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ESIPT-based fluorescence probe for the rapid
detection of peroxynitrite ‘AND’ biological thiols†
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An ESIPT-based ‘AND’ logic fluorescence probe (GSH-ABAH) was

developed for the simultaneous detection of ONOO� and biological

thiols. GSH-ABAH was shown to have good cell permeability and

with the addition of just SIN-1 (ONOO� donor) or GSH, no fluores-

cence response was observed in live cells. However, in the presence

of both analytes GSH-ABAH could be used to image exogenous

ONOO� ‘AND’ GSH added to RAW264.7 cells.

Peroxynitrite (ONOO�) is a highly reactive nitrogen species1

with an incredibly short biological half-life (o10 ms).2 ONOO�

is known for its deleterious effects, causing irreversible damage
to a range of biological targets such as lipids, proteins and
nucleic acids.3 As a result, abnormal concentrations of ONOO�

are thought to be associated with inflammation, cancer, athero-
sclerosis and neurodegenerative diseases.4–7 In addition, bio-
logical thiols such as glutathione (GSH) and cysteine (Cys) are
essential in maintaining biological redox homeostasis.8–10

GSH is a natural tripeptide (g-L-glutamyl-cysteinyl-glycine)
that exists in the thiol reduced form (GSH) and disulphide-
oxidised (GSSG) form.11 GSH is the predominant form, which
exists in mammalian and eukaryotic cells where it functions
as an antioxidant.12–14 More importantly, GSH serves as an
ONOO� scavenger through its direct oxidation by ONOO�.15

Therefore, it is common to find elevated levels of GSH when
cells are undergoing oxidative stress. Therefore, the suscepti-
bility of a cell towards ONOO� largely depends on the concen-
tration of intracellular GSH.7,16,17

Within our research groups, we are interested in developing
small molecule fluorescent probes for the detection of biological
reactive oxygen species as well as biological thiols.18–21 While
many literature reported fluorescent probes have been used to
understand the roles of single chemical species, which include
metal ions22 and reactive oxygen species23,24 in biological
systems.25 Relatively, few probes have been developed to report
on the role of two or more analytes in a biological system. In
parallel to the development of fluorescent probes, the field of
molecular logic gates has developed.26,27

Molecular logic gates are molecules that have the ability to
bind to multiple analytes and transform the multiple binding
events to a measurable output. Recently, we have developed
dual activated fluorescent probes. Where, the ‘AND’ logic
operation requires two analytes to produce a positive output
signal. These ‘AND’ logic systems have the ability to detect two
different analytes within the same biological sample and hence
provide a simple approach for monitoring complex bimolecular
events, where two species may be intimately responsible for a
particular disease.28

Dual fluorescence based probes for monitoring the relation-
ship between ONOO� and GSH are uncommon,29,30 despite
numerous fluorescence based probes being developed for the
sensing of these analytes separately.31,32 Recently, we have
developed a fluorescein-based ‘AND’ logic gate, which was
capable of detecting ONOO� ‘AND’ GSH in cells (Fig. 1c).33

‘AND’ logic based fluorescence probes for ONOO� ‘AND’ GSH
are of particular interest as they could potentially be used to
evaluate the therapeutic efficacy of a particular treatment towards
Alzheimer’s disease.34

In this work, we set out to improve on our earlier system by
developing an excited state intramolecular proton transfer
(ESIPT) ‘AND’ logic gate for the simultaneous detection of
ONOO� ‘AND’ GSH. Owing to the attractive characteristics of
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ESIPT fluorophores, which include: ratiometric sensing, large
stokes shift and environmental sensitivity. Essentially, if a
ratiometric system could be developed then this would be a
significant advance, potentially allowing for calibration free
monitoring.35–37

4-Amino-2-(benzo[d]thiazol-2-yl)phenol (ABAH) was regarded
as an ideal ESIPT fluorophore for the development of an ‘AND’
based fluorescence probe due to having a free phenol and amino
group, which can be independently derivatized (Fig. 1 and
Scheme S1, ESI†).36,38–41 We believed the functionalization of
the free phenolic unit of ABAH with a benzyl boronic ester
would block the ESIPT process and serve as the reactive unit for
ONOO�. Due to aromatic boronates having a greater reactivity
towards ONOO� over HClO/ClO� and H2O2.42 Previously, the
functionalization of the amino group of ABAH with the thiol-
reactive maleimide group resulted in the quenching of the
fluorescence intensity due to a PET process. However, in the
presence of biological thiols the fluorescence intensity was
rapidly restored.43 Therefore, we thought that the combination
of these two reactive units with ABAH would result in an effective
PET+ESIPT ‘AND’-logic probe for the detection of ONOO� ‘AND’
biological thiols (Fig. 1 and Scheme 1).

To test this hypothesis, we synthesized probe GSH-ABAH
over three steps (Scheme S2 – see ESI†). ABAH was first syn-
thesized in excellent yield (73%) by heating 2-aminothiophenol
and 5-aminosalicylic acid in polyphosphoric acid (PPA) at
180 1C. With ABAH in hand, maleic anhydride was then added
to a solution of ABAH in glacial acetic acid. This condensation
reaction was performed under reflux for 4 hours to afford the
desired intermediate 2 as a yellow solid. 2 was then alkylated
using (4-bromomethylphenyl)boronic acid pinacol ester and
K2CO3 in DMF to afford GSH-ABAH in 27% yield (Scheme S2,
ESI†). The chemical structure of GSH-ABAH was fully charac-
terized by 1H NMR, 13C NMR and high resolution mass spectro-
metry (HRMS).

We then evaluated the changes in the UV-Vis absorption
of GSH-ABAH in the presence of both GSH and ONOO�. The
maximum absorption of GSH-ABAH at 326 nm shifted to
370 nm with the addition of ONOO� while the absorption peak

does not change with addition of GSH, which is consistent with
the PET process (Fig. S1 and S2, ESI†). Fluorescence experiments
with ONOO� were then carried out. As shown in Fig. 2 and Fig. S3
(ESI†), GSH-ABAH was initially non-fluorescent, however upon
the addition of ONOO� (4 mM), a small fluorescence increase
was observed. However, a large increase in fluorescence intensity
(410-fold, see Fig. 2 and Fig. S4, ESI†) was then observed following
the subsequent addition of GSH (0–2 mM). This observation
demonstrated the requirement of both ONOO� ‘AND’ GSH to
obtain a significant turn ‘‘on’’ fluorescence response.

The addition of both analytes was then carried out in reverse
order. Similarly, the addition of GSH (5 mM) only resulted in a
small increase in fluorescence intensity (Fig. 3 and Fig. S5,
ESI†). However, as expected a large fluorescence increase was
observed after the subsequent addition of ONOO� (0–14 mM)
(Fig. 3 and Fig. S6, ESI†).

Fig. 1 (a) ABAH ESIPT fluorophore previously used in the literature (b) this
work – ESIPT-based probe GSH-ABAH for the detection of ONOO� and
biological thiols (c) structure of the GSH-PF3 probe previously used for the
simultaneous detection of ONOO� and GSH.

Scheme 1 Fluorescence turn ‘on’ mechanism of GSH-ABAH in the presence
of ONOO� and GSH.

Fig. 2 Fluorescence spectra of GSH-ABAH (2 mM) with addition of
ONOO� (4 mM) (inset) followed by the addition of GSH (0–2 mM), and
1 min wait in buffer solution [8% DMSO, 1 mM CTAB] (pH = 8.20 at 25 1C)
fluorescence intensities were measured with lex = 390 nm/lem = 451 nm
with slit widths ex slit: 4 nm and em slit: 4 nm.
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Next, we evaluated the selectivity of probe GSH-ABAH
towards a number of biologically relevant amino acids including
serine, lysine and methionine (Fig. S7, ESI†). The amino acids
without a thiol (S–H) group led to no change in fluorescence
intensity of GSH-ABAH. However, as predicted, thiol (S–H) con-
taining biological analytes (glutathione, cystine and homocystine)
induced an enhancement in fluorescence intensity. While
GSH-ABAH demonstrated an excellent selectivity for ONOO� over
reactive oxygen/nitrogen species including H2O2 (Fig. S8, ESI†).

We then carried out kinetic studies for GSH-ABAH with both
ONOO� and GSH (Fig. S9 and S10, ESI†). After initial addition
of GSH or ONOO�, followed by the subsequent addition of the
second analyte a significant increase in fluorescence within 30 s
was observed. HRMS experiments were performed, in order
to confirm the reaction mechanism. When 2 eq. of ONOO�

(in water) was added to a solution of GSH-ABAH (HRMS in
acetonitrile Fig. S11, ESI†) the mass spectra was consistent with
deprotection of the phenol (Fig. S12 (ESI†) and Scheme 1).
Subsequently, 1 eq. GSH (in water) was added a mass peak at
630.1354 was observed confirming the reaction of GSH with the
maleic anhydride group via electrophilic addition (Fig. S13 (ESI†)
and Scheme 1). These results clearly demonstrate the ability of
GSH-ABAH to perform ‘AND’ logic with ONOO ‘AND’ GSH.

Due to these results, GSH-ABAH was then evaluated for
cellular imaging of GSH and ONOO�. RAW264.7 cells were
pre-treated with N-ethylmaleimide (NEM, GSH scavenger)
before incubation with GSH-ABAH. Subsequently, GSH or SIN-1
(a peroxynitrite donor)15 were added to produce intracellular GSH
or ONOO�. As shown in Fig. 4 and Fig. S14 (ESI†), the addition
of GSH or ONOO� led to no fluorescence response in cells.
However, treatment with both GSH and SIN-1 resulted in a
significant increase in the fluorescence intensity enabling the
visualisation of both species in living cells.

In summary, we have developed an ESIPT-based ‘AND’ logic
fluorescence probe (GSH-ABAH) for the detection of ONOO� and
biological thiols. GSH-ABAH was shown to have high sensitivity
and selectivity towards ONOO� and biothiols. More importantly,

GSH-ABAH was able to visualise exogenous ONOO� and GSH in
RAW264.7 cells. This simple novel ‘AND’ logic-based system
provides a scaffold for the further development of a multi-
analyte probes. We are now turning our attention to the develop-
ment of longer wavelength ESIPT-based probes for multi-analyte
in vivo imaging.
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Fig. 3 Fluorescence spectra of GSH-ABAH (2 mM) with addition of GSH
(5 mM), 1 min wait (inset), then addition of ONOO� (0–14 mM) in buffer
solution [8% DMSO, 1 mM CTAB] (pH = 8.20 at 25 1C) fluorescence
intensities were measured with lex = 390 nm/lem = 451 nm with slit widths
ex slit: 4 nm and em slit: 4 nm.

Fig. 4 Fluorescence imaging (a) and quantification (b) of RAW264.7 cells
with GSH-ABAH (20 mM) in the presence of exogenously added GSH
(300 mM) and/or SIN-1 (500 mM) with 1% DMSO. Excitation channel
360–400 nm, emission channel filtered = 410–480 nm. Scale bar = 100 mm.
Error bars represent SD. Note: the cells were pre-incubated with N-ethyl-
maleimide (NEM, GSH scavenger).
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