Issue 45, 2016

Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications

Abstract

Heteroatom-doped carbon dots (CDs), due to their excellent photoluminescence (PL) properties, attracted widespread attention recently and demonstrated immense promise for diverse applications, particularly for biological applications. The objective of this feature article is to provide a comprehensive overview of the recent progress in the research and development of heteroatom-doped CDs and a detailed description of the influence of single or co-doping heteroatoms on their PL behavior. The most recent understanding and critical insights into the PL mechanism of heteroatom-doped CDs are also highlighted. Moreover, potential bio-related applications of heteroatom-doped CDs in biosensing, bioimaging, and theranostics are also reviewed. This state-of-the-art review will provide a platform for understanding the intricate details of heteroatom-doped CDs, a summary of the latest progress in the field, and related applications in biology and is expected to inspire further developments in this exciting class of materials.

Graphical abstract: Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications

Article information

Article type
Review Article
Submitted
21 kol 2016
Accepted
22 ruj 2016
First published
22 ruj 2016

J. Mater. Chem. B, 2016,4, 7204-7219

Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications

Q. Xu, T. Kuang, Y. Liu, L. Cai, X. Peng, T. Sreenivasan Sreeprasad, P. Zhao, Z. Yu and N. Li, J. Mater. Chem. B, 2016, 4, 7204 DOI: 10.1039/C6TB02131J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements