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Self-optimising chemical systems have experienced a growing momentum in recent years, with the evolu-

tion of self-optimising platforms leading to their application for reaction screening and chemical synthesis.

With the desire for improved process sustainability, self-optimisation provides a cheaper, faster and greener

approach to the chemical development process. The use of such platforms aims to enhance the capabili-

ties of the researcher by removing the need for labor-intensive experimentation, allowing them to focus

on more challenging tasks. The establishment of these systems have enabled opportunities for self-

optimising platforms to become a key element of a laboratory's repertoire. To enable the wider adoption

of self-optimising chemical platforms, this review summarises the history of algorithmic usage in chemical

reaction self-optimisation, detailing the functionality of the algorithms and their applications in a way that is

accessible for chemists and highlights opportunities for the further exploitation of algorithms in chemical

synthesis moving forward.

Introduction

The numerous advantages of continuous flow chemistry over
conventional batch chemistry are becoming apparent to a
growing number of synthetic chemists.1,2 Properties such as
enhanced heat and mass transfer,3,4 safer use of hazardous
reagents5 and an extended operating window6 enable reac-
tions that are difficult or even impossible in batch to be
achieved relatively easily.7 In addition, automation is readily
implemented into flow systems via in-line monitoring, offer-
ing a greater degree of reliability and reaction control.8,9

These advances in the automation of laboratory equip-
ment have simultaneously led to a rise in the use of algo-
rithms in chemistry.10,11 With developments in automation
enabling chemists to make better use of the human resource
by assigning routine, labour intensive tasks to machines.12,13

More recently, machine learning algorithms have been ap-
plied to more challenging tasks, such as the discovery of new
chemical reactivity14 and the prediction of reaction
outcomes.15

Automated flow systems are able to search large regions of
experimental space in relatively short periods of time, mak-
ing them well suited for optimisation problems.16,17

Optimising processes by combining flow reactors, process an-
alytics and optimisation algorithms is known as ‘self-optimi-
sation’. The reaction mixture is analysed and the responses
are supplied to an optimisation algorithm. The algorithm
then generates the next set of conditions to explore based on
the results of the previous experiments, thereby creating a
feedback loop.18 Intelligent analysis of the experimental
space reduces the number of experiments required, providing
a faster, cheaper and ‘greener’ method for process develop-
ment. Self-optimising systems provide an enabling technol-
ogy for efficient optimisation of expensive-to-evaluate chemi-
cal systems. As such, algorithms used in self-optimisation
typically focus on minimising the number of experiments
and material consumed during the optimisation process.
Given that the algorithm selected by the user has a signifi-
cant influence on the efficiency of the optimisation, there
will remain a continued interest in the development of algo-
rithms for self-optimising systems.

Self-optimising systems are developed at the interface be-
tween chemistry, chemical engineering and computer sci-
ence. For self-optimising systems to become more common-
place in research laboratories, the end-user (e.g. chemists)
require a basic knowledge of the types of algorithms avail-
able. However, reviews in this area have to date focused pri-
marily on the monitoring of reactions, and less on the
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algorithms employed.19,20 In this review, we provide an over-
view of the algorithms which have been used for self-
optimisation to date (Fig. 1), including explanations designed
to aid chemists in their choice of the most appropriate algo-
rithm for a given synthetic challenge.

Local optimisation
Model-based

Design of experiments (DoE) has been studied and used for
chemical process optimisation and screening for many de-
cades.21 This approach is used to determine a set of experi-
ments which will efficiently identify the important factors af-
fecting the chemical system, as well as ascertaining how the
differing factors interact with each other. This statistical
framework allows optimum regions of experimental space to
be located for further exploration through the construction of
a response surface; where a response surface describes the re-
lationship between experimental variables (e.g. reaction tem-
perature, time, pH etc.) and a response (e.g. yield). The litera-
ture behind the designs is well understood and known
throughout the chemical industry and academia where it is
used readily.22,23

Methods to improve the standard rigid DoE design, to al-
low for adjustment based on the responses from a given pro-
cess, have been attempted in a self-optimising chemical envi-
ronment. The Jensen group first utilised an optimal DoE
approach for the optimisation of the alkylation of 1,2-
diaminocyclohexane for discrete (e.g. solvents, catalysts, li-
gands) and continuous variables (e.g. reaction time, tempera-
ture, reagent equivalents).24 The optimisation was initialised
using a screening set of experiments, from which a linear re-
sponse surface was fitted. In performing only screening ex-
periments, elucidation of potential response curvature is not
possible, however, this is contrasted by the conservation of
resources. Following initialisation, further experiments were
performed focusing on determining the optimum point for
each solvent. Fitting of a quadratic model was performed and

a paired 2-sample t-test allowed for the elimination of poorly
performing solvents. Optimal regions for the remaining sol-
vents were determined by applying G-optimality, which aims
to design experiments which minimise the maximum vari-
ance of the models predicted values.25

The algorithm has been further refined, initially enhancing
the handling of discrete variables via the addition of a mixed
integer nonlinear programming (MINLP) approach,26 with dis-
crete variables removed when performance was poor. MINLP
refers to optimisation tasks involving both continuous and dis-
crete variables, with nonlinearities in the response. Further al-
terations were made to improve the initial space filling experi-
mental design, being led by D-optimality, with additional
improvements to the discrete variable reduction process.27,28

D-optimal designs seek to minimise the covariance (uncer-
tainty) of the parameter estimates for a specific model.29 For
the catalytic reaction studied, the authors assumed the system
could be modelled as a logarithmic model derived from the as-
sumption that the reaction had a single rate determining step.
The requirement for an assumed model derivation could pres-
ent an issue for the application of the algorithm in kinetically
complex systems and for general purpose use without a priori
knowledge.18 Additionally, the use of a paired 2-sample t-test
for solvent elimination has the potential to miss the best condi-
tions due to synergistic effects. To date this algorithm presents
the only documented self-optimisation of both discrete and
continuous variables in a chemical system, with scope for the
field to expand in this area.

Black-box

Black-box optimisation techniques are defined as methods
requiring no mechanistic understanding of the process to
perform the optimisation task. The Nelder–Mead simplex
(NMSIM) algorithm is an example of a black-box local optimi-
sation method used to determine the maximum (or mini-
mum) of a single-objective function (a response being
optimised). This is achieved by means of using convex poly-
hedra formed of n + 1 vertices (where n is the number of vari-
ables).30 The polyhedron, or simplex, explores the feasible de-
sign space set by the user. The algorithm begins by
conducting either user-defined or random experiments
within a given area of the design space, with each vertex of a
polyhedron representing an experiment with an evaluation of
the response function. The worst performing vertex is then
replaced at each iteration of the algorithm with another ver-
tex via a geometric transformation, resulting in a new sim-
plex that explores a new point in the design space. This ap-
proach locates areas with a better response and hence
successive simplex iterations converge on a local optima. The
method of defining the new vertex is based on five geometri-
cal transformations of a current simplex, outlined in Fig. 2,
which depict two-dimensional transformations that can be
extrapolated to higher dimensions.

Fig. 3 shows an example of how NMSIM can find the local
minimum of a response function in a two-variable design

Fig. 1 A summary of algorithms used in self-optimising chemical
platforms.
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space. The initial vertices of simplex 1 are evaluated via the
response function, then the worst vertex is replaced via reflec-
tion to form simplex 2. Similarly, the worst vertex of simplex
2 is replaced via reflection to form simplex 3. These succes-
sive transformations enable the simplex algorithm to con-
verge on an optimum. The optimisation typically stops when
a better response function evaluation cannot be found, indi-
cating that a local optimum has been identified. One of the
first times this algorithm was applied to self-optimisation
was in the Heck reaction, and represented one of the earliest
examples of a self-optimising chemical platform.31 A publica-
tion by Krishnadasan et al. from the same year shows the use
of simplex methods for optimisation of nanoparticle produc-
tion. The authors utilise a dynamic simplex to apply compen-
sation in the case of system-drift (unforeseen changes in the
system).32 Further work by Cronin and co-workers success-
fully coupled the algorithm with in-line NMR to optimise an
imine synthesis, with a total of 29 experiments, utilising a
custom cost function.33

The super modified simplex algorithm (SMSIM) is an ad-
aptation of NMSIM, originally introduced by Routh et al.,34

whereby polynomial fitting of data points determines the op-
timum simplex transformations. As these transformations
are based on predictions from the polynomials generated,
the algorithm can accelerate across areas of low interest.

Fig. 4 shows an initial simplex formed of data points 1, 2 and
3, where 3 is the worst result. The midpoint of 1 and 2 is
then measured as 4, which is the ‘centroid’. The centroid is
the point at which vertex 3 will be reflected through at dis-
tance XRα to vertex 5, which is also measured. A second order
polynomial through data points 3, 4 and 5 is then
constructed and extrapolated to identify the optimum expan-
sion distance XRβ to vertex 6.35 Many notable modifications
to NMSIM have been reported by Felpin et al. which were
used in the self-optimisation of the Heck–Matsuda reaction
and in the natural product synthesis of carpanone, over four
stages with a total of 66 experiments.36,37 These modifica-
tions include: boundary and linear constraints on variables
(such as temperature, or temperature given a concentration),
dimensionality reduction upon exploring boundaries, dimen-
sion recovery to re-enter the design space (Fig. 5), diversifica-
tion by searching unexplored regions and the ability to have

Fig. 2 The different geometric transformations of the Nelder–Mead
simplex: inside contraction (XIC), multiple contraction (MC), outside
contraction (XOC), reflection (XR) and expansion (XE).

Fig. 3 An example of a two-variable design space with arbitrary vari-
ables and a mapped response surface, showing how NMSIM converges
on the minimum. Minima (blue), maxima (red).

Fig. 4 An example showing how a polynomial fit to the data (red
dashed line) predicts the optimum expansion point to the next simplex
vertex, resulting in the new simplex expansion (dashed line) towards
the minimum (blue contour).

Fig. 5 A translation of the reflected simplex of 1-2-3 into an infeasible
region occurs in order to rebuild a simplex of the same geometry (4-5-6)
within the imposed boundary constraints, hence recovering the
dimensions of the search. Minima (blue), maxima (red).
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multiple termination criteria (such as when all material has
been consumed). Other modifications to NMSIM such as
complex method38 have also been used for self-optimisation,
such as in the amidation of 3-cyanopyridine.39 This algorithm
works in a very similar way to SMSIM, however, instead of
basing the expansion distances on predicted optimal regions
via polynomial fitting, an iterative process is employed. This
iterative process begins by measuring a vertex at a given ex-
pansion distance. If the measurement is worse than the cur-
rent data points, it is rejected. Additional measurements are
then taken at incrementally shorter distances along the same
direction, until a better evaluation is found. Gradient-based
methods are another form of local optimisation that typically
converge on the optimum by following the initial trajectory
of the local response surface. The steepest descent method40

is a gradient-based algorithm first used in a chemical system
by McMullen and Jensen in combination with DoE for the op-
timisation of a Knoevenagel condensation reaction.41 In this
method, an initial 2k orthogonal design (where k is the num-
ber of variables) or central composite design (CCD) DoE is
performed around a particular starting point. A local re-
sponse surface is then modelled, from which the gradients
are calculated. Further experiments are performed along the
trajectory of the gradient until the response function value
worsens, indicating that the optimum has been passed or
that a change of search direction is necessary to proceed, as
shown in Fig. 6. Modifications to the steepest descent
method, such as conjugate gradient and Armijo conjugate
gradient, have also been used in the self-optimisation of the
Paal–Knorr synthesis.42

The conjugate gradient algorithm utilises the weighted
sum of the last search direction and the direction calculated
via the steepest descent method to determine the next itera-
tion. This prevents large direction adjustments which are less
likely to lead the algorithm through difficult response surface
terrain.43 The Armijo algorithm differs by implementing an

Armijo-type line search.44 This varies the step size along each
trajectory, which was shown to out-perform the other steepest
descent algorithms by reaching a similar optimum in fewer
experiments.41,42 Where gradient information is available this
can offer faster convergence, however, this can be compli-
cated in the presence of experimental noise and the need to
fit a mathematical surface. Real-time analysis of transient ex-
periments in the future may enable experimentally measured
gradients to be utilised although to the authors' knowledge
this has not been demonstrated yet.

Many local optimisation algorithms are typically fast to
converge on an optimum, as each successive iteration of the
algorithm makes progressive improvements by moving per-
pendicularly to the contour of the response-surface. Variants
of both the simplex and steepest descent algorithms have
been shown to converge on optima within a self-optimising
reaction system, each with their own advantages in terms of
robustness and experimental efficiency. The disadvantage of
using local optimisation tools is when there is no a priori
knowledge about the reaction system; as the complexity of
the system arising from variable–variable interactions can
lead to multiple optima. In these cases, there is no guarantee
that the global optimum will be found over a local optima be-
fore termination.

When considering a local optimisation algorithm it must
therefore be assumed that the chemical system of interest
has a single optimum, otherwise a global optimisation tool
may be more relevant.

Consideration of optimisation time may also be worth-
while when selecting a local or global optimiser. Due to
global searching, experimental points are on average further
apart in the experimental space, meaning the reactor system
can take correspondingly longer to reach the new
conditions.45

Global optimisation

An algorithm's ability to locate the optimum despite the in-
herent experimental noise of chemical systems is crucial for
self-optimising platforms. As there are no noise-handling ca-
pabilities inbuilt in local search algorithms, the presence of
significant noise can be detrimental to the speed of identify-
ing the optimum. Considerable noise in a system can lead to
local optimisation techniques, such as simplex, prematurely
terminating at a point away from the true optimum of the
system. As many global optimisers attempt to facilitate noise,
their convergence on the optimum may be more efficient in
notably noisy systems.

Stable Noisy Optimisation by Branch and Fit (SNOBFIT) is
a global optimisation algorithm for bound constrained noisy
optimisation of objective functions.46 To date, this is the only
single-objective optimiser which has been successfully
implemented in self-optimisation. It is a derivative-free opti-
misation method, which means that it requires no gradient
information of the objective function being optimised. The
algorithm uses a combination of stochastic linear and

Fig. 6 A steepest descent method minimisation, where an initial point
and 2k orthogonal design are performed, followed by further
experiments along the trajectory of highest gradient towards the
optimum. Minima (blue), maxima (red).
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quadratic surrogate models to determine the optimum point
of the system. A surrogate model is an approximate model
that maps the process inputs to an objective function.47 They
provide a cheap alternative which can be called in lieu of the
parent function to improve optimisation efficiency, with the
stochastic nature of the models enabling the algorithm to
handle noise effectively.

A basic flow diagram detailing a simplified overview of
SNOBFIT is shown in Fig. 7. The algorithm generates points
in five different classifications:

- Class 1: the point that minimises the local quadratic
model around the current best point (xbest). It contains at
most one point

- Class 2: are points that are approximate local minimisers.
If there are no local points then no points in class 2 are
generated

- Class 3: are points that are approximate nonlocal
minimisers

- Class 4: are points in regions that are yet to be explored
- Class 5: are points that are randomly generated to fill the

design space. They are only generated if the number of evalu-
ated points is less than the number required. The number re-
quired is set by the user upon initialisation.

The first documented use of a self-optimising chemical
platform utilised SNOBFIT as the optimisation algorithm.48

The authors optimised, within 100 measurements, for a tar-

get wavelength at the outlet of the reactor which
corresponded to the desired nanoparticle properties. The al-
gorithm was selected due to its global nature and ability to
handle noisy data, making it an ideal fit to optimise complex
systems such as the synthesis of nanoparticles.

The main advantage of using SNOBFIT is the higher confi-
dence that the optimum found will be the global for the sys-
tem. Fig. 8 illustrates this advantage where SNOBFIT is able
to determine the region of the global optimum whereas the
simplex method gets stuck in a local minimum. Given the
global nature of the algorithm it can require an increased
number of iterations to converge upon the optimum when
compared with local methods.45 This is due to the random
search element of the design which explores regions for
which the objective function has not been evaluated. This
coupled with the variety of literature sources documenting its
use and the robustness of the algorithm in the presence of
noise has led to SNOBFIT being used in self-optimising
platforms41,49–52 as well as a wide range of other optimisation
tasks. It has been noted that the algorithm can struggle for
high dimensional problems (when the input dimension
>9).53 This could present issues when applying the algorithm
to telescoped reactions, where the input variable space is
large. However, this is not normally an issue for single stage
synthesis. In addition to issues with high dimensionality
SNOBFIT can only be used for the optimisation of continuous
variables. This removes the possibility for optimisations
containing both discrete and continuous variables.

An alternative approach to system optimisation is to uti-
lise kinetic model fitting. The models can then be used to
suggest optimal operating conditions, provided that the ki-
netic equations are deconvoluted from mass transfer effects.
Suggesting optimal experiments for kinetic model elucidation
can be performed through model-based design of experi-
ments. As this approach does not directly search for optimal
system conditions it will not be discussed here, however, the
reader is directed to the following examples should they re-
quire further information.54–56

Fig. 7 Flow diagram for a call of the SNOBFIT algorithm. neval is the
current number of points for the following iteration SNOBFIT has
generated. nreq is the required number of points to be generated for
each call of the algorithm, this is set by the user.

Fig. 8 Comparison of SNOBFIT (orange squares) and simplex (black
dots) for the minimisation of a complex function, restricted to 30
evaluations. Global minimum is indicated by a blue cross.
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Multi-objective optimisation

There are multiple economic and environmental process met-
rics that must be considered during optimisation of a chemi-
cal process.57 These objectives are often conflicting, which
means that the objective optima are located in different re-
gions of experimental space. The optimum of each objective
can be located by conducting multiple single-objective opti-
misations.36 However, because this approach does not con-
sider the objectives simultaneously, it fails to identify a satis-
factory compromise. For example, Moore and Jensen
observed a poor 42% conversion for a Paal–Knorr reaction
optimised for productivity.42 To circumvent this, the authors
repeated the optimisation using a quadratic loss function to
penalise conversions lower than 85%.

The actual solution to a multi-objective optimisation prob-
lem is a set of non-dominated solutions called the Pareto
front, where a non-dominated solution is one which cannot
be improved without having a detrimental effect on the
other.58 Hence, a constrained multi-objective maximisation
problem where variable vector x = {x1, …, xn} is formulated as
follows. In the objective space, find variable vector x* which
maximises K objective functions yĲx*) = {y1Ĳx*), …, yKĲx*)},
where the objective space is restricted by bounds on the vari-
ables. A feasible solution a dominates another feasible solu-
tion b when yiĲa) ≥ yiĲb) for i = 1, …, K and yjĲa) > yjĲb) for at
least one objective j (Fig. 9).59

One approach to multi-objective optimisation is
scalarisation, where objectives are combined into a single ob-
jective function with different weightings, w [eqn (1)].

max w f xi i
i

k

 


1

(1)

This was used by Fitzpatrick et al. to simultaneously opti-
mise throughput, conversion and consumption for an Appel
reaction.39 An alternative approach by Krishnadasan et al.

utilised a weighted-product objective function for the optimi-
sation of CdSe nanoparticles.48 For both methodologies, it is
difficult to define suitable weightings without substantial a
priori knowledge, and minor changes to these weightings can
result in significant changes to the solution obtained. Fur-
thermore, weighting methods fail to reveal to complete trade-
off in a practical number of experiments, as only one Pareto
optimal solution is identified per optimisation.60 Further
work by Walker et al. utilised a constrained optimisation ap-
proach to optimise a primary objective whilst constrained
within the predefined bounds applied to other objectives.61

Although this approach provides an improved means of
scalarisation compared to previous work, it still fails to iden-
tify complete trade-off between objectives. In contrast, evolu-
tionary algorithms, such as non-dominated-sort genetic algo-
rithm (NSGA-II), are designed to converge on the Pareto front
using a Pareto dominance ranking system.62 However, the re-
quirement of a large population size has deterred their use in
self-optimisation.

Bayesian optimisation is a broad category of derivative free
(requires no gradient information) global optimisation
methods that utilise surrogate models to optimise expensive-
to-evaluate objective functions.63 The surrogate model is built
using sampled data from the process/objective to be
optimised. Understanding the mechanistic concepts behind
the input–output relationship is not important at this stage,
with the model considered to be a ‘black box’. Once
constructed, the surrogate model is utilised in conjunction
with an acquisition function to suggest the next evaluation
point, to maximise or minimise an objective function.64 An
acquisition function is a function which balances exploration
(searching regions which currently have no data points) and
exploitation (focusing near regions of known good perfor-
mance) and is maximised after each iteration to determine
the next sampling point. Often the surrogate model will be of
the form of a Gaussian process (GP) which is computationally
and resource-wise more efficient to evaluate than the actual
process. A GP model is a collection of random variables, for
which any discrete point has a Gaussian (normal) distribu-
tion.65 A GP model is characterised by a mean function and a
covariance function. The mean function defines the expected
output for a given set of inputs, with the covariance function
describing the statistical relationship between two points in
the input space. Points that are close together are considered
similar and this is reflected in the covariance function. A
noise term can be introduced when calculating the covari-
ance for the process. This enables Bayesian optimisation al-
gorithms to handle noisy data associated with experimental
platforms. The requirement for hyperparameters (algorithm
settings) can be considered a drawback of Bayesian method-
ologies. The setting of these hyperparameters can play a sig-
nificant role in determining the goodness of fit for the GP
model and can in turn affect the performance of stochastic
optimisation algorithms that use GP at their core. One exam-
ple of a hyperparameter is the type of covariance function
used in fitting the GP model. Fig. 10 highlights the impact of

Fig. 9 An example of a multi-objective optimisation with two compet-
ing maximisation performance criteria y1 and y2. The Pareto front is the
series of non-dominated solutions, yĲx*). Solution a is dominated by all
solutions between b1 and b2.
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covariance function on how well the model fits the data. En-
suring hyperparameters are optimised and robust is key to
developing a Bayesian optimisation algorithm. The libraries
of GPy66 and GPyOpt67 were used for sampling and example
optimisations.

An acquisition function is used to determine the next eval-
uation point in Bayesian optimisation. Fig. 11 illustrates the
sequential optimisation approach adopted by Bayesian opti-
misation techniques, with each figure representing an itera-
tion of the algorithm. The example shown is for a single-
objective problem but can be extended to multi-objective op-
timisations. For each iteration the acquisition function is cal-
culated based upon the current available data and the surro-
gate model for the process. There are many different
acquisition functions used in Bayesian optimisation tasks,
with the development of acquisition functions being a con-
stantly evolving field.68 Some of the more common acquisi-
tion functions are expected improvement, probability of im-
provement, upper confidence bounds and Thompson
sampling.69,70 Mixtures of acquisition functions can also be
used. Expected improvement was used for Fig. 11, with the
algorithm initially exploring the search domain and then fo-
cusing on the region where the function optimum is likely to
be.

The multi-objective active learner (MOAL) was designed
for expensive-to-evaluate multi-target optimisation tasks.71

The algorithm was successfully applied to the optimisation of
an emulsion polymerisation recipe with 14 input variables, si-
multaneously targeting a conversion of ≥99% and particle di-
ameter of 100 ± 1 nm.72 A similar machine learning method-
ology was used to design the Thompson sampling efficient
multi-objective optimisation (TSEMO) algorithm.73 The
TSEMO algorithm was shown to compare competitively with
other multi-objective Bayesian optimisation algorithms such
as Pareto efficient global optimisation (ParEGO)74 and
expected hypervolume improvement (EHI).75 In addition, it
can readily be used for batch-sequential design making it
well suited for integration with self-optimising platforms.

The algorithmic procedure is displayed in Fig. 12. Initially,
a small dataset is collected using a random space-filling set

of experiments, which is then used to build a GP surrogate
model.76 The algorithm randomly samples from the GPs and
uses the NSGA-II algorithm to identify the Pareto front of
each random sample (Thompson sampling). Through ran-
domly sampling this accounts for the exploration/exploitation
trade-off desirable in Bayesian optimisation. The candidate
experiment which gives the largest predicted hypervolume
improvement is then performed, where hypervolume is de-
fined as the volume of objective space dominated by the cur-
rent set of solutions (Fig. 13). The reference point, R, for this
calculation is usually defined as the anti-utopian point (the
worst point with respect to all objective functions). The
hypervolume indicator is a favored metric as it considers
both the convergence and diversity of the front, where diver-
sity refers to how well-distributed the optimal solutions are
along the Pareto front.77 The combined use of random GP
sampling and hypervolume improvement accounts for the de-
sired trade-off between exploration and exploitation respec-
tively. The GP surrogate model is then updated and the pro-
cedure repeated iteratively until the predefined maximum

Fig. 10 Comparison of fit for two Gaussian models with different
covariance functions: Matern 5/2 (red) and squared exponential (blue).
Training data is shown as black dots.

Fig. 11 Bayesian optimisation (minimisation) of an arbitrary function.
(i)–(viii) represent sequential iterations of the algorithm. Acquisition
function is shown in red. Current estimated function is shown in blue
with associated 95% confidence interval. Data is shown as red dots.
The next evaluation is selected as the point which maximises the
acquisition function.
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number of experiments is reached. Research in our group ap-
plied the TSEMO algorithm for the self-optimisation of an ar-
omatic nucleophilic substitution (SNAr) and N-benzylation re-

action, focusing on E-factor, space–time yield (STY) and
impurity profiles as objectives.78 The algorithm was able to con-
verge on the Pareto front in a similar number of experiments,
68 and 78 experiments respectively, as previously reported
single-objective optimisations, thus providing a greater amount
of information per experiment. Notably, identification of a set
of solutions and presentation of a front enables a posteriori de-
cisions to be made regarding the desired development, where
process specifications are often dynamic. The inclusion of dis-
crete variables in future work will broaden the scope of multi-
objective self-optimisation to a wider variety of processes.

Conclusions

Combining automation with optimisation algorithms for self-
optimising chemical platforms has already yielded very excit-
ing results. Although the use of such systems are in their in-
fancy, the drive for efficient process development and
manufacturing is expected to cause this field to develop expo-
nentially. There is a growing need to work with experts in al-
gorithm design to: (i) further develop algorithms capable of
more complex tasks, such as multi-step reaction and work-up
processes; (ii) upskill non-mathematical experts such as
chemists to understand when and how to use certain algo-
rithms based on their desired outcome, such as process in-
sight and prediction. While local methods have thus far dom-
inated the self-optimisation literature, their simplistic nature
restricts their use to problems with a single optimum. As the
direction shifts to more complex chemical systems, such as
multi-step reaction sequences, response surfaces will become
significantly more convoluted. Hence, global and multi-
objective optimisation techniques are likely to dominate over
their local counterparts. As most chemical optimisations rep-
resent expensive-to-evaluate problems, improving algorithm
efficiency is key in the future to minimise material consump-
tion. The combination of surrogate models and multi-
objective optimisation has recently presented an exciting op-
portunity to maximise the amount of useful information
gained per experiment. Furthermore, the complex task of
self-optimising discrete variables is likely to take precedence
in future work. With this in mind, additional utilisation of
techniques used heavily in computer science will prove an
interesting area for the future development of self-optimising
chemical platforms. We envisage that the adoption of plug-
and-play self-optimising platforms will enable smarter and
more efficient laboratories to flourish in the future.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

ADC, CJT and JAM thank the EPSRC and University of Leeds
for funding. ADC and CJT also thank AstraZeneca for CASE
student funding. This work was funded, in part, by the EPSRC
project “Cognitive Chemical Manufacturing” EP/R032807/1.

Fig. 12 Flow diagram for the TSEMO algorithm. Neval is the current
number of evaluations and Nmax is the maximum number of
evaluations.

Fig. 13 Hypervolume plot showing the process used to select
experiments from the candidate set, Ei. The current hypervolume is the
volume of space dominated by the current set of non-dominated solu-
tions (a–d). In this case, E3 is selected as it offers the largest predicted
hypervolume improvement. R = reference point.
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