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LearnCK: mass conserving neural network
reduction of chemistry and species of microkinetic
models†
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Reduction of chemical reaction mechanisms has been long studied to minimize the computational cost of

reacting flows or the number of parameters of catalytic reaction models for estimation from experimental

data. Conventional reduction techniques encompass either a tabulation of the reaction rates of elementary

reactions or a reduction of elementary reactions. We introduce a Python-TensorFlow tool to learn

chemical kinetics (LearnCK) systematically and automatically from microkinetic models using artificial

neural networks (NNs). The approach constructs overall reactions among stable species only and

interconversion rates and dramatically reduces the number of species and, thus, of the differential

equations (the most expensive aspect in reacting flows). Doing this also removes the stiffness and nearly

eliminates the complexity and cost of estimating the entire thermochemistry and kinetic rate expressions

for computing reaction rates. Python programming automates training data generation, extracts metadata

for fitting the NNs, and deploys the NN model. Since NNs are black boxes, we propose an approach to

conserve mass. We demonstrate the method for the ammonia synthesis on Ru and the methane non-

oxidative coupling over a single-atom Fe/SiO2 catalyst. The latter model includes over 500 gas and surface

species and a combined 9300 gas and surface reactions. We demonstrate a nearly 1000-fold

computational speedup and exceptional predictive accuracy using up to 8 overall reactions. The NN model

is embedded in macroscopic reactor flow models to estimate uncertainty.

1. Introduction

Microkinetic models (MKMs) of complex homogeneous and
heterogeneous reaction mechanisms have become
commonplace.1–8 The conservation species equations of
chemical kinetics are highly nonlinear and stiff, require
specialized solvers and expertise, and are costly for large
reaction mechanisms. As a result, their penetration to
reacting flow simulators, such as computational fluid
dynamics (CFD), and systems tasks, such as optimization and
control, has been slow.9–13 An overview of the current
strategies and challenges in the application of CFD to reactive
flows has been discussed.14,15

The computational singular perturbation method was
introduced thirty years ago to remove stiffness of chemical
kinetics and potentially reduce the network.16 Optimization

has also been employed as a mathematical programming-
based rigorous approach to eliminate inconsequential
reactions based on preset performance metrics.17–19

In chemical reaction engineering, mechanism reduction
has often been employed to mitigate numerical complexity,
improve computational tractability, and better understand
the overall reaction. A key approach has employed the
separation of time scales by identifying key species and rate-
limiting step(s). Common approaches involve local sensitivity
analysis (LSA), principal component analysis (PCA), reaction
path analysis (RPA), quasi-steady-state (QSS), partial
equilibrium (PE) analysis, and most abundant surface
intermediates (MASI).20,21 For catalytic MKMs, our group has
applied a posteriori mechanism reduction where MASIs, RDS,
etc. are determined after the solution has been obtained.
Simple order 1 asymptotics have then been used to derive
closed-form rate expressions that are consistent with the
MKM physics. These expressions expose all the fundamental
reaction rate and equilibrium constants and are interpretable
(in the AI nomenclature). These often entail pencil and paper
calculations.22–25 Aside from reducing detailed mechanisms,
a priori assumptions, such as the RDS, PE, QSS, and MASI,
have been commonplace in catalysis to create overall rate
expressions for comparison to experiments, mechanism
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discrimination, and parameter estimation. The famous
Langmuir–Hinshelwood–Hougen–Watson (LHHW) models
are a manifestation of this approach.

In a complementary pioneering approach of Pope, the in
situ adaptive tabulation (ISAT)26,27 method that tabulates the
rates of elementary reactions on the fly of a simulation has
generated intensive research. The combustion community
has extensively used it to accelerate CFD simulations of
chemically reacting flows.27–29 For every simulation at
runtime, the reaction rate table is built by running the full
MKM. The table can become large and inefficient; for unseen
conditions, the MKM must be used to update the table.30

ISAT does not reduce the size and stiffness of the system. It
eliminates the computation of reaction rates by interpolating
within the reaction rates table and, by doing this, it saves
considerable computational time. The technique has been
applied to other problems, e.g., kinetic Monte Carlo
simulations31,32 and real-time control.33

Neural networks (NNs) are universal function
approximators34,35 of high-dimensional nonlinear functions
that can be ideal surrogates of chemical kinetics. The
combustion research community has embraced NNs to tackle
several challenges in the temporal evolution of standalone
complex kinetic models or in conjunction with CFD
simulations. Some examples include modeling the temporal
evolution of a reduced combustion chemical system,36 large-
scale eddy simulations of turbulent flames,37–39 machine
learning in reaction flow CFD,40 and on-the-fly NN-based
numerical integration for combustion.41 Recently several
articles described specialized applications embedding NNs
inside numerical integrators to describe the time evolution of
ordinary differential equations (ODEs) describing the
chemical kinetics of reacting species. Firstly, kinetics-
informed NN42 and chemical reaction NN (CRNN)43 describe
NN frameworks that satisfy physical constraints and design
equations set by the ODEs describing chemical reaction
systems and can be used to elucidate reaction mechanisms
and pathways from experimental data. ChemNODE,44 a new
type of NN named neural ordinary differential equations
(NODEs),45 is computationally efficient but has not been
demonstrated for stiff systems. Physics-informed NN-based
models (PINN) do not perform well for stiff ODEs;46,47

alternatives such as stiff-PINN48 and MPINN46 were
developed to alleviate stiffness. Stiff-PINN48 reduces the
system complexity by ignoring short-lived species with the
quasi-steady-state approximation. The resulting DAEs must
be hand-calculated on a case-by-case basis; MPINN46 employs
multiple PINNs to handle species with different time scales,
but it is not clear how the method handles very large
systems. A residual NN (ResNet)-based deep NN model called
KiNet49 employs several deeply stacked ResNets (in the stack
each time step requires an independent ResNet) for efficient
backward propagation through time networks. However, due
to the very deep stacking of multiple ResNets, the
computational complexity and memory required depend on
the number of time steps, and it is unclear how the method

scales with system size (number of individual species
tracked). More recently, NNs and multivariate spline
interpolation were used to approximate reduced-order MKMs
constructed using traditional methods such as the partial
equilibrium index and the degree of rate control.50 In this
approach forward, backward, and net rates of elementary
reactions (of the reduced model) were captured using a latent
asinh51 and logarithmic50 transformation. Finally, a method
augmenting a modification of CRNNs with an Euler
integrator to model stiff atmospheric chemistry52 was
developed, where the adaptive time step of integration is
estimated from the NNs eliminating the need to calculate
computationally expensive Jacobians. All these methods solve
the complete high-dimensional problem or the reduction of
the problem to a lower dimensional manifold (Stiff-PINN)
requires hand-calculations and is not scalable to very large
reaction networks.

Here, we propose a new detailed kinetic model reduction
using deep NNs (DNNs) without analysis, tabulation, or
human intervention. We only consider key reactants and
products seen in experiments, and track ‘user-defined’ rates
of a handful of overall reactions connecting these species.
The approach is both computationally efficient, as it reduces
both reactions and species and removes stiffness, and is also
a tabulator, as it parametrizes rates vs. the local reactor
conditions. We first describe the procedure used to generate
training data, fit the NNs, and then deploy them within
numerical integrators as surrogates in reactor models. We
discuss the implications of mass conservation as NNs do not
follow physical laws a priori and quantify the uncertainty
resulting due to the errors. The entire methodology is tested
on a proof-of-concept MKM system (NH3 decomposition to
N2 and H2, with a total of 18 gas and surface species and 14
surface reactions) and a very complex MKM model (methane
coupling to C2–C10 products, with over 500 species and ca.
9300 gas- and surface-phase reactions).

2. Methods
2.1 The model reduction workflow

The algorithm entails the following steps: a) identification of
the phase space and quantities of interest (QoIs), b)
generation of training data (within the operating window)
using Latin hypercube sampling (LHS)-based full-order MKM
simulations, c) processing and transformation of the training
dataset, d) construction and training of the DNNs, e)
construction of an NN surrogate-based numerical integrator
(reduced model), and f) evaluation, validation and
uncertainty quantification (UQ) of the reduced model and the
underlying NN. The outline of the workflow is shown in
Fig. 1. We describe each of the steps and the overall
algorithm next.

2.2 Phase-space and QoI identification

First the phase-space of operating conditions, such as
temperature, pressure, feed flowrate, feed composition,
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residence time, etc., is defined, so that the NN can reliably
predict within it. For a large full-order MKM system with
hundreds of species (short-lived intermediates and long-lived
reactants and products), we need to identify long-lived
species which contribute the most to the reactor
concentration (see the example of methane chemistry). The
key QoIs which need to be predicted by the NN-integrated
reduced model are defined (e.g., species concentrations or
conversion or selectivity).

2.3 Creating the dataset

We perform plug flow reactor (PFR) simulations by
approximating a PFR as a series of 100 CSTRs; each CSTR in
a single simulation serves as an independent datapoint of a
different local composition (and potentially a different
temperature and pressure) within this phase-space using
sampling methods, such as LHS. Each PFR simulation
provides the low-dimensional manifold of chemical kinetics
staring from the initial conditions and moving toward
equilibrium downstream. The dataset comprises data from
several hundred PFR simulations, each providing 100
datapoints. PFR simulations of large reaction networks are
feasible, not as time consuming, and robust.

2.4 Data transformation

The input features required by the NNs in this work are local
concentration of (selected) species, temperature, and pressure;
the output responses are turnover frequencies (sometimes
normalized using the log 10 scale). These input features are
scaled using a MinMaxScaler,53 such that each feature has a
maximum value of 1.0 and a minimum value of 0.0:

Xnew ¼ X − min Xð Þ
max Xð Þ − min Xð Þ × 1:0 − 0:0ð Þ þ 0:0; (1)

where Xnew is the scaled dataset, X is the original dataset,
min(X) is the dataset minimum, and max(X) is the dataset

maximum. Alternatively, the dataset is normalized using the
TensorFlow's preprocessing normalization layer,54 which
centers each feature around a mean of 0 and a standard
deviation of 1:

Xnew ¼ X −Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þp (2)

where X is the set of data for a given feature, X̄ is the mean,
Var(X) is the variance, and Xnew is the normalized dataset.

The predicted targets using a NN could include turnover
frequencies (TOFs), steady-state rates, conversion, selectivity,
etc. In this work on heterogeneous catalytic models, TOFs are
chosen which only depend on the temperature, pressure, and
local composition of reactants and products for a given
catalyst and are agnostic to feed flowrate and residence time.
Depending on the order of magnitude of TOFs in the training
dataset, they are sometimes represented in the log 10 scale to
ensure very low rates are accounted for accurately. The
dataset is split randomly 70 : 30 into training and testing sets,
respectively.

2.5 Construction and training of the NN

The input features required by the NNs in this work are local
concentration of (selected) species, temperature and pressure
and the output responses are TOFs (sometimes normalized
using the log 10 scale). TensorFlow55 was used to construct a
simple feed-forward DNN. Overfitting is suppressed with
early stopping, which stops network training when the loss-
function does not improve, after a pre-defined number of
epochs. While the entire architecture of the DNN, i.e., layer
depth, number of neurons in each layer, combinations of
activation functions, regularization, and dropout penalty, can
be custom designed and improved using hyper-parameter
optimization, the networks described here are simple and
homogeneous (only one type of activation function and the
same number of neurons in each layer) to demonstrate

Fig. 1 LearnCK model reduction workflow.
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feasibility of the concept. DNNs in this work are typically 5
layers deep, with 50 neurons in each layer, and use an
identical activation function, either rectified linear units
(ReLU)55,56 or Gaussian error linear unit (GELU).55,57

The choice of hyper-parameters could have an effect on
the NN performance as shown for a couple of parameters in
Fig. S3† (activation function) and Fig. S4† (hidden layer
depth), but the difference is negligible. However, we note that
the NN architecture considered in this work might not be
ideal for all chemically reacting systems and therefore
appropriate hyper-parameter optimization must be carefully
performed for optimal results. The tunable parameters within
the DNN are fitted via the well-regarded stochastic gradient
descent method, Adam optimizer offered by the TensorFlow
library, with a learning rate of 0.001, using the mean absolute
error (MAE) loss metric for the objective function evaluated
for the entire training dataset (between the TOFs predicted
by the DNNs and MKM simulations).

2.6 DNN-surrogate-based PFR numerical simulations

The Python-SciPy stiff ODE solver solve_ivp,58 specifically the
LSODA59,60 algorithms, is employed to numerically solve the
steady-state PFR simulation using the DNN reaction rates.
The Jacobian matrix is approximated with finite differences
using the default implementation within the SciPy solve_ivp58

solver. The governing equations for a detailed or a coarse-
grained kinetic model are

dCj

dx
¼

Xn

i¼1

Sj;i × ri T ; P; Xð Þ (3)

dCj

dx
¼

Xm

j¼1

σj T ; P; Xð Þ (4)

where
dCj

dx
is the rate of change of concentration of species j

along a differential length (dx), Sj,i is the stoichiometric
coefficient of species j in elementary reaction i, and ri(T, P, C) is
the rate of elementary reaction i at the current pressure (P),
temperature (T), and composition (X). The summation extends
over the entire networks of n elementary reactions. Similarly,
σj(T, P, X) is the rate of species j from all overall reactions j and
the summation extends over all overall reactions m. In a MKM
simulator, the elementary rate is expressed by the modified
Arrhenius rate expression, and the species rate is calculated
using the elementary rates and the stoichiometry matrix. The
DNNs can approximate the species production rate, i.e., the
entire rhs (see ammonia case-study) or the overall reaction
rates (see methane case-study), by accepting identical inputs (T,
P, X). Note that DNNs are black boxes which could predict
species consumption even when the species concentration is
zero, resulting in negative concentrations. Therefore, in the
coarse-grained kinetic model we ensure that the species mass
and mole balances are always positive by constraining the
species conservation equations and clipping rates which result
in negative concentrations.

The DNN-surrogate-based PFR model does not involve
surface species and their coverages, and, therefore, one does
not need initial conditions for surfaces. One only needs inlet
concentrations of gas reactants.

2.7 Validation and UQ for the NN-surrogate and the reduced
model

The difference between the output responses, i.e., the point
predictions of TOFs by the NN-based model and the full-
order MKM (training dataset), gives the necessary validation
and UQ for the NN. This can be used to improve the NN
architecture by performing hyper-parameter optimization or
updating the training dataset. Similarly, the difference
between the MKM and NN-based solutions (QoI) along a PFR
provides the actual error of the reduced model vs. the full-
order model.

To summarize, we generate a training dataset within the
operating conditions window by running multiple PFR
simulations with the full MKM. The training dataset consists
of local operating conditions, species concentrations, and
either species rates or rates of overall reactions. The training
dataset is fitted with a DNN which accepts local operating
conditions and species concentrations to predict overall
reaction on species rates. PFR simulations accept the trained
DNN as a surrogate model for the full MKM. Since the DNN-
based PFR model only tracks the long-lived gas-phase species
via overall reactions connecting them, neither surface
coverages nor elementary reactions are invoked, an important
difference from previously published work.50 This approach
results in significant calculation speedup while eliminating
stiffness. This workflow is demonstrated using two examples:
a) a simple ammonia chemistry model where rates of
production/consumption of each of the species are related
via stoichiometry and b) the complex methane coupling
chemistry with 9000+ elementary reactions.

2.8 Ammonia (NH3) chemistry

The MKM for NH3 decomposition on Ru has a total of 18 gas
and surface species and 14 surface reactions (it entails step
and terrace sites) and is taken from our previous work.1,61,62

The species and reactions are given in Section ESI-1.† The
training data were generated using OpenMKM63 for a PFR
(length of 1 cm, volume of 1 cm3) using LHC sampling for
pressures from 1 to 10 atm, temperatures between 600 and
1000 K, and volumetric flow rates between 0.01 and 0.20 cm3

s−1. The predicted output metrics are the TOFs of NH3, N2

and H2. In the training dataset, the TOFs spanned several
orders of magnitude: ∼10−10–102 (1 s−1). Since there is only
one overall reaction, the TOFs of the stable species are
related by stoichiometry. However, TOFs of all three species
were trained to assess how well mass-conservation is obeyed
without imposing it. A total of 1200 conditions were
simulated, and 100 training points were extracted from each
reactor. DNN used 5 input parameters (T, P, XNH3

, XN2
, XH2

),
where Xi is the mole fraction of species i. Fig. S1 and S2a†
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depict the nodes and connections in this NN. The training
and validation error as a function of training epochs is
plotted in Fig. S2b,† with training and validation errors
decreasing steadily.

2.9 Methane (CH4) coupling chemistry

Methane coupling to ethylene and other products is a
complex network with 47 surface species, over 500 gas-phase
species and a total of ∼9300 gas- and surface-phase
reactions.64 The training data used 200 operating conditions
picked via LHS, within the phase boundaries of (P = 1 atm,
temperature 1250 to 1300 K, and volumetric flow rate of
0.025 to 1 cm3 s−1) using the CHEMKIN65–67 chemical
kinetics package. Mole fractions and TOFs of key species
were obtained from these simulations. Only species which
contributed cumulatively to 99.9% of the mole fraction (with
decreasing contribution) are considered; these are CH4, H2,
C2H2, C2H4, C2H6, C3H4, C3H6, C6H6, C7H8, and C10H8. To
preserve mass and enforce stoichiometry on top of the black-
box DNNs, overall reaction TOFs instead of species TOFs are
fitted. These overall reactions are constructed to connect the
species using expert knowledge as explained below in the
section “overall reactions”. While the DNN model predictions
of overall reaction rates have errors, stemming from the
reduction, mass is conserved as we parametrize reaction rates
and use stoichiometry to compute all species rates. The NN
architecture, sampling, and the PFR simulation numerics
remain the same for both example cases. The simplicity and
automation of various steps, via modular Python
programming, enabled trivial scale-up of the methodology
from the simple 14-reaction system to the ∼9300 reactions.

3. Results and discussion
3.1 Assessing accuracy and training procedures using
ammonia chemistry as a testbed

The training dataset was generated using OpenMKM63 with
the procedure and operating condition window described in
the Methods section. DNNs were trained on the TOF of NH3,
and the TOFs of H2 and N2 were estimated from the
stoichiometry of the overall reaction (2NH3 ⇌ N2 + 3H2).
Fig. 2a depicts the parity plot from the MKM and the DNN.
DNNs display excellent performance with R2 of 0.9997; the
prediction error and mean were ∼0.001 and ∼0.002 in TOF
units. This surrogate model performed well for reactor
calculations. Fig. S5† depicts the parity in the exit mole
fractions of 1200 independent PFR simulations (ground-
truth) and the DNN surrogate, with a mean absolute error of
∼0.0048 (dimensionless units).

3.1.1 Distance from equilibrium. Many reactions are
equilibrium limited, and thus sampling at sufficiently long
residence times leads to near equilibrium. Such conditions
lead to performance deterioration because the net rates are
very small, and effectively one adds noise to the dataset. For
this reason, during the PFR integration, the distance from
equilibrium was assessed (using an L2 norm) at each
pressure and temperature. Below a specified tolerance
(0.001–0.01), the data were not used. This approach ensures
numerical stability and improved accuracy (Fig. 2b vs. S5†).

3.1.2 Mass balance closure. Instead of deducing the
TOFs of N2 and H2 from stoichiometry, TOFs of all three
species were fitted independently, without enforcing
stoichiometry. While the mean absolute error for each
TOF remained the same, the ratio of TOFs of NH3 to H2

or N2 deviated from stoichiometry (Fig. S4a and b†). This

Fig. 2 Parity plots for DNN surrogate model for ammonia decomposition. a) Predicted turnover frequency (TOF) of NH3 vs. the exact MKM. b) Exit
mole fractions for NH3 from 1200 PFR reactor simulations using the DNN-surrogate Python ODE solver model and the MKM (x-axis).
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mostly occurs at conditions close to equilibrium; see Fig.
S6c and d.† Implementing a PFR-surrogate model with
this DNN still resulted in accurate outcomes, as shown in
Fig. S7.† Yet, we recommend not to sample too close to
equilibrium.

3.1.3 Apparent activation energy. The apparent activation
energy was determined using an Arrhenius plot, where
log-normalized TOFs of NH3 were plotted on the y-axis
against 1000/T (with T in Kelvin) on the x-axis. This was
done for the first CSTR reactor (PFR represented as a
series of CSTRs) in both the full-order MKM and the
DNN-surrogate-based model, as illustrated in Fig. S8.† The
DNN model effectively captures the temperature-dependent
reaction trends, revealing an apparent activation energy of
168.95 kJ mol−1 vs. 163.76 kJ mol−1 for the full-order
MKM.

3.1.4 Sampling. In the previous example, 1200 PFR reactor
simulations with 100 datapoints for each resulted in 120 000
individual samples. Smaller datasets generated using LHS
and full factorial (FF) design for 100 and 400 conditions were
tested. The trained DNN then predicted 400 new PFR
conditions at completely random P, T, and flowrates. Parity
plots of exit mole fraction using DNNs trained from samples
generated by FF design and LHS are shown in Fig. 3. For a
fixed number of samples, the LHS-based dataset is superior
to the FF design, even with as few as 100 PFR samples (10
000 individual points).

3.2 CH4 coupling chemistry

The operating window is given in the Methods section. This
MKM contains 500+ species and 9300+ elementary reactions.

Fig. 3 Parity plots for PFR exit mole fraction for unseen, randomly chosen operating conditions within the training phase-space using DNNs
trained with FF design for a) 100 and c) 400 PFR simulations or LHS sampling for b) 100 and d) 400 PFR simulations.
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It is impractical to fit these many TOFs. RPA (Fig. S9†) cannot
even help in visualizing the network. Therefore, stable
species with the largest mole fraction contribution to a
cumulative ∼99.5% were selected. In Fig. S10,† the
cumulative histogram depicts the number of species
comprising 99.5% of the PFR exit mole fraction for 200 PFR
simulations, i.e., at the PFR exit, 3 species make up the
99.5% cutoff for ∼75 simulations, 5 species appear in ∼110,
and so on and so forth, up to a total of 9 unique species
cumulatively for the entire dataset. Table S1† depicts the
percentage of these occurrences for each key species at the
PFR exit. C2H4 contributes to the 99.5% exit mole fraction
cutoff at 60% of the training dataset (i.e., 120 out of 200 PFR
runs). Ultimately, the DNN surrogate model only considers 9
key species, as shown in Table S1.† The mass/mole fraction
cutoff could be adjusted for every system to incorporate
species of interest, including trace products or impurities.

In MKMs based on elementary reactions, short-lived
species of low concentrations (for example a CH3 radical) can
play a crucial role in dictating rate-limiting steps, major flux
pathways, and surface coverages. In the reduced DNN-based
PFR model, we only track long-lived gas species connected by
“non-elementary” overall reaction steps, such as (2CH4 →

C2H4 + 2H2), which do not contain these intermediates. The

overall reactions encompass the information of elementary
steps and intermediate species implicitly in the DNN.

3.2.1 Overall reactions. While a MKM contains all
elementary reaction rates and species rates from the
stoichiometric relations, it is impractical to construct overall
reactions from the 9300+ elementary reactions. Instead, we
propose to compute the major species rates from those of the
elementary reactions and the stoichiometric relations. This
approach parallels experimental efforts where species are
identified, and their rates are estimated from their
concentrations and basic material balances. We then
introduce user-defined overall reactions that connect the
major species. Determining overall reaction rates from
species rates is typically an ill-posed inverse problem (solving
for the rhs of eqn (3)), and the set of overall reactions is often
not unique (for recent developments see ref. 68).

Two reaction sets, shown in Table 1, were chosen for this
case. Set A was designed such that the reaction rates can be
obtained from the respective product species, such as C2H4

or C6H6, using the stoichiometric matrix inversion. Set B was
constructed using stoichiometry by which the rate of a
reaction is equal to the rate of the hydrocarbon product
(species rate). The last two overall reactions track the rates of
CH4 and H2 to trace products (mole fraction <0.05) for the C
and H balance. The rate of methane is easy to compute from
the rates of reactions and the stoichiometric coefficients.
Note that these overall reactions simply obey stoichiometry
rather than physical pathways. They allow an easy estimation
of rates needed in the material balances.

3.2.2 Calculating rates for overall reaction set A. For a
simple system with two overall reactions connecting CH4,
C2H4, C2H2, and H2, Fig. S11† depicts the linear set of ODEs
connecting the species production rates and the overall
reaction rates via the stoichiometric matrix. For set A of
Table 1, the species and overall reaction rates are defined in
Fig. 4. From MKM simulations, we can obtain the overall
species production rates. Estimating the rates of overall

Table 1 Set of overall reactions that connect key species for non-
oxidative methane coupling

No. Reaction set A Mathematically convenient set B

1 2CH4 ⇌ C2H4 + 2H2 2CH4 ⇌ C2H4 + 2H2

2 3C2H4 ⇌ C2H2 + H2 2CH4 ⇌ C2H2 + 3H2

3 2C2H4 + H2 ⇌ C3H6 + CH4 3CH4 ⇌ C3H6 + 3H2

4 6CH4 ⇌ C6H6 + 9H2 6CH4 ⇌ C6H6 + 9H2

5 C3H4 + H2 ⇌ C2H2 + CH4 3CH4 ⇌ C3H4 + 4H2

6 C7H8 + H2 ⇌ C6H6 + CH4 7CH4 ⇌ C7H8 + 10H2

Balance trace reactions: Balance trace reactions:
7 xCH4 ⇌ CxHy(g) + (4x − 1.0y)H(g) xCH4 ⇌ CxHy(g) + (4x − 1.0y)H(g)
8 (4x − 1y)H(g) ⇌ (2x − 0.5y)H2(g) (4x − 1y)H(g) ⇌ (2x − 0.5y)H2(g)

Fig. 4 Schematic of species production rates and overall reaction rates via the stoichiometric matrix for the reaction set A in Table 1.
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Fig. 5 Parity plots of PFR exit mole fraction of CH4, C2H4, C2H2, C6H6 from DNN-based surrogate model (y-axis) and MKM (x-axis) for a) reaction
set A and b) reaction set B. Trace reactions are considered for both reaction sets.
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reactions requires matrix inversion. However, the inversion
problem does not always have a full rank, and techniques
such as Moore–Penrose pseudo-inverse69,70 must be used.
The errors of the overall reaction rates using inversion were
insignificant for reactions with high rates but can be large
for those with low rate.

3.2.3 Calculating rates of overall reaction set B. Set B is
mathematically convenient because the rate of each overall
reaction is equal to the product species rate explicitly
available from the MKM simulation; for instance, the rate of
reaction 1 equals the rate of production of C2H4 and so forth.

3.2.4 DNN training and predictions. Fig. S12a and b†
compares the overall reaction rates from MKM simulations
and DNN for sets A (estimates using the inverse
stoichiometric matrix) and B (exact overall rates), respectively.
While the parity for both sets is fine, the results for set A are
not as accurate, as shown in Fig. 5. Reducing the number of
overall reactions helped minimize this error, and therefore
we repeated the procedure for set A but excluded the carbon
and hydrogen balance trace reactions 7 and 8. This resulted
in a much more accurate surrogate model, as shown in Fig.
S13,† comparable to set B. The R2 values for the PFR exit
predictions are upwards of ∼0.97 and ∼0.98 for all major
product species for set A (without trace reactions) and set B
(with trace reactions), respectively.

3.2.5 UQ in training and reactor calculations. The NN
training involves randomness, and therefore NNs trained on
identical data have different hyper-parameters and
predictions. This uncertainty was captured by training 100
independent NNs, with identical network architecture, but
initialized with randomized weights and biases, on the

previously used training dataset for the methane MKM. The
overall reaction turnovers were accessed. Fig. S14† and 6
depict the uncertainty histogram with standard deviation
(dotted lines) between the overall reaction TOF predictions
from MKM and DNNs for 2 million data points (20 000 points
per network times 100 networks) for reaction sets A (no trace
reactions) and B, respectively. The mean, minimum, and the
maximum for each overall reaction rate, the mean average
error, and the standard deviation for the global dataset (2
million data points) are tabulated in Tables S2 (reaction set
A) and S3† (reaction set B). From the UQ distribution and the
tabulated statistics, the uncertainty of the NN for 100
networks is equivalent to the UQ from a single network.

Further, the propagation error and uncertainty during
numerical integration of the surrogate NN models were also
explored, by simulating 200 conditions with each of the
independently trained NNs, for a total aggregate of 20 000
surrogate-DNN PFR simulations. Fig. S15† and 7 depict the
UQ for reaction sets A and B, respectively. While the UQ
histograms for H2 and C2H4 are not perfectly Gaussian, the
standard deviations are incredibly low, highlighting the
efficacy and accuracy of this method.

3.2.6 Spatial concentration profiles for the PFR reactor.
Along the length of the PFR, the spatial profiles of species
mole fractions (major and minor products) predicted by the
reduced model agree well with the full-order model, as shown
in Fig. S16 and S17.† For primary products that convert to
secondary products (e.g., C2H4), the dynamics is also captured
well. Two separate cases representing high and low
conversion of CH4 (T = 1290 K and Q = 0.026 cm3 s−1 and T =
1259 K and Q = 0.098 cm3 s−1) are shown in Fig. S16 and S17.†

Fig. 6 Uncertainty quantification of the NN training error for a cumulative 100 independent NNs trained on reaction set B. Errors are deviations of
overall rates between NN predictions and MKM calculations. Errors in rates are in 1 s−1.
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3.2.7 Computational speedup and tradeoffs. The NN-
based model of ammonia chemistry was reduced from 3 s in
OpenMKM to 0.15 s using the Python-TensorFlow (∼20
times). For CH4 coupling, the values were 5500 s on
CHEMKIN (MKM) vs. 3.3 s on TensorFlow-OpenMKM, a
1300-fold speedup without loss in accuracy. While the
reduced model is significantly faster than the full model, the
time taken for the generation of the training dataset and the
training of the NNs should also be considered. Depending on
the operating conditions and complexity of the model, a
small number of initial full model simulations might be
sufficient. In situations where the reduced NN model must
be computed several times (e.g., CFD), the computational
benefits far outweigh the cost of training the DNN, especially
for complex systems, such as methane coupling with greater
than 1000-fold speedup. One other consideration is that the
reduced models designed here only track long-lived gas
species. If one is interested in surface coverages, the
workflow has to be redefined.

4. Conclusions

We have developed a procedure to systematically reduce
complex, stiff, high-dimensional chemical reaction networks
using DNN models. These surrogate models approximate the
rates of reactants and products only as a function of local

reactor conditions and deduce rates of overall reactions
connecting these species. By discarding unnecessary species
(reaction intermediates and products of low fraction), the
DNN-surrogate models are very small and computationally
efficient with minimal (if any) stiffness. The approach was
tested on a simple 14-elementary-reaction MKM for ammonia
decomposition on Ru and highly complex 9300+ elementary
reactions for non-oxidative methane coupling. The results
demonstrate exceptional computational speed-up and
accuracy. Care should be taken to use the DNN surrogate
within the range of training operating conditions, and
consider mass conservation, distance from chemical
equilibrium, and appropriate overall reactions, as discussed
herein.
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Fig. 7 DNN-based propagation error for exit mole fractions of key species for reaction set B. Each x-axis represents mole fraction.
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