beginning at concentrations 1.1 62
of 500 pug L' and ending at their maximum permissible level (0.1 pg L"), and the four-log inactivation

of E. faecalis bacteria. Tested using a 500 m* CPC atray with a calculated capacity of 42 L h™* m
Measured the complete removal of ECs (emerging contaminants, includes a wide variety of compounds
such as pharmaceuticals, personal care products, hormones, industrial additives and household chemicals,

—2

TOC: 2.14 63
EC: 2.87

with most ECs not yet regulated.) and 20% reduction in TOC (total organic carbon) levels. Tested

with a 0.25 m?

CPC array at a maximum of 24 L min™"

TiO, coated
rotating
drum reactor

Material synthesis is only part of the problem; in reality, the
full life cycle of the photocatalyst must be examined, and as
suggested before, the issues surrounding the application of
these materials are as prevalent. Hence, there has been a push
to evaluate the effectiveness of PCs at large scale, beginning
with two small pilot plants in Morrocco and Spain.®” These
examined a range of different techniques, but centered on
employing Compound-Parabolic-Concentrators (CPCs) to max-
imise the incident light intensity.®® Since the turn of the
millennium, pilot plants such as these have begun to appear
with greater frequency and complexity (complete with 1-2 axes
solar tracking), mainly due to funding by the EU through
projects such as SOLWATER and AQUACAT.®’

These pilot facilities have invariably used bulk PCs, as
opposed to atomic scale materials, and therein circumvent one
of the large issues surrounding nano-scale PCs; PC removal/
recovery.”" Separation of a nano-scale photocatalyst implies the
post-process is as laborious as some of the aforementioned
nano-filtration techniques, if standard methods are used. This
suggests that the ideal photocatalytic material must have some
thought for its reuse. This could either be intrinsic to the
photocatalyst material itself, or through some external imple-
mentation. This opens up other methods of application, such
as photoelectrocatalysis,””> where the photocatalyst is held
within an anode, in contact with the water but not allowed to
mix directly. This makes practical sense at a cost to efficiency,”
implying that the ideal implementation is one that looks
at photocatalysis as an entire process when designing a PC,
thereby ensuring that the material developed covers both
efficient and practical application.”*” A holistic consideration
of these trade offs is an essential part of selecting a suitable
photocatalytic system.

3 2D photocatalysts

2D materials are traditionally best known for their enhanced
mechanical, optical and electrical properties.”®”” They have
been rising steadily in popularity along with other low-
dimensional materials due to their enhanced photocatalytic
properties, which have been under investigation even before
the discovery of graphene in 2004.”%7° The benefits of nano-
structure PCs stem primarily from the enhanced surface
area available per amount of material. Though 0D & 1D PCs

4106 | Mater. Adv, 2022, 3, 4103-4131
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Iluminated by a combination of artificial UV lights and solar radiation. Specific enhancing conditions

such as the acidic pH 4 and presence of H,O, at 250 mg L™ noted. Measured the removal of 10 mg L™*
aniline solution in deionised water (100% after 10 minutes), and the removal of TOC (85% after 120 minutes).
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Fig. 3 Intensity of sunlight (red) in juxtaposition to the photocatalytic

activation (normalised) of TiO,®%” and a 2D nanocomposite constructed
using graphitic carbon nitride (g-C3N,).1° A total of 46% of the solar energy
falls within the visible light range.”®

maximise these properties,®® 2D materials are able to effectively
utilise incident sunlight because of their light-scattering pro-
perties (Fig. 3), with the absorption and band gap being
dependant on the depth of light penetrated.">®" This also
means that the number of atomic layers (or equivalently, the
thickness) of these 2D materials is critical to the effective
absorption of 2D PCs,** as shown in Fig. 4.

The rise in publications shown in Fig. 5, describes the
current prominence of nanosheets within research. Interest-
ingly, most hits for unfiltered patents are false positives, and
most simply are patenting a specific material and its method of
production. This is slightly disingenuous, as generalised

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 2D materials which have been a focus for photocatalysis research include g-CzNy, transition metal dichalcogenides such as MoS,, insulators such
as h-BN for composites, and other graphene-related materials (Gr, rGO and GO). Apart from graphene, which has a zero band gap, these materials can
be exfoliated from their bulk materials to engineer nanosheets with a direct band gap. In the case of rGO and GO, modifications to the band gap are made
possible by removing/adding functional groups. TiO, has been included for reference, illustrating the advantages of narrow band gap nanosheets that
can target visible wavelengths for solar-driven photocatalysis. For g-CzNg, a triazine structure is shown inset. This material also has an heptazine structure

which is shown in Fig. 8.

methodologies for the application of photocatalytic substances
is prominent throughout patent searches, simply that few
target the nano-scale PCs in particular. This principally demon-
strates the lag between research and industrial uptake, but also
tells of how important the synthesis route is to these PCs, as it
effectively determines how the catalyst is to be used and reused.

The range of materials discovered so far only scratches the
surface of a variety of naturally occurring materials held
together by van der Waals forces,** > and with novel develop-
ments in computational pre-screening of materials in terms of
photocatalytic activity,*®” highly-active PCs can be found at an
astonishing rate. The most active of which typically work in
conjunction with other PCs in the form of composites.®®*°
In fact, the search in Fig. 5 found that one-third of all hits on
articles/papers were directly examining functional composites
of several different materials to improve photocatalytic activity.

Composites themselves vary dramatically in terms of struc-
ture and functionality. On an individual level, the dimension-
ality of a photocatalyst is clearly important (as discussed in
Section 2), but compositing adds a level of inter-dependency
between dissimilar materials which brings dimensionality to
the fore.”® At this point, interfacing between dissimilar mate-
rials can critically impact photocatalytic activity, for instance by
altering the transfer rate of charge carriers between co-catalysts.
2D materials are again naturally suited to this, as they exhibit
a large specific surface area, which gives reason for the rise in

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Search hits for “photocatalysis” and (“2D" or “nanosheet”), filtered
or unfiltered for synthesis synonyms (synthesis, construction, preparation).
This shows the exponential rise in popularity of 2D PCs, particularly in their
synthesis. Search terms were applied to the Title and abstract of publica-
tions. At the time of writing, 2020 and 2021 figures are yet to stabilise as
publications are still under review for release. Data accessed through the
Web of Knowledge and the European Unions’ Espacenet.

2D/2D (one 2D material layered over another different 2D
material) heterostructures.>°"%*
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As an example, most PCs can be doped with graphene®" to
enhance the separation of charge carriers from the parent
photocatalyst, and in this regard graphene outperforms carbon
nanotubes.”® The same study reported the highest activity
using 2D/2D titania-graphene nanosheet structures. This
demonstrates a type II Heterostructure, which due to their
differing band gaps promote the movement of charge carriers
between the titania and graphene. These types of heterostruc-
tures in particular have been rising in prominence because of
this charge separating interaction.”*%°

Though metal oxides have been extensively researched as
one of the first consistently active photocatalytic materials,
other categories have been found which demonstrate good
photocatalytic activity. Transitional Metal Dichalcogenides
(TMDs) being the most notable,'>**° as they exhibit similar
or even better absorption of light, with MoS, nanosheets having
suitable band-gap structure (1.35-1.8 eV®’) for the absorption of
visible light.”® Even graphene, a zero band-gap material that is
inactive by itself, can be functionalised by nitrogen doping (and
other dopants) to work as a visible light photocatalyst.®®**
Functionalised graphene (GO, r-GO) makes up a small portion
of a large number of non-metal based PCs. The most prominent
non-metal is g-C;N,,"°"'%* belonging to a larger group of
Covalent Organic Frameworks (COFs).

This is by no means an exhaustive list, and other nanosheet
materials and their composites used in wastewater treatment
are presented in Table 2. Furthermore, linking computational
pre-screening techniques for photocatalytic activity®**”'°* with
large explorational studies of layered materials held together by
van der Waals forces®**** provides the possibility to find new,
exciting materials which have not been synthesized as of yet.'**

The morphology of these nanosheets is often as important
as the type of photocatalyst itself. In bulk PCs, the crystalline
structure affects photocatalytic performance, as demonstrated
by the difference in activity between the different crystalline
structures of Ti0,."°>'°® In 2D materials, oxidising graphene
into Graphene Oxide (GO) or introducing defects along the
edges or basal plane is known to affect the electron mobility
of the sheets and indeed their photocatalytic activity.'*”*°
Inclusions are commonly introduced during synthesis, and
exemplify the importance of maintaining reliable production
techniques which are also scalable. The search for scalable
synthesis is what first gave rise to GO and its variants, accent-
uating the great difficulty in creating pristine nanosheets.”®
Thus the synthesis route plays a key role, impacting morphology,
defect density, and ultimately, photocatalytic performance.™**

4 Photocatalysis mechanisms

As discussed briefly in the introduction photocatalysis occurs
when a semiconductor is irradiated by a photon with energy
greater than or equal to its band gap in order to produce an
electron-hole pair which can interact with adsorped molecules
to create redox couples (Fig. 2) or directly degrade adsorped
pollutants. There are a number of techniques used to enhance

4108 | Mater. Adv., 2022, 3, 4103-4131
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the creation of redox couples such as heterojunctions, doping,
reducing the material morphology to the nanoscale (Fig. 4), and
defect engineering.

This article is not intended to serve as a comprehensive
review of these mechanisms and there are several articles which
cover these topics in greater detail. Li et al. produced a detailed
review of charge recombination including heterojunctions,
electron donors, and spin polarisation regulation."*® Although
somewhat dated now, Wang et al. provided a thorough intro-
duction to heterojunction photocatalysts.'*! In a recent review
from a different group of authors, Wang et al. included detail
on different classifications of semiconductor materials, hetero-
junctions and photocatalysis applications."** For information
regarding active sites, although not specific to photocatalytic
water treatment, Low et al,"*® Bo et al,"** and Li et al'*
Finally, Serra et al. have written a comprehensive review of
photocatalytic treatment of natural waters including a sum-
mary of the reactions which take place to generate redox
species, and the effects of environmental conditions such as
solution pH."*® These reactions are summarised as follows:

H,0+h" - *OH + H' (R1)
OZ +e - 02.7 (RZ)
H,0,+e — *OH+OH™ (R3)

where *OH is the highly oxidising species, hydroxyl radical, and
0,* is the weak oxidant, superoxide. The H,O, in (R3) comes
from the 0,*~ from (R2) reacting with H*'*” (R4 and R5).

0, +H" — HO,* (R4)

HO,* + HO,* - H,0, + O, (RS)

Reactions which include the addition of e~ (R2 and R3)
occur at the conduction band of the semiconductor, and
reactions involving h" (R1) occur at the valence band. The
generated oxidising species (*OH, O,° ) can go on to degrade
pollutants (R6).

Pollutant + *OH/O0,*~ — H,0 + CO, + H (R6)

Reaction (R2) requires the donation of a photoexcited elec-
tron from the semiconductor to the O,. This electron has a
minimum energy of —0.33 V vs. NHE'*>#%1% (normal hydro-
gen electrode). If the energy level of the photocatalyst conduc-
tion band is not sufficiently low (< —0.33 V) then the reaction
will not take place. Similarly, reaction (R1) requires the H,O to
donate an electron to the valence band of the semiconductor in
order to fill the h* formed during photoexcitation. If the valence
band energy level is too negative (<2.32 V148119 this
reaction will not occur."®® This is illustrated in Fig. 6.

4.1 Heterojunctions

For efficient solar photocatalysis it is preferential to decrease
the band gap energy such that a larger proportion of the solar
spectrum can be used for the excitation of electrons and thus
creation of redox couples. This reduced band gap comes at the
cost of reduced oxidation and or reduction potentials.'*

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 A range of nanosheet photocatalysts and composites, their production methods, and application in water treatment
Photocatalyst Water contaminant Radiation source Photocatalytic reaction results Ref.

Hydrothermal method (HT)

TiO,-GO

rGO/Pd/TiO,

WO,/rGO

Boron-doped TiO,/GO

ZnO-TiO,/rGO

WO,/rGO

2-C3Ny

Methylene Blue (MB)?

Rhodamine B (RhB)?

Methylene Blue (MB)“

Bisphenol A (BPA)

Methylene Blue (MB)?

Rhodamine B (RhB)?
ciprofloxaxin (CIP)
antibiotic

Rhodamine B (RhB)?
tetracycline (TC) antibiotic

Solvothermal method (ST)

Ag/GO/TiO,

2-C;3N, fluorine

doped/g-C;N, (F-CNS)

MoS,/CdS

MnFe,0,/graphene
sand composite (GSC)

ZnO/GO

Self-assembly method
GO/CdS

v-Fe,03/GO

SnO,/rGO

Paraoxon pesticide

Rhodamine B (RhB)?

Methylene Orange (MO)%

Methylene Blue (MB)”

Neutral red (NR)? crystal
violet (CV)? congo red (CR)?
methyl orange (MO)?

Escherichia coli (E. coli)
Bacillus subtilis (B. subtilis)
Acid Orange 7 (AO7)
Rhodamine B (RhB)?
photoreduction of Cr6"

Methylene Blue (MB)“

Methylene Blue (MB)“

Visible light, solar
simulator (100 mW cm™?)

UV light, 400 W
mercury lamp

Visible light, 300 W
xenon lamp

Visible light, 300 W
xenon lamp

UV light, TUV 11W

Visible light, 300 W
metal halide lamp

Visible light, 300 W
xenon lamp

Visible light, 570 W
xenon lamp

Visible light, 500 W
xenon lamp

Visible light, 350 W
xenon lamp

Sunlight irradiation®

UV-light, 40 W

Visible light, solar light
simulator (100 mW cm?)

UV irradiation, 250 W
high pressure Hg lamp

Sunlight Irradiation?,
Tiruchirappalli city,
August

© 2022 The Author(s). Published by the Royal Society of Chemistry

MB concentration fraction after 80 min: 0.20 for 112

TiO, NW-GO
0.56 for TiO, NP-GO

RhB degradation % after 40 min with 0.03 g catalyst 113
and 10 ppm dye initial concentration: 79% for

rGO/Pd/TiO,-NPs

90% for rGO/Pd/TiO,-NWs, after 5 cycles photo-
catalyst was stable with slight decrease in degra-

dation %.

83% dye degradation % within 70 min, 20 mg 114

catalyst and 10 mg L™ dye.

47.66% BPA degradation % after 4 h with GO 115

amount equal to 2% of titania mass.

99.83% MB degradation after 120 min at pH 9 with 116

40 mg catalyst and 20 mg L™ " MB.

96% RhB and 90% CIP degradation for WO;/rGO- 117
40 photocatalyst after 120 min with 20 pM pollu-

tant, 20 mg L " catalyst.

100% RhB degradation rate after 15 min

118

100% TC degradation rate after 60 min with 20 mg

catalyst and 20 mg L™ " pollutant.

Nanocomposite with 6 wt% Ag and 1 wt% graphene 119
content has the best photocatalytic activity and
showed 100% TOC removal after 110 min with

31 mg L' pesticide and 0.2 g L™ " catalyst.

Degradation rate of RhB by F-CNS was 1.6 times 120

that of CNS after 2 h with 30 mg of catalyst,

10 mg L™ " dye.

100% MO degradation rate by MoS,/CdS 121
1-220 (1:1 molar ratio prepared at 220 °C) within

60 min with 30 mg L™ " dye and 60 mg catalyst.

100% MB degradation rate after 180 min with 122

10 mg L™ of MB and 0.25 g L' catalyst at pH 7.65

in presence of 5 mL of H,0,

Dye degradation % with 400 mg L™ " catalyst and 10 123,124
ppm dye was: 100% NR after 20 min, 97% CV after
80 min, 68% CR after 150 min, 66% MO after

150 min.

100% of both E. coli and B. subtilis were inactivated 125
within 25 min with 5 mg catalyst. 80% AO7 and

90% RhB were degraded within 60 min by

20 mg catalyst and 20 mg L™" dye. 70% Cr®* was
photoreduced after 120 min and 15 mg catalyst.

100% MB degradation after 80 min with 10 mg of 126

catalyst and 50 mg L™" dye.

100% MB disappearance by SnO,:rGO (1:3 ratio) 127
at less than 3 minutes with 20 mg of catalyst and
5ppm MB. Rapid disappearance is noted to be due

to the effective adsorption properties of SnO,: rGO

(1:3).
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Table 2 (continued)

Photocatalyst Water contaminant Radiation source Photocatalytic reaction results Ref.

Co-precipitation method

Fe;0,4/graphene/sulfur- Ranitidine drug Visible light, 100% ranitidine removal and 57.3% reduction in 128
doped g-C3N, N-nitrosodimethylamine 300 W xenon lamp NDMA formation potential by 20%-Fe;0,/GE/SCN
(Fe;04/GE/SCN) (NDMA) composite after 60 min with 1 g L™" catalyst and

2 mg L~ pollutant initial concentration at pH 7.0

Chemical vapor deposition (CVD) technique
Graphene Rhodamine B (RhB)? Sunlight irradiation® Graphene nanosheets (GNS) synthesized from 129
Janus Green UG)d black carbon collected from diesel engine. 98.65%
RhB and 96.34% ]G degraded by GNS after 120
minutes with 0.90 g L™ catalyst and 10 mM dye
at pH = 6.

Ag/ReS, Escherichia coli (E. coli) Visible light” Complete inactivation of E. coli within 30 min 130
by Ag(3)/ReS, with 1.72 mg L' catalyst and
104 CFU per mL E. coli. After 5 consecutive
cycles the photocatalytic disinfection performance
for the photocatalyst is not reduced.

Graphene/anatase-TiO, Methyl Orange (MO)“ UV light, 250 W high- 88% MO degradation rate by bilayer G-60/a-TiO, 131
(G/a-TiO,) pressure mercury lamp composite after 40 min with 10 mg catalyst and
12.5 mg L™" dye

Sonication-photo-biosynthesis combined method
Ag/Au/rGO Red sea water sample” Visible light, An ultra-pure water is obtained with zero micro- 132
halogen lamp organisms (HPC), salts, TDS, and Total hardness at
pH = 7 after 5 h irradiation with 10 mg catalyst,
100 mL red seawater and 120 °C. Photocatalyst was
stable for 3 cycles.

Water/oil microemulsion method
Ag/AgBr/rGO-Si p-Nitrophenol (PNP) Visible light, 75 W With 1 wt% catalyst and 1 mmol PNP: 95% photo- 133
halogen lamp reduction of PNP to p-aminophenol after 20 min.
93% photoreduction of PNP to paracetamol after
8 min with 1 mmol acetic anhydride.
92% photoreduction reached after 3 cycles.

Ultra-sonication exfoliation method

Ag-FeCo0,0,/RGO Rhodamine B (RhB)? Solar light” 86% RhB degradation rate after 120 min. 134
benzimidazole 54.46% benzimidazole degradation rate after
140 min.
2-C3N, Rhodamine B (RhB)? Direct sunlight?, solar 59% RhB degradation rate after 60 min with 111

radiation on that particular 5 mg catalyst and 5 mg L ™"
day was 843 + 2 W m 2,
and temperature was 26 °C.

High shear mechanical exfoliation method

MXene (TizCy) Methylene Blue (MB)“ Visible light, 300 W* 98% MB degradation rate by MXene-blender 135
(MX-B) nanosheets within 60 min, 2 ppm dye and
1 mg catalyst.

Electrochemical exfoliation method - followed by hydrothermal treatment
TiO, Methylene Blue (MB)“ UV, 8 W, characteristic 87% MB degradation rate after 20 min with 136
wavelength = 254 nm 0.2 g L catalyst and 5 ppm dye.

Thermal exfoliation (thermal etching) method

2-C3Ny Rhodamine B (RhB)? Direct sunlight?, solar 86% RhB degradation rate after 60 min with 111
radiation on that particular 5 mg catalyst and 5 mg L ™"
day was 843 + 2 W m 2, 0.4% photocatalytic activity lost after 4 cycles
and temperature was 26 °C.

% Red sea water sample containing: 386 ppm Ca, 14 310 ppm Na, 742 ppm Mg, 210 ppm K, 22219 ppm Cl, 146 ppm HCO3, 3115 ppm SO, 15 ppm
NO,, HPC > 6500 CFU per mL, 42 840 ppm TDS, 1320 ppm Total hardness at pH = 8.2. * Direct sunlight irradiation is known to fluctuate with time,
in some cases these sources do not specify time, date, or position. © Unspecified light source - spectra unknown. ¢ Organic dyes are known to have
a sensitisation effect, potentially modifying the light adsorption spectra of a photocatalyst and affecting the apparent degradation.'?”~'3°
¢ [sic] Methyl Orange.
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Fig. 6 Schematic illustration of redox potential for *OH and O,*~ show-
ing (a) a semiconductor with sufficiently negative CB to allow O, + e, but
VB too negative to allow H,O + h* as H,O cannot donate an electron to fill
the more negative hole in the VB of the semiconductor. (b) A semicon-
ductor with sufficiently positive VB such that H,O may donate an electron
to fill the hole, however the CB is too positive meaning O, cannot accept
e”. (c) A semiconductor with both a sufficiently negative CB, and a
sufficiently positive VB. This semiconductor would be capable of facilitat-
ing both reactions but has an increased band gap, limiting its solar
spectrum adsorption range. Heterojunctions (Fig. 7) can be used to reduce
this band gap whilst maintaining the redox potentials. Figure is for
illustrative purposes only and is not drawn to scale.

The irony of photocatalysis is that generally speaking it is
preferable to have a small band gap to enhance the range of
useful light irradiation, but a large band gap to enhance the
creation of redox couples. By using two semiconductor materi-
als in a heterojunction photocatalyst the redox potential of a
photocatalyst can be increased without increasing the band
gap'152

Fig. 7 gives a brief overview of the heterojunction schemes
that are applicable to photocatalysis. The S-scheme (direct Z-
scheme) is the most appropriate heterojunction for photo-
catalysis."*® Type II heterojunctions do work but are inferior

S-Scheme (Direct Z-Scheme)
p-n Type

" .\+\ o o.

Reduction

CB,

Oxidation Photocatalyst I Photocatalyst II

Fig. 7 Schematic diagram of a p—n type S-scheme heterojunction. E
represents the Fermi level of the two photocatalysts and is seen to bend at
the interface.®™ VB and CB are valence and conduction bands. Both
photocatalyst | and photocatalyst Il undergo photoexcitation, creating
electron-hole pairs. Electrons in CB; and holes in VB, combine leaving
strong redox potential electron-hole pairs in CB; and VB,. The redox
potential of the heterojunction photocatalyst is greater than either of the
catalysts individually, and the band gaps have not been increased to
achieve this.
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to the S-scheme due to the increased charge recombination and
narrowed band gap leading to reduced redox potential, and
minimised redox couple generation. In some instances,'*® this
can lead to the absence of *OH, leaving only the weaker
oxidising *0O, . S-Scheme heterojunctions can be p-n, n-p,
n-n, or p-p type™’
the charge on the two photocatalysts composing the hetero-

where p (positive) and n (negative) refer to

junction.

In the S-scheme, also known as the direct Z-scheme, hetero-
junctions of both photocatalyst I (PCI) and photocatalyst II
(PCII) c