Journal of Materials Chemistry A

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsA

Cite this: DOI: 10.1039/c1ee00000x

www.rsc.org/JMC-A

COMMUNICATION

Preparation of hollow Co_9S_8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells

Chang Chen,^{#a} Meidan Ye, ^{#b} Nan Zhang,^a Xiaoru Wen,^a Dajiang Zheng,^a Changjian Lin^{*ab}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/c1ee00000x

Hollow Co₉S₈ nanoneedle arrays directly grown on fluorine-doped tin oxide (FTO) transparent conducting substrates were successfully prepared by a simple sacrificial template method. Performance of the CdS/CdSe quantum dot-sensitized solar cells (QDSCs) employing such Co₉S₈ counter electrodes was remarkably improved as compared to that using the conventional Pt counter electrodes, primarily due to their higher electrocatalytic activity in the reduction of polysulfide electrolyte.

- One-dimensional (1D) nanomaterials (e.g., nanorods, nanowires) with large surface area, direct electrical pathway and possible quantum effect show excellent application prospect in nanoscale electronic, photonic, electrochemical devices,¹⁻⁷ for example, 1D nanoarray materials (e.g., TiO₂ nanorod/nanotube
- ¹⁵ arrays and ZnO nanorod arrays) have been widely applied to the photoelectrochemical devices.⁵⁻⁸ On the other hand, metal sulphides (e.g., cobalt sulphides, nickel sulphides, and lead sulphide) are the promising electrocatalyst materials and have been extensively utilized in many fields in recent years.^{7, 9-14}
- 20 Especially, since dye/quantum dot-sensitized solar cells (DSCs/QDSCs) have attracted tremendous attention of the researchers, metal sulphides as the counter electrode materials in these DSC/QDSC devices have come into large investigation.7, 10-^{12, 15-21} It is well-known that Pt is expensive^{7, 22} and a poor
- 25 electrocatalyst for the reduction of polysulfide electrolyte used in QDSCs,²² which strongly hold back its application in DSCs/QDSCs. In this regard, many studies have been conducted on the exploitation of alternative electrocatalyst materials as the effective counter electrodes in DSCs/QDSCs, and metal sulphides
- ³⁰ have been verified the promising counter electrode materials for DSCs and QDSCs.^{6,7,9,10,16,23-28} Generally, many metal sulphide counter electrodes were prepared by doctor blading on conducting substrates which resulted in poor binding force between the materials and the substrates, and thus weakened the
- 35 stability of the counter electrodes. Significantly, 1D metal sulphide nanoarray materials directly grown on conductive substrates would avoid this problem and then perform as one of the best candidates of counter electrodes to boost performance of the resulting DSCs and QDSCs. However, to date, ordered metal
- 40 sulphide nanostructures haven't been studied sufficiently and it is still a great challenge to grow 1D metal sulphide nanoarrays on conductive substrates.

Herein, we report a new method to directly grow Co₉S₈ hollow nanoneedle array films on fluorine-doped tin oxide (FTO) $_{45}$ transparent conductive substrates. Such Co₉S₈ hollow nanoneedle array films exhibited large surface area and strong binding force

- to the FTO substrates. Moreover, they showed higher electrocatalytic ability in the reduction of polysulfide electrolyte, and consequently improved performance of the QDSCs organized
- 50 by using these Co₉S₈ hollow nanoneedle array based counter electrodes as compared to that using the traditional Pt counter electrode. Furthermore, annealing these Co₉S₈ hollow nanoneedle

array films could further enhance the power conversion efficiency of QDSCs.

55 The strategy of preparing Co₉S₈ hollow nanoneedle arrays is shown in Fig. 1. Briefly, two steps were included in this templateassisted method: (1) grow one-dimensional template material $(Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10} \cdot 1.74H_2O)$ on FTO substrate by chemical bath deposition in the mixed solution of urea and cobalt 60 chloride; (2) Convert the template materials into the target materials (Co₉S₈) by hydrothermal treatment in sodium sulphide solution. Fig. 2E shows the prepared Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10}•1.74H₂O template. Nanoneedles were grown uniformly on the FTO substrate with a diameter of around 65 200 nm and length of several micrometers (Fig. 2E), which were solid and single crystal proven by SAED pattern (inset in Fig. 2A) and HRTEM (Fig. 2B). After hydrothermally treated in 10 mM Na₂S aqueous solution under 180 °C for 10 h, the solid nanoneedle templates were converted into hollow nanoneedles 70 which was confirmed by TEM image (Fig. 2C). The corresponding cross-sectional view indicated that such nanoneedle was hexagon (inset in Fig. 2C) and its phase was Co₉S₈ which was confirmed by XRD pattern (Fig. 3A, JCPDS. NO. 03-065-3322, Pa-3, a = b = c = 0.5535 nm). The surface of 75 nanoneedles became rough but the needle-like structure changed little after the hydrothermal conversion (Fig. 2F).

Fig. 2 TEM and SEM images of $Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10}\bullet1.74H_2O$ templates (A, B and E), inset of A is the corresponding SAED pattern. TEM images of Co_9S_8 prepared by hydrothermally treating $5 Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10}\bullet1.74H_2O$ templates for 10 h (C) and annealed it at 400 °C for 30 min in N₂ gas (D). SEM images of Co_9S_8 prepared by hydrothermally treating $Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10}\bullet1.74H_2O$ templates for 10 h (F).

- XRD pattern (Fig. 3A) showed that with the increasing of 10 hydrothermal reaction time, the intensity of diffraction peaks of the Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10}•1.74H₂O templates decreased and almost disappeared when the reaction time was prolong to 7 h, suggesting that the Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10}•1.74H₂O templates were already completely consumed after 7 h. The conversion solid $Co(CO_3)_{0.35}Cl_{0.20}(OH)_{1.10} \cdot 1.74H_2O$ nanoneedle 15 from templates to hollow Co₉S₈ nanoneedles by hydrothermal treatment can be explained by the Kirkendall effect.²⁹ Briefly, at the early stage under high temperature, Co₉S₈ was firstly formed on the surface of the nanoneedle templates; later on the cobalt 20 ions at the center were diffused to the surface of the nanoneedle templates and then reacted with sulfur ions to form cobalt sulphide. As reaction time increased, the cobalt ions were exhausted at the center of the nanoneedle templates and other species, such as CO_3^{2-} and CI^- , were dissolved in the 25 hydrothermal solution, resulting in the hollow nanoneedles. Furthermore, annealing effect on the crystalline degree of the Co₉S₈ films was conducted as well. After annealing (Fig. 2D) treatment in N2 atmosphere at 400°C for 30 min, the crystalline degree of Co₉S₈ nanoneedles was improved dramatically 30 compared with the pristine sample (Fig. 2C), which was also confirmed by some new and strengthened diffraction peaks of Co₉S₈ phase in XRD patterns (Fig. 3B). However, the binding force between Co₉S₈ films and FTO substrates became weak and
- very easy to shed after hydrothermal conversion. And the TiCl₄ $_{35}$ pre-treatment of FTO substrates before growing templates (see experimental section) could enhance the binding force between the Co₉S₈ films and the FTO substrates.

Fig. 3 XRD patterns of (A) Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10}•1.74H₂O prepared by hydrothermally treating FTO substrates in Na₂S aqueous solution for different time. Diffraction peaks of Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10}•1.74H₂O were labelled by Red start (*); (B) the pristine Co₉S₈ (Co₉S₈) and Co₉S₈ annealed in N₂ at 400 °C for 30 min (Co₉S₈-an). Diffraction peaks of Co₉S₈ were labelled by red '#'.

Electrochemical catalytic ability of the Co₉S₈ films on FTO 45 substrates was studied by Tafel polarization curves and electrochemical impedance spectra (EIS). In Tafel polarization curves, the exchange current density (J_0) is directly related to the catalyst ability of the electrodes, which can be estimated from the 50 extrapolated intercepts of the anodic and cathodic branches of the corresponding Tafel polarization curves.³⁰ As showed in Fig. 4A, Tafel polarization curves of the un-annealed Co₉S₈ and annealed Co₉S₈ electrodes (Co₉S₈-an) were both higher than that of Pt electrode with around two order of magnitude, implying that the $_{55}$ J₀ values of the Co₉S₈ and Co₉S₈-an electrode were higher than that of Pt electrode with nearly an order of magnitude, and then the electrocatalytic ability in reduction of polysulfide electrolyte for Co_9S_8 and Co_9S_8 -an electrode was superior. It was found that the Tafel polarization curve of Co₉S₈-an electrode was slightly 60 higher than that of Co₉S₈ electrode, suggesting the better electrocatalytic ability of the Co₉S₈-an electrode, which was ascribed to the higher crystallinity and thus better electron transfer pathway in the annealed Co₉S₈ nanoneedle. The same conclusion was obtained from the EIS test (Fig. 4B). Large 65 semicircle of the curves accounts for large electron transfer resistance (R_{ct}) at the electrode/electrolyte interface while small semicircle relates to the small R_{ct} (fitting values of R_{ct} by ZSimpWin software with the equivalent circuit in Fig. 4B were shown in Table 1).³⁰ Co₉S₈-an got the smallest semicircle and 70 thus had the best electrocatalytic ability in the three electrodes.

Fig. 4 (A) Tafel polarization curves of different counter electrodes, which were tested by using symmetrical cells with an active area of 0.21 cm⁻². (B) Electrochemical impedance spectra (EIS) of the QDSCs based on the different counter electrodes. The det lines and called lines areas

5 three different counter electrodes. The dot lines and solid lines were measured curves and their corresponding fitted curves calculated by the ZSimpWin software according to the given circuit in the top inset, respectively, and the button inset shows the enlarged Nyquist plots marked with green cycle. (C) J-V curves of the QDSCs assembled by 10 different counter electrodes, and the cell active area is 0.21 cm⁻².

 Table 1. Photovoltaic parameters of the QDSCs based on different counter electrodes.

Counter electrode	V _{oc} (V)	$ \begin{array}{c} J_{sc} \\ (mA \ cm^{-2}) \end{array} $	FF (%)	Eff (%)	$\frac{R_{ct}}{(\Omega \text{ cm}^{-2})}$	6
Pt	0.47	14.23	32.00	2.12	2213	
Co ₉ S ₈	0.48	14.72	44.04	3.13	4.59	
Co ₉ S ₈ -an	0.48	16.80	46.18	3.72	2.29	7

Photocurrent density-voltage (J-V) curves of the QDSCs ¹⁵ based on Co_9S_8 , Co_9S_8 -an and Pt counter electrodes (CEs) were obtained under simulated sunlight. As showed in Fig. 4C and Table 1, the open-circuit voltage (V_{oc}) of the QDSCs was not affected by the CEs. The QDSCs with Co_9S_8 CEs showed a short circuit current density (J_{sc}) of 14.72 mA cm⁻², which was a little

²⁰ higher than that with Pt CEs (14.23 mA cm⁻²). But the fill factor

(FF) of QDSCs with Co₉S₈ CEs (44.04%) was much higher than that of Pt CEs (32.00%), and consequently the efficiency of QDSCs with Co₉S₈ CEs (3.13%) was much higher than that with Pt CEs (2.12%), which was ascribed to the higher electrocatalytic ²⁵ ability of Co₉S₈ in reduction of polysulfide electrolyte used in QDSCs (Fig. 4A and 4B). Furthermore, the QDSCs with Co₉S₈an CEs showed a higher J_{sc} (16.80 mA cm⁻²) than that with Co₉S₈ CEs and thus obtained a higher power conversion efficiency (3.72%), which was in line with the electrocatalytic ability ³⁰ discussed in Tafel polarization and EIS tests above.

Conclusion

In conclusion, a method of preparing Co_9S_8 hollow nanoneedle array films directly grown on FTO substrates was put ³⁵ forward. The TiCl₄ pre-treatment of FTO substrates enhanced the binding force between the Co_9S_8 films and FTO substrates. We got an improved efficiency of 3.72% from QDSCs with this Co_9S_8 CEs and boosted the efficiency of traditional QDSCs with Pt CEs by 75%. What is more important, our method can be ⁴⁰ applied to prepare other metal sulphides or even metal selenides grown on FTO substrates.

Acknowledgements

2.

3

4.

5.

6.

7.

75 8.

80

The authors gratefully acknowledge the financial supports from the National Basic Research Program of China (2012CB932900), and the 45 National Natural Science Foundation of China (21321062).

Notes and references

^aState Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

⁵⁰ ^bResearch Institute for Soft Matter and Biomimetics, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen, 361005, China

[#]*These authors contribute to this work equally.*

ss *To whom correspondence should be addressed. Email: cjlin@xmu.edu.cn

† Electronic Supplementary Information (ESI) available: Experimental details. See DOI: 10.1039/c000000x/

- 60 1. Z. Wang, L. Pan, H. Hu and S. Zhao, *CrystEngComm*, 2010, 12, 1899-1904.
 - P. F. Yin, L. L. Sun, Y. L. Gao and S. Y. Wang, *Bull. Mater. Sci.*, 2008, **31**, 593-596.
 - S. Q. Wang, G. H. Li, Y. P. He, H. Y. Yin, Z. D. Xu and B. S. Zou, *Mater. Lett.*, 2006, **60**, 815-819.
 - M. Q. Lv, D. J. Zheng, M. D. Ye, J. Xiao, W. X. Guo, Y. K. Lai, L. Sun, C. J. Lin and J. Zuo, *Energy Environ. Sci.*, 2013, 6, 1615-1622.
 - M. Lv, D. Zheng, M. Ye, L. Sun, J. Xiao, W. Guo and C. Lin, Nanoscale, 2012, 4, 5872-5879.
 - M. D. Ye, X. K. Xin, C. J. Lin and Z. Q. Lin, *Nano Lett.*, 2011, **11**, 3214-3220.
 - C. W. Kung, H. W. Chen, C. Y. Lin, K. C. Huang, R. Vittal and K. C. Ho, *ACS Nano*, 2012, **6**, 7016-7025.
 - Y. Zhang, L. Ge, M. Li, M. Yan, S. Ge, J. Yu, X. Song and B. Cao, *Chem. Commun. (Cambridge, U. K.)*, 2014, **50**, 1417-1419.
 - P. Sudhagar, S. Nagarajan, Y. G. Lee, D. Song, T. Son, W. Cho, M. Heo, K. Lee, J. Won and Y. S. Kang, ACS Appl. Mater. Interfaces 2011, 3, 1838-1843.

Daga		~ f	E
гауе	4	UI.	J

Journal of Materials Chemistry A Accepted Manuscript

10.	M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N.
	Pootrakulchote, S. M. Zakeeruddin and M. Gratzel, J. Am.
	Chem. Soc., 2009, 131, 15976-+.
11.	Z. Yang, CY. Chen and HT. Chang, Sol. Energy Mater. Sol.
5	<i>Cells</i> 2011, 95 , 2867-2873.
12.	J. B. Zhang, F. Y. Zhao, G. S. Tang and Y. Lin, Journal of
	Solid State Electrochemistry, 2013, 17, 2909-2915.
13.	M. Yuan, K. W. Kemp, S. M. Thon, J. Y. Kim, K. W. Chou,
	A. Amassian and E. H. Sargent, Adv. Mater. , 2014, 26, 3513-
10	3519.
14.	K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K.
	Kemp, L. Levina, X. Wang, S. Hoogland and R. Debnath, Acs

- Nano, 2011, 6, 89-99. 15. W. X. Guo, C. Xu, X. Wang, S. H. Wang, C. F. Pan, C. J. Lin
- and Z. L. Wang, J. Am. Chem. Soc., 2012, 134, 4437-4441. 15 Y. Shengyuan, A. S. Nair, Z. Peining and S. Ramakrishna, 16.
- Mater Lett, 2012, 76, 43-46. 17. X. Yu, J. Zhu, F. Liu, J. Wei, L. Hu and S. Dai, Sci. China: Chem., 2013, 56, 977-981
- 20 18. W. Zhao, X. Zhu, H. Bi, H. Cui, S. Sun and F. Huang, J. Power Sources 2013, 242, 28-32.
- 19. Z. Zhou, M. Ge, H. Zhang, P. Xu, L. Liu and J. Wei, Nankai University, Peop. Rep. China . 2013, p. 8pp.
- 20. E. H. Sargent, Nano Lett., 2014.
- 25 21. G. H. Kim, B. Walker, H. B. Kim, J. Y. Kim, E. H. Sargent and J. Park, Adv. Mater. , 2014, 26, 3321-3327.
- 22. Z. S. Yang, C. Y. Chen, C. W. Liu, C. L. Li and H. T. Chang, Adv Energy Mater, 2011, 1, 259-264.
- B. Wang, J. Park, D. W. Su, C. Y. Wang, H. Ahn and G. X. 23. Wang, J Mater Chem, 2012, 22, 15750-15756. 30
- 24. S. S. Kalanur, S. Y. Chae and O. S. Joo, Electrochim. Acta 2013, 103, 91-95.
- A. Banerjee, K. K. Upadhyay, S. Bhatnagar, M. Tathavadekar, 25. U. Bansode, S. Agarkar and S. B. Ogale, RSC Adv., 2014, 4, 8289-8294 35
- 26. M. Liu, G. Li and X. Chen, ACS Appl. Mater. Interfaces 2014, Ahead of Print.
- 27. J. Ma, J. Chen, C. Li and L. Wu, Tongji University, Peop. Rep. China . 2014, p. 11pp.
- 40 28. L. Wang, Y. Shi, Y. Wang, H. Zhang, H. Zhou, Y. Wei, S. Tao and T. Ma, Chem. Commun. (Cambridge, U. K.), 2014, 50, 1701-1703
- 29. W. Shi, J. Zhu, X. Rui, X. Cao, C. W. Chen, H. Zhang, H. H. Hng and Q. Yan, ACS Appl. Mater. Interfaces 2012, 4, 2999-3006. 45
- 30. M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo and C. Lin, Adv. Energy Mater., 2014, 201301564.

Cite this: DOI: 10.1039/c1ee00000x

www.rsc.org/JMC-A

15

COMMUNICATION

The table of contents entry

Preparation of hollow Co₉S₈ nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells

Chang Chen,^a Meidan Ye,^b Nan Zhang,^a Xiaoru Wen,^a Dajiang Zheng,^a Changjian Lin^{*ab}

^aState Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

^bResearch Institute for Soft Matter and Biomimetics, School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen, 361005, China

*To whom correspondence should be addressed. Email: <u>cjlin@xmu.edu.cn</u>

Keywords: hollow Co_9S_8 nanoneedle arrays, template-assisted synthesis, counter electrodes, quantum dot-sensitized solar cells.

Hollow Co₉S₈ nanoneedle arrays were directly grown on transparent conducting substrates via a simple template-assisted hydrothermal process using Co(CO₃)_{0.35}Cl_{0.20}(OH)_{1.10}•1.74H₂O nanoneedle array ²⁰ films as templates. Upon calcination post-treatment, the resulting CdS/CdSe QDSCs based on such cobalt sulfide counter electrodes exhibited a high power conversion efficiency of 3.72%.