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Abstract 

Real-time Raman spectroscopy can be used to assist in assessing skin lesions suspicious for 

cancer. Most of the diagnostic algorithms are based on full band of the Raman spectra, either in 

the fingerprint region or the high wavenumber region. In this paper we explored wavenumber 

selection based analysis in Raman spectroscopy for skin cancer diagnosis. Wavenumber 

selection was implemented using windows of wavenumber and leave-one-out cross-validated 

stepwise regression or least and shrinkage selection operator (LASSO). The diagnostic 

algorithms were then generated from the selected windows of wavenumber using multivariate 

statistical analyses, including principal component and general discriminate analysis (PC-GDA) 

and partial least squares (PLS). In total a combined cohort of 645 confirmed lesions from 573 

patients encompassing skin cancers, precancers and benign skin lesions were included, which 

were divided into training cohort (n = 518) and testing cohort (n = 127) according to the 

measurement time. It was found that the area under the receiver operating characteristic curve 

(ROC) was improved from 0.861 – 0.891 to 0.891 – 0.911 and the diagnostic specificity for fixed 

sensitivity 0.99-0.90 was improved from 0.17 – 0.65 to 0.20 – 0.75 with wavenumber selection 

based analysis.  

 

 

 

 

 

Page 2 of 29Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



3 

 

1. Introduction 
 

Raman spectroscopy is a noninvasive optical technique that can measure the vibrational modes 

of biomolecules, and has been investigated as a diagnostic tool for cancers of the skin1-7, lung8-10, 

colon11-13, stomach14, 15, cervix16-20, oral cavity21, 22, and breast23-29. We recently reported three 

algorithms for various levels of skin cancer diagnosis based on a cohort of 518 cases of skin 

cancers and benign skin lesions 1. The areas of the receiver operating characteristic curve (ROC 

AUC) served as measures of diagnostic performance and were found to be in the range of 82-

90%, corresponding to sensitivities of 90-99% and specificities of 15-68% depending on the 

diagnostic algorithm. These results were equivalent to or better than other photonics-based 

diagnostic technologies 1. A follow-up study involving 127 additional independent skin lesions 

validated our previous findings and confirmed that Raman spectroscopy was a reliable technique 

for in vivo skin cancer diagnosis 2. Our previous diagnostic algorithms were based on 

multivariate statistical analysis of the full-band of Raman spectra (including all the data points at 

each recorded wavenumber of the Raman spectra, i.e. 619 spectral measurements between 500 –

1800 cm-1 for our system). In this paper we explore the feasibility of spectral analysis using 

selected wavenumbers versus full spectral data for improving Raman spectroscopy for skin 

cancer diagnosis. 

 

Wavelength selection (hereafter interchangeably called wavenumber selection in Raman 

spectroscopy, is more commonly called variable selection or feature selection in Chemometrics) 

has been used for improving model predictions in agriculture and food science 30-33. For example, 

Hoskuldsson et al presented a few strategies for variable and subset selection in partial least 
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squares (PLS) regression, including situations of high and low correlation between wavelength 

and response variables 30. Norgaard et al proposed forward, backward and bi-direction interval 

PLS models for regression 31. Anderssen et al proposed a cross-model validation procedure to 

reduce over optimism in variable selection 32. Andersen et al summarized and compared the 

performance of a number of variable selection techniques in regression including interval PLS, 

genetic algorithms (GA), stepwise PLS, and LASSO (least and shrinkage selection operator) 33. 

Bursac et al used a purposeful selection of variables in logistic regression, where the variables 

were chosen from the most significant covariates first 34. All these algorithms have been used 

successfully in regression-related problems.  

 

Some algorithms for wavelength selection have also been proposed for classification tasks35-38. 

Most of these algorithms were nonlinear feature selection methods based on single wavelengths 

and found some success in classifying Raman spectra 35-38. Because the Raman signal at one 

wavenumber (inverse of wavelength) is highly correlated to the signal at the neighboring 

wavenumber, it is thought to be “wasteful and overly complex” to work on single wavenumbers 

independently 33. Therefore, it is recommended to use windows of wavenumbers rather than a 

single wavenumber 33. A number of studies selected wavenumbers according to fixed window 

sizes. For example, Duraipandian et al reported that for the in vivo diagnosis of cervical 

precancers using Raman spectroscopy GA-based wavenumber selection resulted in an 

improvement of the area under the ROC curve (ROC AUC) from 81% to 85% 20. Li et al 

reported nasopharyngeal cancer detection using Raman spectroscopy and GA-based 

wavenumber selection and found that the ROC AUC was improved from 92% to 96% 39. 

McGregor et al studied real-time endoscopic Raman spectroscopy for in vivo early lung cancer 
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detection and found the ROC AUC could be improved from 83% to 85-88% with wavenumber 

selection 40. Nevertheless, the use of equal sized windows may not be optimal as the correlated 

wavenumbers may be arbitrarily or unintentionally split into different windows. In this paper, we 

propose a simple algorithm to implement windows of variable size, and explore wavenumber 

selection based analysis in Raman spectroscopy for skin cancer diagnosis.  

 

2. Patients and methods 
 

2.1. Patients and skin lesions 

The patient and lesion information in this study has been reported in previous publications where 

the spectra were analyzed on a full band basis 1, 2. In vivo Raman spectra of skin cancers and 

benign skin lesions were acquired using the real-time Raman spectrometer with 1-second 

integration time 3. The raw Raman spectra from the spectrometer were then wavelength- and 

intensity-calibrated 3. Fluorescence background was removed using the fifth-order Vancouver 

Raman Algorithm 41. The background-corrected Raman spectra were normalized to their 

respective area under the curve between 500 and 1800 cm-1 before statistical analysis. The 

detailed distribution of lesions among clinical diagnostic subtypes is listed in Table 1. There are 

two cohorts of patients: the first cohort consists of 518 sets of Raman spectra for benign and 

malignant skin lesions from 453 patients for model training, which were acquired between 

January 2003 and May 2011 (hereafter referred to as “cohort one” or “training cohort”); the 

second cohort contains 127 sets of Raman spectra for separate benign and malignant skin lesions 

from 120 patients for model testing, which were measured in the period between June 2011 and 

May 2014 (hereafter referred to as “cohort two” or “testing cohort”). When the two cohorts of 
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patients are combined according to pathology, it is referred to as “combined cohort”. For the 

purpose of this study, each individual skin lesion of interest (represented by a single spectrum) 

was considered as an experimental unit for analysis. 

 

2.2 Varying size of windows 

 

A simple method was proposed to implement variably-sized windows. The size of windows is 

determined by the correlation coefficient between wavenumbers, given by, 
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Where, ri,j is the correlation coefficient between wavenumber i and j, Ri,k and Rj,k is the Raman 

intensity at wavenumber i and j for lesion k, iR  and jR  are the mean Raman intensity at 

wavenumber i and j. N is the total number of lesions. A wavenumber and its neighboring wavenumber 

that have correlation coefficients greater than predetermined threshold can be classified into a single 

window. When the threshold is 1, the window size is reduced to 1 and the model is reduced to the original 

single wavenumber situation as previously reported.  

 

2.3 Wavenumber selection 
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There are a number of wavenumber selection algorithms including stepwise regression, least 

absolute shrinkage selection operator (LASSO) and genetic algorithms (GA) 33, 42-45. GA is a 

method based on evolutional theory and mimicks natural selection processes. The process is 

completely random, and thus the final selected wavelengths are different for each simulation. It 

has found some success in wavelength selection, but it bears higher risk for over fitting 33, 42. If 

the final objective is classification, wavelength selection based on GA may not be appropriate. In 

this paper, we will focus on the most classical stepwise regression and LASSO algorithm for 

wavenumber selection based analysis 46. The wavenumber selection algorithm is a leave-one-out 

cross-selection (LOO-CS) procedure: (1) one spectrum is left out, and the remaining spectra are 

used for wavenumber selection; (2) a subset of the wavebands is identified that gives the best 

classification or the smallest residual sum of squares; (3) the leave-one-out procedure is repeated 

until all the spectra are tested; (4) the selected wavenumber is then accumulated for the above 

leave-one-out procedure. The wavenumber that are selected more frequently during the above 

leave-one-out procedure are used for final discrimination analysis.  

 

2.4 Classification 

Multi-variant statistical analysis methods including PC-GDA and PLS were applied to the 

selected wavelengths for lesion classification 47. For a general PC-GDA analysis, the spectra are 

divided into training spectra and testing spectra. The discrimination model is generated from the 

training spectra, and is validated from the testing spectra independently. For a leave-one-out 

cross-validated (LOO-CV) PC-GDA analysis, one spectrum is left out for testing, and the 

remaining spectra are used for discrimination model training. The training spectra are scaled and 

normalized by removing the mean and dividing by the standard deviation before applying the 
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PC-GDA analysis. The PC factors and the PC loadings of the training spectra are then calculated. 

The PC factors derived from the training spectra are used to develop a general discrimination 

model for classification where the classification of each lesion is known a priori. The testing 

spectra are processed the same way as the training spectra for classification: the testing spectra 

are scaled and normalized using the mean and standard deviation obtained from the training 

spectra; the PC factors of the testing spectra are calculated based on the PC loadings of the 

training spectra; and finally, the posterior probabilities of the testing spectra for skin cancer are 

calculated based on the general discrimination model derived from the training spectra. The 

above PC-GDA procedure is repeated until all the spectra are tested once. Lesions are then 

classified based on the posterior probabilities. The procedures for PLS analysis are similar to the 

above PC-GDA analysis. 

 

2.5 ROC curves 

ROC curves were calculated from the posterior probabilities derived from the above analysis and 

represents the diagnostic performance of the model. The area under the ROC curve was a 

measure of the diagnosis performance. The significance of these AUCs and comparisons 

between different AUCs were also calculated according to Hanley and McNeil 48, 49. The p-value 

between two ROC curves is calculated from z-score by 48, 49 

 

 z = |A1-A2| / SQRT(SE1
2 + SE2

2 - 2*γ*SE1*SE2).  

 

where A1 and A2 are the areas under the two ROC curves, SE1 and SE2 are the standard errors of 

the two ROC curves, and γ is the correlation between the two ROC curves, and SQRT is square 
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root function (Graphpad, La Jolla, California, USA) . For two unpaired datasets, γ = 0. [In 

Microsoft Excel, a two-tail p-value is calculated as p = 2*(1-NORMSDIST(z)), where 

NORMSDIST is an excel built-in function]. All the ROC curves were calculated based on 

nonparametric techniques and were conducted separately for the PC-GDA and PLS analyses. For 

the purposes of comparing the different statistical methods as well as the performance of Raman 

spectroscopy versus other non-invasive diagnostic techniques, the specificities were calculated at 

fixed sensitivity levels at 90%, 95% and 99%. All the multivariate classification analyses in this 

study were implemented using MATLAB (version 2013b, Math-Works). 

 

2.6 Cross validation 

Two cross-validation tasks were implemented: (a) “cohort one” was used for wavenumber 

selection and algorithm generation in multivariate statistical analysis, while “cohort two” was 

used to testing the wavenumber selection algorithm and the discrimination models; (b) the 

“combined cohort” of all cases was used for wavenumber selection based on LOO-CS. The 

selected wavenumbers were then used for training and testing for classification based on LOO-

CV. The former cross-validation task is a direct test of whether the wavenumber selection and 

discrimination algorithm derived from “cohort one” could be reliably applied to the independent 

“cohort two”. The latter cross-validation task is to test whether an increasing sample size 

(combined cohort) could improve wavenumber selection and diagnostic performance.  

3. Results 
 

3.1 Raman spectra  
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The averaged Raman spectra of skin cancers and precancers (including melanoma, basal cell 

carcinoma, squamous cell carcinoma and actinic keratosis) and benign skin lesions (including 

atypical nevus, blue nevus, compound nevus, intradermal nevus, junctional nevus and seborrheic 

keratosis) of the combined cohort (n = 645) are shown in Figure 1. All the Raman spectra are 

normalized to their respective areas under the curves between 500 cm-1 and 1800 cm-1 before 

being averaged according to diagnosis. Similar to all our previous studies, the major Raman 

bands for skin cancers and benign skin lesions are located around 855, 936, 1002, 1078, 1271, 

1302, 1445 1655, and 1745 cm-1. From the difference spectrum in figure 1a between skin 

cancers and benign skin lesions, it can be seen that on average there are differences between skin 

cancers and benign skin lesions at all the major Raman bands. Skin cancers show higher Raman 

intensity at 1002, 1078, 1302, 1445 and 1655 cm-1 bands and lower intensity at 855, 936, 1271 

and 1745 cm-1 bands based on the area-normalized Raman spectra. Major differences also occur 

at trough regions such as 1330-1420 cm-1. These differences provide diagnostic information 

between skin cancers and benign skin lesions.  

 

In order to determine the contribution of each waveband to the diagnosis, PLS analysis was 

performed on the training cohort (n = 518) and the testing cohort (n = 127) for sequential, 

nonoverlapping bands of 100 cm-1 width between 500 - 1800 cm-1, and the results are shown in 

figure 1b. The results for the training cohort were leave-one-out cross-validated. The results for 

the testing cohort were based on the model generated in the independent training cohort. It was 

found that the above Raman bands provided different diagnostic performance with the ROC 

AUC ranging between 0.71 - 0.82 and 0.63 - 0.78 for the training cohort and the testing cohort 

respectively. Selected Raman bands around 1200 - 1300, 1300 - 1400 cm-1 provided better 
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diagnosis performance than other Raman bands. However, no single Raman band provided the 

diagnostic performance as high as the full Raman band (500 – 1800 cm-1) where the ROC AUCs 

were 0.896 and 0.889 for the training cohort and testing cohort respectively.  

 

3.2 Wavenumber selection by LASSO and classification by PC-GDA: cohort one for 

training and cohort two for testing  

The correlation between wavenumber (Raman shift) of the training cohort of patients (n = 518) 

was calculated. The diagnostic performance depends slightly on the correlation coefficients, with 

the optimal correlation coefficient threshold to be 0.80-0.95 (figure S1†). When the correlation 

coefficient threshold was set at 0.85, the Raman spectra of the training cohort were divided into 

104 Raman bands of varying widths. The sizes of the windows ranged from 3 pixels to 27 pixels 

(5 – 45 cm-1). After the Raman spectra were divided into 104 Raman bands, the training cohort 

was used for wavenumber selection. Forty-seven Raman bands were selected by LASSO with 

leave-one-out cross-validation, and are shown in figure 1a (circles on the difference spectrum 

and the shaded grey bands). PC-GDA was then used for classification of the training cohort 

based on leave-one-out cross-validation with the selected Raman bands. Once the classification 

model was generated, it was applied to the testing cohort (n = 127) with the selected Raman 

bands from the training cohort. Figure 2a and 2b showed the posterior probability for each 

lesion to be classified as a skin cancer or precancers for the training cohort and the testing cohort 

with the selected Raman bands, respectively. Figure 2c showed the ROC curves (solid line) with 

95% confidence intervals (dashed lines) obtained from the distribution of posterior probabilities 

in figure 2a and 2b. The ROC AUC for the training cohort with selected Raman bands was 

found to be 0.905 (0.879 – 0.931). The ROC AUC for the testing cohort with selected Raman 
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bands based on the discrimination model generated from the training cohort was found to be 

0.891 (0.835 – 0.948). The performance of the testing cohort was not statistically different from 

the training cohort (p = 0.6574).  

 

Figures 2d-2f are the respective posterior probability and ROC curves for the full Raman spectra 

between 500-1800 cm-1, which were reported in the previous studies 1, 2, and are presented here 

for comparison purpose. Figure 2d showed the posterior probability for each lesion to be 

classified by PC-GDA as a skin cancer or precancer for the training cohort based on LOOCV. 

Figure 2e showed the posterior probability for each lesion to be classified as a skin cancer or 

precancer for the testing cohort based on the discrimination model generated from the training 

cohort. Figure 2f showed the ROC curves (solid line) with 95% CIs (dashed lines) obtained from 

the distribution of posterior probabilities in figure 2d-2e. The ROC AUC for the training cohort 

was 0.879 (0.829-0.929) and the ROC AUC for the testing cohort was 0.861 (0.796-0.927). The 

difference in the ROC curves between the training cohort and the testing cohort were statistically 

insignificant (p = 0.6298).  

 

The ROC AUC for the training cohort was improved from 0.879 (0.829-0.929) to 0.905 (0.879 – 

0.931) with wavenumber selection. The improvement was found to be statistically significant (p 

< 0.0001). The ROC AUC for the testing cohort was improved from 0.861 (0.796-0.927) to 

0.891 (0.835 – 0.948) with wavenumber selection. The improvement was also found to be 

statistically significant (p = 0.0057). The diagnosis parameters including ROC AUCs and 

sensitivities and specificities were summarized in table 2 and table 3.  
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3.3 Wavenumber selection by LASSO and classification by PC-GDA: combined cohort 

The correlation between wavenumber (Raman shift) of the combined cohort of patients (n = 645) 

was calculated. The diagnostic performance depends slightly on the correlation coefficients, with 

the optimal correlation coefficient threshold to be 0.80-0.95. When the correlation coefficient 

threshold was set at 0.85, the Raman spectra of the combined cohort (n = 645) were also divided 

into 104 Raman bands of different sizes, similar to the results of the training cohort only. After 

the Raman spectra were divided into 104 Raman bands, the combined cohort was used for 

wavelength selection. Forty Raman bands were selected by LASSO with leave-one-out cross-

validation. PC-GDA was then used for classification based on leave-one-out cross-validation 

with the selected Raman bands. 

 

Figure 3 showed the wavelength selection and diagnostic results for the combined cohort (n = 

645). Figure 3a and 3b showed the posterior probability for each lesion to be classified as a skin 

cancer or precancer for the combined cohort without and with wavelength selection. Figure 3c 

showed the ROC curves (solid line) with 95% CIs (dashed lines) obtained from the distribution 

of posterior probabilities in figure 3a and 3b. The ROC AUC for the combined cohort with 

selected wavenumber was 0.906 (0.883-0.929), better than that with full wavenumber band 

where the ROC AUC was 0.891 (0.867-0.916). The improvement was statistically significant (p 

< 0.0001). The diagnosis parameters including ROC AUCs and sensitivities and specificities 

were also summarized in table 2 and table 3. 

 

3.4 Wavenumber selection by stepwise regression and classification by PC-GDA 
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Stepwise regression was also applied for wavenumber selection for the above two analyses. 

When cohort one (n = 518) was used for wavenumber selection and training, and cohort two (n = 

127) was used for testing, the area under the ROC curve was found to be 0.904 (0.878-0.930) for 

the training cohort, and 0.911 (0.863-0.959) for the testing cohort. When the combined cohort (n 

= 645) was analyzed, the ROC AUC was 0.899 (0.876 – 0.922) with wavenumber selection by 

stepwise regression and classification by PC-GDA. The results are better than those of full 

wavelength analysis where the ROC AUC was 0.891 (0.867-0.916). The improvement was 

statistically significant (p = 0.0287). The diagnosis parameters including ROC AUCs and 

sensitivities and specificities for stepwise regression and classification based on PC-GDA were 

also summarized in table 2 and table 3. 

 

3.5 Wavenumber selection with stepwise regression and LASSO, and classification with 

PLS 

The above analyses after wavenumber selection by either stepwise regression or LASSO were 

repeated with classification by PLS. The results were also summarized in table 2 and 3. The 

results with PLS analyses are similar to those of PC-GDA analyses.  

 

3.6 Wavenumber selection based analysis improves diagnostic specificity 

Figure 4a-4c showed the diagnostic specificities of the above analyses at sensitivity levels of 

0.99, 0.95 and 0.90 based on PC-GDA analysis, respectively. It could be seen that at 0.99 (0.96 – 

1.00) sensitivity level, the specificity was improved from 0.17 (0.13 – 0.21) to 0.27 (0.22 – 0.33) 

and 0.33 (0.28 – 0.39) for the training cohort, from 0.24 (0.13 – 0.38) to 0.20 (0.10 – 0.34) and 

0.34 (0.21 – 0.49) for the testing cohort, and from 0.24 (0.20 – 0.29) to 0.26 (0.21 – 0.31) and 
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0.35 (0.26 – 0.40) for the combined cohort for LASSO-based and stepwise-based wavenumber 

analysis, respectively. At 0.95 (0.91 – 0.97) sensitivity level, the specificity was improved from 

0.41 (0.35 – 0.48) to 0.55 (0.49 – 0.61) and 0.56 (0.50 – 0.61) for the training cohort, from 0.48 

(0.34 – 0.63) to 0.48 (0.34 – 0.63) and 0.54 (0.39 – 0.68) for the testing cohort, and from 0.54 

(0.48 – 0.59) to 0.55 (0.50 – 0.61) and 0.54 (0.48 – 0.59) for the combined cohort for LASSO-

based and stepwise-based wavenumber analysis, respectively. At 0.90 (0.85 – 0.93) sensitivity 

level, the specificity was improved from 0.64 (0.58 – 0.70) to 0.72 (0.67 – 0.77) and 0.75 (0.70 – 

0.80) for the training cohort, from 0.54 (0.39 – 0.68) to 0.74 (0.60 – 0.85) and 0.64 (0.49 – 0.77) 

for the testing cohort, and from 0.65 (0.60 – 0.70) to 0.71 (0.65 – 0.75) and 0.71 (0.66 – 0.76) for 

the combined cohort for LASSO-based and stepwise-based wavenumber analysis, respectively. 

Overall, the specificity was improved from 0.17 – 0.65 to 0.20 – 0.75 with wavenumber selection 

based analysis. Diagnosis based on PLS generated similar results as the above PC-GDA analysis 

(table 3).  

 

4. Discussion 
 

Raman spectroscopy has been used for cancer diagnosis including skin in a number of studies. 

Most of the prior diagnoses were based on the full wavelength range of Raman spectra either in 

the fingerprint region or the high wavenumber region1-7. In an earlier publication we explored 

real-time Raman spectroscopy for in vivo skin cancer diagnosis using the most conservative 

multivariate statistical methods with the full band of spectra in the fingerprint region 1. It 

established that the diagnostic performance of real-time Raman spectroscopy is equivalent to or 

better than other diagnostic aids. A following independent study validated all the previous 
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findings 2. However, the diagnostic specificity is still limited at high sensitivity levels. From the 

clinical diagnostic point of view, it is very important to improve specificity at high sensitivity 

levels to reduce unnecessary biopsies.  

 

In this study, we explored “more aggressive” methods for diagnostic purpose by selecting 

relevant wavenumbers. Wavelength selection based on varying window sizes have been reported 

in regression analysis, which depends on the correction of spectrum and the response variables, 

e.g. concentrations of chemicals. We proposed a method to implement variably-sized windows 

as features to prevent over-fitting for discrimination analysis, which depends on the correlation 

between wavenumbers. To our knowledge, this is the first report of wavelength selection based 

on varying window sizes for discrimination analysis. We proved that this method is effective for 

improving skin cancer diagnosis using Raman spectroscopy. It can also be readily used for other 

spectroscopic techniques or diagnosis of other types of cancers.    

 

In order to validate wavenumber selection in Raman spectroscopy for skin cancer diagnosis, two 

types of validation were analyzed. The first analysis was based on independent training and 

testing cohorts. The second analysis was for the combined cohort based on leave-one-out cross-

validation. Two independent algorithms were applied for wavenumber selection including 

stepwise regression and LASSO, and two independent algorithms were applied for 

discrimination including PC-GDA and PLS. It was found that with wavenumber selection using 

either stepwise regression or LASSO could improve the diagnostic performance including area 

under the ROC curve and specificities at preselected sensitivity levels for all the analyses (figure 

2 – 4 and table 2 – 3). For cancer diagnosis purpose, high sensitivity is required as missing any 
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cancer cases is fatal to the patients. However, the specificity is relative low at high sensitivity 

levels with our previous algorithms1,2, which causes unnecessary false positive biopsies. 

Therefore, one of our goals was to improve the specificity at high sensitivity levels. Our results 

demonstrated that the improvement was significant and clinically relevant with wavenumber 

selection based analysis. For example, the area under the ROC curve was improved from 0.879 

to 0.904-0.905 for training, 0.861 to 0.891-0.911 for testing, and 0.891 to 0.899-0.906 for the 

combined cohort; the specificity at sensitivity level of 90% was improved from 64% to 72-75% 

for training, from 54% to 64-74% for testing, and from 65% to 71% for the combined cohort 

based on PC-GDA analysis (table 3), which represents an improvement of over 10%. Because 

there were fewer cases in the testing cohort (cohort 2), the confident interval for the testing 

cohort was slightly larger than the training cohort (cohort 1) (figure 2c and 2f, table 2 – 3). For 

the combined cohort, the confident interval was much smaller than the training cohort and the 

testing cohort (figure 3, table 2 – 3).  

 

In order to assess the contribution of spectral wavebands to the final discrimination, we carried 

PLS analysis on the training cohort and the testing cohort using 100 cm-1 wide wavebands from 

500 to 1800 cm-1 (figure 1b). It can be seen that the results of testing cohort are sometimes 

higher or lower than the training cohorts. One possible reason for these variations is that the 

distribution of cases is different for the training cohort and the testing cohort. Another possible 

reason is that the training cohort may be slightly over-fit or under-fit which leads the results of 

the testing cohort lower or higher accordingly. But the results of the training cohort and the 

testing cohort are relatively consistent, and the differences are statistically insignificant (p > 

0.05). Figure 1b shows that all the wavebands contributed to the final diagnosis to some extent, 
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particularly the waveband 1200-1400 cm-1 provides more diagnostic capability than other 

wavebands, but none of them alone could provide diagnostic performance as high as the full 

wavelength band (figure 1b and Table 2). Therefore, it was no surprise that the Raman bands 

that were selected using a more rational and rigorous approach was distributed throughout the 

Raman range as measured (figure 1a).  

 

Stepwise regression was a classical method, which was widely used in a number of applications. 

However, it had its own limitations 50. Because it was a localized method, the wavelengths 

selected by stepwise regression were not necessarily globally important. One could not overly 

emphasize the wavelengths found by stepwise regression or LASSO. But if the final purpose was 

discrimination, we found that both stepwise regression and LASSO could be used for 

wavenumber selection to improve diagnosis.  

 

Wavelength selection could be implemented based on single wavelengths or by wavelength 

windows. Although wavenumber selection based analyses were reported, there is no report about 

the effect of window sizes. We found that wavelength selection by single wavelength (equivalent 

to window size of 1 pixel or correlation coefficient of 1) tended to over-fit the training cohort, 

and thus the diagnostic performance for the testing cohort was always inferior (See 

supplementary figure S1†). Therefore, one should be very careful when using single wavelength 

selection based analysis. Using windows of wavelength, one could partially overcome the over-

fitting of the training cohort. In the lung cancer diagnosis by Raman spectroscopy in the high 

wavenumber region, we found that a fixed window size of 5 pixels provided the best diagnostic 

performance, which is equivalent to the spectrometer resolution 40. However, because fixed-size 
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windows might split the correlated wavelength into different windows, the improvement with 

fixed window sizes was not consistent (See supplementary figure S1†). Here we applied a simple 

method to implement varying window sizes based on formal correlation analysis. With the 

proposed varying size of windows as extracted using either of two wavenumber selection 

methods, the performance of the training cohort, the testing cohort and the combined cohort were 

all improved. The computational load of calculating correlation between wavenumber is minimal, 

and thus it is worth of the extra computation to implement variably-size windows than fixed-size 

windows in wavenumber-based analysis.  

 

5. Conclusions  
 

In summary, we explored wavenumber selection based analysis with variably-sized windows of 

wavenumbers in Raman spectroscopy for in vivo skin cancer diagnosis. We found that 

wavenumber selection based analysis could substantially improve the diagnostic specificity. 

With LASSO-based wavenumber selection and PC-GDA analysis, the area under the receiver 

operating characteristic curve (ROC) was improved from 0.861 – 0.891 to 0.891 – 0.911 and the 

diagnostic specificity was improved from 0.17 – 0.65 to 0.20 – 0.75 for fixed sensitivities 

between 0.99 – 0.90. Analysis based on stepwise regression and PLS showed similar 

improvement in diagnostic performance.  
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Table 1. Case summary of the lesions in the analysis. Cohort one was used for training and 

cohort two was used for testing reported by Lui et al 1 and Zhao et al 2. The combined cohort was 

a combination of cohort one and cohort two for leave-one-out cross-validation analysis. SCC: 

squamous cell carcinoma; BCC: basal cell carcinoma.  

 

Final Lesion Diagnosis Cohort 
One 

Cohort 
Two 

Combined 
Cohort 

Melanoma 

Lentigo maligna 20 0 20 

Lentigo maligna melanoma 8 2 10 

Superficial spreading melanoma 14 7 21 

Melanoma other type 2 0 2 

BCC 
BCC superficial 28 6 34 
BCC nodular 73 24 97 
BCC other type 8 5 13 

SCC 
SCC in situ 18 5 23 
SCC invasive 28 13 41 
SCC other type 1 0 1 

 Actinic keratosis 32 15 47 
 Atypical nevus 57 16 73 
 Blue nevus 13 0 13 
 Compound nevus 30 2 32 
 Intradermal nevus 38 7 45 
 Junctional nevus 34 1 35 
 Seborrheic keratosis 114 24 138 

 Total 518 127 645 

 

 

 

Page 21 of 29 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



22 

 

 

Table 2. Diagnostic performance of Raman spectroscopy according to model, including the area 

under the ROC curve and the 95% confidence intervals in parenthesis. The models consisted of 

wavelength selection (full band, LASSO or stepwise regression) and diagnosis (PC-GDA or 

PLS).  PC-GDA: principal component and general discrimination analysis, PLS: partial least 

squares, LASSO: least and shrinkage selection operator, LOOCV: leave-one-out cross-validation, 

CV: cross-validation.  

 

 

Model Training cohort 
(n = 518, LOOCV) 

Testing cohort 
(n = 127, CV) 

Combined cohort 
(n = 645, LOOCV) 

Full band,  
PC-GDA 0.879 (0.829 – 0.929) 0.861 (0.796 – 0.927) 0.891(0.867 – 0.916) 

LASSO, 
PC-GDA 0.905 (0.879 – 0.931) 0.891 (0.835 – 0.948) 0.906(0.883 – 0.929) 

Stepwise, 
PC-GDA 0.904 (0.878 – 0.930) 0.911 (0.863 – 0.959) 0.899 (0.876 – 0.922) 

Full band, 
PLS 0.896 (0.846 – 0.946) 0.889 (0.834 – 0.944) 0.894(0.870 – 0.918) 

LASSO, 
PLS 0.909 (0.884 – 0.935) 0.895 (0.839 – 0.950) 0.907(0.884 – 0.929) 

Stepwise, 
PLS 0.912 (0.887 – 0.936) 0.904 (0.853 – 0.954) 0.907 (0.885 – 0.929) 
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Table 3. Summary of Raman spectroscopy diagnostic specificity and the 95% confidence 

intervals in parenthesis derived from ROCs according to various levels of sensitivity. The models 

consisted of wavenumber selection (full band, LASSO or stepwise regression) and diagnosis 

(PC-GDA or PLS). PC-GDA: principal component and general discrimination analysis, PLS: 

partial least squares, LASSO: least and shrinkage selection operator, LOOCV: leave-one-out 

cross-validation, CV: cross-validation.  

 

Model Sensitivity 
Specificity 

Training set 
(n = 518, LOO-CV) 

Test set 
(n = 127 CV) 

Combined set 
(n = 645, LOO-CV) 

Full band,  
PC-GDA 

0.99 (0.96 – 1.00) 0.17 (0.13 – 0.21) 0.24 (0.13 – 0.38) 0.24 (0.20 – 0.29) 

0.95 (0.91 – 0.97) 0.41 (0.35 – 0.48) 0.48 (0.34 – 0.63) 0.54 (0.48 – 0.59) 

0.90 (0.85 – 0.93) 0.64 (0.58 – 0.70) 0.54 (0.39 – 0.68) 0.65 (0.60 – 0.70) 

LASSO 
PC-GDA 

0.99 (0.96 – 1.00) 0.27 (0.22 – 0.33) 0.20 (0.10 – 0.34) 0.26 (0.21 – 0.31) 

0.95 (0.91 – 0.97) 0.55 (0.49 – 0.61) 0.48 (0.34 – 0.63) 0.55 (0.50 – 0.61) 

0.90 (0.85 – 0.93) 0.72 (0.67 – 0.77) 0.74 (0.60 – 0.85) 0.71 (0.65 – 0.75) 

Stepwise, 
PC-GDA 

0.99 (0.96 – 1.00) 0.33 (0.28 – 0.39) 0.34 (0.21 – 0.49) 0.35 (0.26 – 0.40) 

0.95 (0.91 – 0.97) 0.56 (0.50 – 0.61) 0.54 (0.39 – 0.68) 0.54 (0.48 – 0.59) 

0.90 (0.85 – 0.93) 0.75 (0.70 – 0.80) 0.64 (0.49 – 0.77) 0.71 (0.66 – 0.76) 

Full band, 
PLS 

0.99 (0.96 – 1.00) 0.24 (0.19 – 0.29) 0.30 (0.18 – 0.45) 0.24 (0.19 – 0.28) 

0.95 (0.91 – 0.97) 0.52 (0.48 – 0.58) 0.46 (0.32 – 0.61) 0.54 (0.48 – 0.59) 

0.90 (0.85 – 0.93) 0.66 (0.61 – 0.71) 0.62 (0.47 – 0.75) 0.67 (0.62 – 0.72) 

LASSO, 
PLS 

0.99 (0.96 – 1.00) 0.25 (0.20 – 0.31) 0.30 (0.18 – 0.45) 0.27 (0.22 – 0.32) 

0.95 (0.91 – 0.97) 0.58 (0.52 – 0.64) 0.44 (0.30 – 0.59) 0.58 (0.53 – 0.63) 

0.90 (0.85 – 0.93) 0.76 (0.71 – 0.81) 0.72 (0.58 – 0.84) 0.73 (0.68 – 0.78) 

Stepwise, 
PLS 

0.99 (0.96 – 1.00) 0.38 (0.33 – 0.44) 0.30 (0.18 – 0.45) 0.33 (0.28 – 0.38) 

0.95 (0.91 – 0.97) 0.62 (0.56 – 0.67) 0.56 (0.41 – 0.70) 0.59 (0.54 – 0.64) 

0.90 (0.85 – 0.93) 0.74 (0.69 – 0.79) 0.72 (0.58 – 0.84) 0.73 (0.68 – 0.78) 
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Figure 1 (a) Averaged Raman spectra and standard deviation of skin cancers (including 

precancers) and benign skin lesions of the combined cohort (n = 309 cancer vs n = 336 benign). 

Each spectrum is normalized to their respective area under the curve between 500 and 1800 cm−1 

before averaging. The difference spectrum between skin cancers and benign skin lesions is also 

shown (shifted by 0.5 unit for illustration purpose). The circles on the difference spectrum and 

the shaded area represent the selected wavebands from LASSO based on LOO-CS of the training 

cohort only. (b) The diagnostic performance of each Raman band spanning 100 cm-1 wide from 

500 cm-1 to 1800 cm-1 for the training cohort and the testing cohort based on PLS. Note that all 

the Raman bands contribute to the discrimination between skin cancers and benign skin lesions, 

but no single Raman band provides diagnosis performance as high as the full Raman band.  
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Figure 2. Lesion classification by Raman spectroscopy for the training cohort (n = 518) and 

testing cohort (n = 127) by PC-GDA analysis with wavenumber selection (a-c) and without 

wavenumber selection (d-f). (a,b) and (d,e) are the posterior probabilities for discriminating skin 

cancers and precancers from benign skin disorders for the training cohort (a) and the testing 

cohort (b) based on wavelength selection by LASSO, and for the training cohort (d) and the 

testing cohort (e) based on the full wavelength band. (c, f) are the corresponding ROC curves 

(solid lines) and 95%CIs (dashed lines) derived from the respective posterior probabilities in (a, 

b) and (d, e) respectively. Note that there is no statistical difference between the training cohort 

and the testing cohort for both the full wavelength band (p = 0.6249) and the selected Raman 

bands (p = 0.6574).  
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Figure 3. Lesion classification by Raman spectroscopy for the combined cohort (n = 645) by 

PC-GDA without wavenumber selection (a) and with wavenumber selection (b). Posterior 

probabilities for discriminating skin cancers and precancers from benign skin disorders for the 

full wavelength band (a) and for the wavelength selection by LASSO (b). (c) The corresponding 

ROC curves (solid lines) and 95%CIs (dashed lines) are derived from the respective posterior 

probabilities in (a, b). Note that the AUC is improved from 0.891 to 0.906 after wavenumber 

selection and the improvement is statistically significant p < 0.0001. 
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Figure 4. Diagnostic specificity based on PC-GDA at various sensitivity levels for the training 

cohort, the test cohort and the combined cohort with and without wavenumber selection based 

analysis. (a) sensitivity = 99%, (b) sensitivity = 95%, (c) sensitivity = 90%.  
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