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Solvent-free hydroboration of alkenes and alkynes
catalyzed by rhodium-ruthenium nanoparticles on
carbon nanotubes†

Mateus P. Nunes,‡a Dhanaji V. Jawale,‡b Fábio G. Delolo, a Maria H. Araujo,a

Edmond Gravel, *b Eric Doris *b and Eufrânio N. da Silva Júnior *a

A heterogeneous catalyst consisting of bimetallic rhodium-

ruthenium particles immobilized on carbon nanotubes was used in

the hydroboration reaction and proved highly effective for a variety

of alkenes and alkynes. The reactions were carried out with low

catalytic loadings (0.04 mol%), under solvent-free conditions, and at

room temperature. In addition, to demonstrate its recyclability, the

catalyst was recovered by a simple centrifugation process and

reused over 5 consecutive cycles without losing any activity.

Organoboron reagents are versatile intermediates in the synth-
esis of bioactive compounds, used for example in cross-
coupling reactions.1 Alkylboranes and alkenylboranes can be
produced by catalytic hydroboration of alkenes or alkynes by
adding B–H to olefins in an atom-efficient process.2 In this
context, homogeneous catalytic systems based on noble metals
(e.g. Ir,3 Pt,4 Pd,5 Ru,6 and Rh7), rare-earth metals (e.g. La, Sm,
Y, Yb, Sc),8 but also earth-abundant metals9 (e.g. Fe,10 Co,11

Cu,12 Ni,13 Mn14) have been reported as catalysts for the
hydroboration of unsaturated hydrocarbons. However, these
systems usually rely on the use of additives such as ligands and/
or bases and cannot be readily recycled. In addition to environ-
mental aspects, the non-recyclability of the catalysts is a major
drawback for cost-effective industrial applications.

Unlike homogeneous catalyst complexes, heterogeneous
catalysts are more sustainable because they can be readily
recovered from reaction mixtures and reused. However, hetero-
geneous catalysts have only been scarcely explored in the
hydroboration of alkenes and alkynes.15

Among the strategies to optimize the catalytic performance
of heterogeneous systems, our groups have previously investi-
gated the immobilization of metallic particles on carbonaceous
materials.16 We demonstrated that the immobilization of metal
nanoparticles on multi-walled carbon nanotubes (CNT) can
provide a significantly enhanced catalytic activity in various
organic transformations.

More recently, we also reported the assembly of bimetallic
rhodium–ruthenium nanoparticles (RhRu NP) on CNT. The
RhRuCNT nanohybrid was investigated in the efficient
hydrothiolation17 and hydrophosphinylation18 of various alkenes
and alkynes, under mild reaction conditions (Scheme 1). In the
above nanohybrid, rhodium and ruthenium acted synergistically,
thus providing better performances than either of the metals taken
individually. With these features in mind, we report here the use of
the RhRuCNT nanohybrid catalyst in the hydroboration of alkenes
and alkynes at room temperature and under solvent-free
conditions.

The preparation of the RhRuCNT catalyst, as well as the
other tested catalysts (i.e. RuCNT, RhCNT, RhRu NP), was
carried out using our previously reported procedure (see ESI†
for details).19 In brief, RhRuCNT was assembled in water using
a layer-by-layer strategy and the following steps: i) adsorption
and photo-polymerization of a primary layer made of an
anionic amphiphile (DANTA) at the surface of multiwalled-
carbon nanotubes (MWCNT), ii) deposition of a secondary layer
made of a cationic polymer (PDADMAC), and iii) deposition of
the preformed bimetallic nanoparticles (RhRuNPs).20 In this
system (Fig. 1), the polyammonium network served as a tridi-
mensional anchoring and stabilizing environment for RhRu
nanoparticles. The RhRuCNT catalyst was recovered as an
aqueous suspension whose metal concentration was measured
by inductively coupled plasma mass spectrometry (ICP-MS, [Ru] =
4.3 mM and [Rh] = 3.8 mM).

To evaluate the RhRuCNT nanohybrid material in the hydro-
boration reaction, we selected 1-hexene (1a) and pinacolborane
(HBpin, 2) as model substrates (Table 1). The reaction was
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performed under an inert nitrogen atmosphere, without sol-
vent, and at room temperature for 24 h. In the presence of
0.04 mol% of RhRuCNT, the hydroborylated product (3a) was
obtained as a single regioisomer in 96% yield (Table 1, entry 1).
On the other hand, the monometallic hybrids RuCNT and
RhCNT afforded only 19% and 60% yield, respectively
(entries 2 and 3). The combination of RhCNT and RuCNT
slightly improved the catalytic performance, although not to
the extent of RhRuCNT (entry 4). These results suggest a

cooperative effect between Rh and Ru21 in which the more
electron-deficient ruthenium could be responsible for the
activation of the unsaturated substrates, while rhodium may
act as the main catalytic species. This synergy accounts for the
higher conversion observed for RhRuCNT.22 The reaction
mechanism might follow a classical 3-step sequence involving:
i) oxidative addition of the B–H bond to the metal center,
followed by ii) insertion of the alkene into the rhodium–hydride
bond, and iii) reductive elimination (Scheme S1, ESI†).
Although two regioisomeric compounds can be formed, we
observed only the C-terminal-borylation of the substrate.

It is also important to highlight the key role played by
nanotubes in the process as, in addition to providing high
specific surface area, CNT are electronically active and can
stabilize transient oxidation states of the supported metals.21

In fact, the reaction performed in the presence of unsupported
colloidal RhRu NPs (without CNT) showed no conversion (entry
5). The same comment applies to a reaction run with CNT
devoid of any metal (entry 6).

In order to support the hypothesis of a heterogeneous
catalytic process, a control reaction was run under the above-
mentioned conditions (Table 1, Entry 1) except that, after 3 h,
the mixture was filtered on a membrane (0.45 mm) to remove
the supported catalyst. 1H-NMR of the filtrate indicated 27%
conversion of the substrate. After stirring the filtered mixture
for another 24 h, no additional conversion was detected,
suggesting that the transformation takes place at the surface
of the hybrid and is not due to soluble metallic species released
from the hybrid. Moreover, neither Ru nor Rh was detected by
ICP-MS analysis of the filtered reaction mixture.

Next, we applied the RhRuCNT system to a range of sub-
strates in order to evaluate the versatility and generality of this
methodology (Scheme 2). First, we evaluated aliphatic olefins
with an extended saturated hydrocarbon chain. The corres-
ponding products 3b and 3c were obtained with 77 and 72%
yield, starting from 1-heptene and 1-octene, respectively. Ether-
containing alkylboranes 3d-3f were obtained in 61 to 74% yield
from the corresponding vinyl-ethers, and the branched hydro-
borylated product 3g from 3-methyl-1-pentene in 69% yield.
The developed methodology also proved compatible with

Scheme 1 Overview of transformations catalyzed by RhRuCNT nanohy-
brid catalyst. (A) Hydrothiolation, (B) Hydrophosphinylation, and (C) this
work: Hydroboration.

Fig. 1 Schematic overview of the RhRuCNT hybrid with chemical struc-
tures of DANTA and PDADMAC.

Table 1 Catalyst screening for the hydroboration reactiona

Entry Catalyst Yieldb (%)

1 RhRuCNT 96
2 RuCNT 19
3 RhCNT 60
4 RuCNT + RhCNT 73c

5 Colloidal RhRu NPs NR
6 CNT NR

a Reaction conditions: 1a (1.0 mmol), 2 (1.1 mmol), catalyst
(0.04 mol%), room temperature (RT), inert atmosphere (N2), neat, 24 h.
b Isolated yield. c 0.02 mol% Ru + 0.02 mol% Rh. NR: no reaction.

Communication ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
ve

lja
e 

20
23

. D
ow

nl
oa

de
d 

on
 3

.1
1.

20
25

. 1
1:

42
:3

9.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2cc06864h


This journal is © The Royal Society of Chemistry 2023 Chem. Commun., 2023, 59, 2763–2766 |  2765

various groups that can be used for further functionalization,
such as a terminal bromide (3h), an epoxide (3i), and a methyl
ester (3j). The products were obtained in good to excellent
yields (74–93%). Nevertheless, cyclohexene (3k) and styrene (3l),
exemplifying an internal olefin and an aromatic one, did not
react under our reaction conditions.

Yet, the same protocol was applied to the hydroboration of
alkynes in order to access vinylborane derivatives. Aliphatic
vinylboranes 3m and 3n were produced in 97 and 93% yield,
starting from 1-hexyne and 1-octadecyne, respectively. Unfortu-
nately, the methodology was not effective to convert phenyla-
cetylene into compound 3o. While the hydroboration reaction
of alkynes is known for issues both in terms of regioselectivity
and stereoselectivity,23 using our RhRuCNT catalyst, trans-
configuration anti-Markovnikov products were exclusively
obtained for all the alkyne substrates that were investigated.

As stated above, in addition to environment-friendly condi-
tions, the efficient recycling of the metal-based catalysts is of
key importance for the development of sustainable chemical
processes. We thus turned our attention to performing recy-
cling and kinetics experiments to evaluate the stability of the
RhRuCNT in the hydroboration reaction of 1-hexene 1a with
HBpin 2. After completion of the reaction, ethanol (0.5 mL) was
added to the mixture and the suspension was centrifuged. The
supernatant (containing the product) was collected and the

pellet was washed with ethanol (2 � 2 mL). The combined
organic phases were worked-up to provide compound 3a. The
recovered catalyst pellet was dried under reduced pressure
before it was used in the next run by simply adding fresh
reagents. This process was repeated five more times with no
significant decrease in the catalytic activity (Table 2). Yield
above 90% was still obtained in the sixth run. A cumulative
TON (turnover number) of 14 125 was calculated from this set
of experiments. ICP-MS analysis of the mother liquors showed
no significant metal leaching. In addition, transmission elec-
tron microscopy (TEM) and X-ray photoelectron spectroscopy
(XPS) indicated no alteration of the supported catalyst (Fig. S27
and S28, ESI†). Finally, the hydroboration reaction rate using
RhRuCNT was measured through the calculation of a turnover
frequency (TOF) – (moles of 1-hexene converted per mole of
RhRuCNT per hour) – which reached a value of 225 h�1 after 3 h
of reaction (27% yield).

In conclusion, a novel procedure using a heterogeneous
catalyst for the hydroboration of alkenes and alkynes under
mild conditions is presented. The catalytic system based on
RhRuCNT operates with low catalytic loadings (0.04 mol%),
solvent-free, and at room temperature. The RhRuCNT catalyst
can transform a range of substrates with high selectivity and
yield of the desired products. In addition, the catalyst showed
high stability in recycling studies with no significant loss of
catalytic performance. The RhRuCNT hybrid compares favour-
ably with recently reported heterogeneous catalytic systems (see
Table S2, ESI†) that, in many cases, require either heating15a,24,25

or the use of toxic solvents and/or additives.26–29 This new applica-
tion expands the versatility of RhRuCNT-based nanohybrids in the
field of heterogeneous catalysis.
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309774/2020-9 and Universal Project 405052/2021-9), CAPES,
FAPEMIG (PPM-00635-18 and Rede de Pesquisa e Inovação para
Bioengenharia de Nanossistemas-RED-00282-16), Return Fel-
lowship of the Alexander von Humboldt Foundation (AvH),

Scheme 2 Substrate scope for the hydroboration. Reaction conditions:
Substrate (1.0 mmol), 2 (1.1 mmol), RhRuCNT (0.04 mol%), room tem-
perature (RT), inert atmosphere (N2), neat, 24 h. Isolated yields are shown.
NR: no reaction.

Table 2 Catalyst recyclinga

Cycle # Yieldb (%) TONc

1 (fresh) 96 2400
2 96 2400
3 95 2375
4 93 2325
5 94 2350
6 91 2275

a Reaction conditions: 1a (1.0 mmol), 2 (1.1 mmol), catalyst
(0.04 mol%), room temperature (RT), inert atmosphere (N2), neat, 24 h.
b Isolated yield. c TON – turnover number (mol of 1-hexene converted
per mol of RhRuCNT).
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