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Self-assembly of three-dimensional open structures using patchy col-
loidal particles

D. Zeb Rocklin,a∗ and Xiaoming Mao,a

Open structures can display a number of unusual properties, including a negative Poisson’s ratio, negative thermal expansion,
and holographic elasticity, and have many interesting applications in engineering. However, it is a grand challenge to self-
assemble open structures at the colloidal scale, where short-range interactions and low coordination number can leave them
mechanically unstable. In this paper we discuss the self-assembly of three-dimensional open structures using triblock Janus
particles, which have two large attractive patches that can form multiple bonds, separated by a band with purely hard-sphere
repulsion. Such surface patterning leads to open structures that are stabilized by orientational entropy (in an order-by-disorder
effect) and selected over close-packed structures by vibrational entropy. For different patch sizes the particles can form into either
tetrahedral or octahedral structural motifs which then compose open lattices, including the pyrochlore, the hexagonal tetrastack
and the perovskite lattices. Using an analytic theory, we examine the phase diagrams of these possible open and close-packed
structures for triblock Janus particles and characterize the mechanical properties of these structures. Our theory leads to rational
designs of particles for the self-assembly of three-dimensional colloidal structures that are possible using current experimental
techniques.

1 Introduction

Open structures are those in which the microscopic con-
stituents occupy only a low fraction of the total volume, leav-
ing open space between them and allowing the structures to
undergo a richer variety of fluctuations and deformations than
close-packed structures. They possess striking properties such
as negative Poisson’s ratio1–3, negative thermal expansion4,5,
holographic elasticity2,6 and beyond7–10, leading to many in-
teresting applications in engineering.

A structure can be open at different scales, depending on the
size of the constituents and the open space. Zeolite, a natural
aluminosilicate mineral, is an example of an open lattice struc-
ture with pores (open spaces) at the scale of Angstroms7,11.
Nature also offers us structures that are open at larger length
scales, such as foams and bones, but these structures are gen-
erally disordered.

Obtaining open structures with pores at the colloidal scale
is not only desirable for such applications as photonic crys-
tals12–15, but also presents a fundamentally interesting ques-
tion in physics. The challenge comes from the proximity of
these open structures to mechanical instability. The existence
of zero-energy deformations of the open structure raises the
possibility of its collapse into a close-packed structure. The
stability of a colloidal structure can be explained by the count-
ing argument due to Maxwell16: that for a structure to be me-
chanically stable, its total number of constraints must equal
or exceed its total number of internal degrees of freedom.
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This argument, applied to simple colloidal particles with only
isotropic central force interactions between nearest neighbor
particles, leads to the stability criterion z > zc = 2d where z is
the coordination number and d is the spatial dimension, and
the special state with z = zc is called the isostatic point. Ac-
cording to this criterion, most open lattices are not stable. For
example, the diamond lattice has z = 4 < 2d and is below iso-
staticity and the pyrochlore lattice has z = 6 = 2d and is at the
verge of instability. Another interesting example is a lattice
of corner-sharing octahedral cells, which has z = 8 > 2d but
still has some floppy modes due to redundancy of constraints.
We refer to this perovskite-like lattice as perovskite, although
it has open space between octahedral cells where additional
atoms would sit in mineral perovskite. Fig. 1 shows examples
of these lattices and their floppy modes.

Thus, to obtain open lattice structures at the colloidal
scale additional interactions beyond a simple nearest neigh-
bor isotropic potential have to be added to provide mechani-
cal stability, preventing the structure from collapsing. Various
designs have been proposed17–23, which require complicated
inter-particle potentials that are difficult to realize in experi-
ment.

Remarkably, an open two-dimensional kagome lattice has
been self-assembled using triblock Janus colloidal particles
very recently24. Janus colloidal particles have chemical coat-
ings that cover a fraction of their surfaces (“patches”), mak-
ing their interaction potential anisotropic. The triblock Janus
particles used in the experiment in Ref.24 are characterized
by patches at their north and south poles of short range hy-
drophobic attraction of depth ∼ 10kBT and a middle band of
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strongly screened electrostatic repulsion25,26. The short range
nature of the inter-particle potential in this triblock Janus par-
ticle system does not directly provide more energetic con-
straints for stability. Instead, it has been found that entropy
plays the important role of stabilizing open lattices formed by
these triblock Janus particles because, among all structures of
degenerate potential energy, the open lattice permits the most
rotational and vibrational fluctuations of the constituent parti-
cles27,28.

In this work, we explore the self-assembly of three-
dimensional lattices using the triblock Janus particle based on
this entropic stabilization/selection mechanism. We develop
the formalism first used in Refs.27,28 to incorporate three-
dimensional rotations of Janus particles which stabilize open
lattices in three dimensions. We show that depending on the
size of the attractive patches, these particles can either form
a perovskite lattice or a mixed phase of pyrochlore/hexagonal
tetrastack (HT) lattices (Fig. 1) and that under pressure they
can collapse into a close-packed face centered cubic (FCC)
lattice. A kagome bilayer, which includes octahedral cells, has
already been observed24— many such layers would produce
a perovskite lattice. The self-assembly of the pyrochlore/HT
lattices has been examined in Ref.22 using simulations, with
which we compare our results to in Sec. 3.3. In this work
we analytically describe the role of entropy in selecting the
phases and characterize the phase diagram of this system using
a harmonic approximation of the entropic effects and lattice
dynamics calculations. Our theory opens the door to greatly
simplified designs of building blocks for the self-assembly of
three-dimensional open lattices.

2 Model

2.1 Statistics of patchy particles

Generally, we may describe the equilibrium statistical me-
chanics of a set of anisotropic particles via the partition func-
tion27,28

Z =
∫

exp
[
− 1

kBT
H ({r j, n̂ j})

]
∏

j
dr jdn̂ j, (1)

where the Hamiltonian H depends on the positions r j and n̂ j
orientations of the particles and kB is the Boltzmann constant
and T the temperature.

The particles we consider, triblock Janus particles, have
two attractive patches separated by a repulsive band, as shown
in Fig. 2. These particles have a hardcore repulsion when their
separation is close to their diameter, a. Additionally, there is a
short-range attraction between particles whose patches are ori-
ented towards one another, permitting the formation of bonds.

We now consider a lattice of such particles, which may in
general include both attractive bonds, where particles con-

tact each other in their attractive patches, and repulsive bonds,
where the particles are held close to each other by the lattice
structure, so that thermal fluctuations and hardcore repulsions
keep them apart and impose a free energy cost. The strength
of the attractive bonds can be around∼ 10kBT 25,26, so thermal
fluctuations will not give configurations with broken bonds ap-
preciable Boltzmann weight. We may then restrict our ensem-
ble to a particular bond structure and integrate out the particle
orientations n̂ j from the partition function of Eq. (1), and the
result will be a degeneracy factor Ω j({ri}) proportionate to
the number of orientations (all of which share the same poten-
tial energy) which keep all the attractive bonds within attrac-
tive patches. The orientational entropy of a particle depends
on the relative positions of each particle with which it has an
attractive bond, and is related to the degeneracy factor via27,28

s j = kB lnΩ j ({ri}) . (2)

This term accounts entirely for the effect of particle orien-
tations given in Eq. (1), leading to an effective Hamiltonian
which depends only on particle positions.

For the case of a triblock Janus particle j with unit vectors
êi j to each of its attractively-bonded neighbors i. These bonds
lie within an attractive patch provided that∣∣êi j · n̂ j

∣∣≥ cosφ0, (3)

where φ0 is the patch size, the maximum angle between a point
in the patch and the particle’s “north pole”, the center of an at-
tractive patch. Positive (negative) values of êi j · n̂ j correspond
to bonds that lie in the particle’s northern (southern) hemi-
sphere. Thus, the degeneracy factor is simply

Ω j({ri}) =
∫

dn̂ j ∏
i

Θ
[∣∣êi j · n̂ j

∣∣− cosφ0
]
, (4)

where Θ(·) is the Heaviside step function.
This entropy is maximized when all bonds lie as close as

possible to either the north or south pole of a particle as is
permitted by the hardcore repulsion between particles. Three-
dimensional open lattices can then be formed from rigid octa-
hedral or tetrahedral cells (depending on whether the patches
are large enough to support four bonds or only three) that meet
at their corners (centers of triblock Janus particles) and di-
rectly oppose one another there. This permits the formation of
three types of three-dimensional lattices: the pyrochlore, the
hexagonal tetrastack (HT) and the perovskite, cf. Fig. 1.

In the pyrochlore and HT lattices, a particle forms a rigid
tetrahedral structure with its three northern neighbors, and an-
other with its three southern neighbors. In the perovskite, any
particle lies at a vertex joining two octahedra and has four
bonds in each of its attractive patches. Such structures are
possible when the patch size is large enough to support these
three or four neighboring particles, so that above φ

min(4)
0 = 45◦
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Fig. 1 Open lattices (a-c), where structures of the lattices are shown on the left and the triblock Janus particles forming the basic motifs are
shown on the right) and the floppy modes (d, e) such structures have if composed of isotropic particles rather than triblock Janus particles. (a)
Pyrochlore lattice, with tetrahedral cells and six bonds for each triblock Janus particle. (b) Perovskite-like lattice, with octahedral cells and
eight bonds per particle. (c) Hexagonal tetrastack (HT) lattice. Otherwise identical to the perovskite structure, blue and yellow layers are
rotated α = 60◦ relative to one another, so that the bonds of the triblock Janus particles that lie at the juncture between layers have a
permanent twist. (d) Floppy modes in a layer of the pyrochlore lattice, with green lines indicating bonds between spherical particles. A single
floppy mode is present in the layer: each of the yellow tetrahedral cells has been rotated about the axis perpendicular to the plane of the layer
without changing the relative positions of the blue particles or particles in other other layers. To leading order, such modes don’t alter any
bond lengths and so cost zero energy in systems with only isotropic central forces. (e) A floppy mode in the perovskite-like lattice, with every
particle in the layer affected. Zero energy modes of the perovskite-like lattice rotate all of the octahedral cells in a layer relative to their
neighbors, while leaving other layers unaltered. These floppy modes, as shown in (d,e), can lead to the collapse of open lattices if the
composing particles are isotropic with short-range interactions.

1–9 | 3

Page 3 of 9 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



four bonds per patch become possible (and energetically fa-
vored), leading to octahedral cells. Between this patch size
and φ

min(3)
0 = arccos(

√
2/3) ≈ 35.3◦ only three bonds are

possible, leading to tetrahedral cells.
Any distortions of these rigid polyhedra will carry finite en-

ergy costs but, as discussed in the introduction, floppy modes
exist in these lattices in which only the angles between neigh-
boring polyhedra change (Fig. 1). Floppy modes in these lat-
tices have been named Rigid Unit Modes (RUMs)5 in the re-
search of open structure crystals. Such RUMs are the domi-
nant thermal fluctuation present in a lattice of triblock Janus
particles, with the bond length fluctuations much smaller than
bond angle fluctuations27.

Out[159]=

6     figures.nb

Fig. 2 Triblock Janus particles have two circular attractive patches
separated by a repulsive band. The orientation of a triblock Janus
particle i is given by its “north pole”, n̂i. The patch size, φ0, is the
angle between the edge of a patch and its center. Two adjacent
particles are bonded attractively if the contact point lies within
contact patches on both particles. The north pole n̂i can assume any
orientation that keeps all of the northern bonds in the attractive
patch, but has an average or preferred orientation equal to the
average direction of all of the northern bonds. The movement of a
particle relative to particle i can be decomposed into movements
along the radial direction, r̂, the bending direction b̂ which is
orthogonal to r̂ but points toward the preferred orientation of particle
i, and the twisting direction t̂ which is orthogonal to both r̂ and the
preferred n̂i.

2.2 Analytic model of bending rigidity

In order to analyze the dynamics of the three-dimensional lat-
tice, we approximate the effects of a particle’s orientational
entropy through an analytic effective energy incorporating
only the rigid body rotations of a particle’s northern bonds

about its southern ones:

Ur =
1
2

κtα
2 +

1
2

κbβ
2, (5)

where κt is the twisting modulus and κb the bending modu-
lus. The bending angle β , which can be decomposed into two
components, βx and βy, is the angle by which the northern cell
differs from perfectly opposing the southern cell, as depicted
in Fig. 3. The twisting angle α is the angle by which the north-
ern cell is rotated about its own axis, with α = 0 corresponding
to northern bonds that are (for β = 0) collinear with southern
ones. For a given set of particle positions, a particle’s bending
and twisting angles are determined by decomposing the rela-
tive movements of each of its neighbors along their bending
direction b̂ and twisting direction t̂ respectively, as depicted in
Fig. 2.

Out[292]=

20     figures.nb

(a)

Untitled-1    3

(b)

Fig. 3 The tetrahedral (a) or octahedral (b) cells that a triblock
Janus particle composes with its neighbors, which it contacts at
points marked by red dots. Lattice fluctuations may twist the
northern cell through an angle α about its axis and bend it through
an angle β relative to the southern cell. As the bending angle
increases, fewer orientations of the central triblock Janus particle are
possible, lowering the weight of such configurations in the lattice
and creating an effective modulus against bending.

A free triblock Janus particle—that is, one whose bonds are
free to undergo any rigid rotation—has simple Gaussian fluc-
tuations in the harmonic approximation of Eq. (5), leading to
a mean square bending angle

〈β 2〉= 2
kBT
κb

. (6)

Separately, the mean square bending angle of a free triblock
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Janus particle may be determined numerically from the degen-
eracy factor of Eq. (4), expressed now in terms of the bending
and twisting angles rather than the more general neighbor po-
sitions:

〈β 2〉=
∫

d2β dα Ω j(β ,α)β 2∫
d2β dα Ω j(β ,α)

. (7)

Equating the two expressions allows us to select a bending
modulus that reproduces the magnitude of bending angle fluc-
tuations. Treating the true degeneracy factor, plotted in Fig. 4,
as a Gaussian amounts to neglecting higher-order terms in the
bending and twisting angles. For patch sizes very close to the
minimum sizes necessary to support all of the bonds, the bend-
ing modulus diverges as

(
φ0−φ min

0
)−2, as depicted in Fig. 5.

Within our analytic model, it is this bending modulus that im-
poses an effective cost on otherwise zero-energy modes and
ensures that bending and twisting angles remain small.

For a free triblock Janus particle, the twisting modulus κt
proves to be zero. This is because for a given Janus parti-
cle orientation, there is a one-to-one correspondence between
those bending angles allowed by a finite twisting angle α and
those allowed at α = 0, so that twisting the cells does not af-
fect the overall degeneracy. If, instead, the bending angle were
held fixed at β = 0, twisting to α = 30◦ would decrease Ω by
about 1/3 of its maximum value27, corresponding to a twist-
ing modulus below 1kBT .

In a lattice, bending or twisting the bonds of a given tri-
block Janus particle can only be accomplished by bending and
twisting other bonds in the lattice. Thus, certain values of α

are not accessible in a lattice because they necessarily involve
bending angles that break bonds (e.g., for a patch size that re-
quires β ≤ 1◦, α = 20◦ is not accessible). Thus, in a lattice
the twisting angles will be restricted to small deviations from
their optimum value (which is α = 0◦ except for in particles
at junctions between layers in the HT lattice, for which it is
α = 60◦). As we will see below, the bending modulus gives
all the zero modes of the lattice an effective energy, and the
inclusion of a finite twisting modulus (which would be orders
of magnitude smaller) in our model would have only a very
small effect. The dependence of Ω j on the bending angle in
each of these scenarios is shown in Fig. 4.

2.3 Lattice energetics

Having accounted for the effects of orientational entropy,
we may now construct an effective Hamiltonian for a lattice
purely in terms of the positions of the triblock Janus particles.
In the lattice, we may take these positions as

r j = R j +u j, (8)

(a) (b)
2     Untitled-1

(c)

2     Untitled-1

(d)

Fig. 4 The weight Ω, or total fraction of triblock Janus particle
orientations associated with bending angle components (βx,βy) of a
triblock Janus particle with patch size φ0 = 36.1◦ barely large
enough to support its three bonds per patch. In (a), twisting angle α

is fixed at 0◦, as in the pyrochlore lattice, and there is hexagonal
symmetry associated with the six bond directions. In (b), α = 60◦,
as in the HT structure, leading to triangular symmetry as some bonds
oppose one another. In (c), all values of α are averaged over, as for
isolated tetrahedral cells not held in place by the lattice. In (d), the
harmonic approximation to the weight Ω used in the analytic model
shares the width of the true Ω, but not its rotational asymmetry.

where R j is the lattice site and the displacement u j is small
compared to the particle spacing. This then allows us to for-
mulate the central force interaction between bonded particles
as a harmonic spring, so that

Vcf(ui−u j) =
ka(r)

2
[(Ri−R j) · (ui−u j)]

2

(Ri−R j)
2 , (9)

where the effective spring constant is ka(r) for attractive (re-
pulsive) bonds. Thus, the effective Hamiltonian, incorporating
both the central-force and rotational-entropy terms, is

Heff = ∑
〈i, j〉

Vcf(ui−u j)+∑
i

κb

2
β

2
i , (10)

where the first sum is over bonded neighbors, with ki, j differ-
ing depending on whether the bond is attractive or repulsive.

General lattice displacements will distort as well as rotate
the tetrahedral cells depicted in Fig. 2. However, the angle by
which the bending components of the displacements— com-
bined vectorially— rotates the tetrahedron from its u= 0 posi-
tion remains well-defined. The bending angle βi is the change
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four bonds

per patch
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Fig. 5 The effective bending modulus κb, in units of temperature, as
a function of φ0, the angular half-width of the attractive patch.
Between φ0 ≈ 35.3◦ and φ0 = 45◦ the patch is able to support a
maximum of three bonds, as in the pyrochlore lattice. Above 45◦,
the patch supports four bonds, as in the perovskite lattice.

in the angle between the surface normal vectors of the two
tetrahedra (or octahedra) in which particle i lies. Note that
this depends on the positions of all of particle i’s neighbors,
leading to an effective next-nearest neighbor coupling.

From this harmonic Hamiltonian, the dynamical matrix as-
sociated with a crystal lattice may be generated using standard
techniques29. The phonon dispersions for the dynamical ma-
trices associated with the pyrochlore and perovskite lattices
are shown in Fig. 6.

In a pyrochlore lattice with L3 tetrahedral cells the high-
symmetry planes have the structure of the kagome lattice. As
discussed in Refs.27,28,31, each such kagome lattice has O(L)
zero modes consisting of twists applied to lines of triangu-
lar cells. The analogous mode of the pyrochlore lattice, a
line of twisting tetrahedral cells, is depicted in Figure 1. The
pyrochlore lattice has O(L2) such zero-energy (for κb = 0)
modes. It is these modes which render the κb = 0 pyrochlore
lattice unstable, and which are most strongly modified by the
inclusion of a finite bending modulus. The HT lattice simi-
larly has O(L2) zero modes, with 1/3 of the kagome modes
replaced by displacements of columns of tetrahedra in the di-
rection perpendicular to the blue and yellow planes in Fig-
ure 1.

In the perovskite lattice, which is above the isostatic point,
the only zero modes are a number O(L) in which an entire
plane of octahedra rotate in concert, as depicted in Figure 1.
Similar to the pyrochlore lattice, these are the modes most
strongly modified by the bending modulus. The presence of
the zero modes and the effect of the bending modulus on them
are evident in the dispersions in Figure 6.

For the self-assembly examined in Ref.27, the bending mod-
ulus is large in the sense that κb ≈ 33kBT permits only small
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(b)

Fig. 6 Phonon dispersions for the pyrochlore (a) and perovskite (b)
lattices as the reciprocal vector q passes between points in the
Brillouin zone30. The black solid curves show the case of
kaa2 = 2300kBT and κb = 0, which includes a plane of zero modes
in the pyrochlore lattice and a line of zero modes in the perovskite
lattice, agreeing with the counting of floppy modes discussed above.
These modes are lifted by the inclusion of κb = 33kBT (red dotted
curves). The values of ka and κb are taken from Ref.27.

bending angles, but small compared to the central forces mod-
ulus, kaa2 ≈ 2300kBT . As such, the effect of orientational
entropy amounts only to a linear perturbation in the frequen-
cies of most of the modes of the lattice. However, for the zero
modes, there is a O(

√
κb) increase in frequency, as seen in

Figure 6. The effective bending modulus has a similar effect
on the zero modes of the perovskite lattice.

In the absence of this orientational entropy effect, the zero
modes of the lattices would permit large distortions of the lat-
tices, destroying mechanical stability. The patchiness of the
particles prevents arbitrary rotations of the tetrahedral units,
and the orientational entropy of the triblock Janus particles fa-
vors the β = 0 configuration over distortions to the lattices.

At finite temperature and fixed volume, the phase of the
particles is determined by their free energy. As discussed in
Ref.28, the free energy per particle (not including a constant
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bonding energy) may be expressed in terms of the momentum-
space dynamical matrix D(~q), which describes the energy of
small periodic deformations of the lattice, as

f (κb) =
kBT
2nc

v0

∫
1BZ

dd~q

(2π)d lndetD(~q,κb), (11)

where v0 is the volume of a unit cell, nc is the number of par-
ticles per unit cell, and the integral is over the first Brillouin
zone.

3 Results and Discussion

3.1 Dependence of free energy on patch size

We calculated the change of lattice free energy per particle as a
function of bending modulus which comes from orientational
entropy of the particles and is controlled by the patch size as
show in Fig. 5, and the results are shown in Fig. 7. This re-
flects the decreased entropy from limiting lattice distortions to
ones that keep all bonds within attractive patches. For the py-
rochlore lattice, this increase is O(

√
κb) for small κb, reflect-

ing the modifications to its O(L2) zero modes. The HT lattice,
with its similar structure, has nearly identical free energies,
suggesting that mixtures of pyrochlore and HT structures may
form, as noted earlier by22.

10-4 0.001 0.01 0.1 1

0.001

0.005
0.010

0.050
0.100

0.500
1.000

Κb�kaa2

Hf-
f

Κ b
=

0
L�k

B
T

Perovskite

Hexagonal

tetrastack

Pyrochlore

Fig. 7 The free energy per particle of a lattice with bending modulus
κb relative to a lattice with κb = 0. For the pyrochlore (black curve
with square points) and hexagonal tetrastack lattices (red curve with
open circular points), there are nearly identical ∼√κb contributions
from surfaces of modes that are zero-energy for κb = 0. For the
perovskite lattice (blue curve with triangular points), which has only
a line of such modes, the free energy increase is linear for small κb.

In contrast to the isostatic pyrochlore and HT lattices, the
perovskite lattice with only a number O(L) of such zero modes
has a slower increase O(κb) in the free energy as bending mod-
ulus increases.

3.2 Comparison to close-packed structure

Competing with the open structures above are the close-
packed face-centered cubic (FCC) lattice, as well as the hexag-
onal close-packed lattice, which has nearly identical free
energies32. In such a lattice, each triblock Janus particle
has twelve nearest neighbors, even though not all of them
lie within the attractive patches, as can be seen in Fig. 8.
Such a close-packed structure is favored by a finite pressure,
but is disfavored by entropic considerations. These repul-
sive particle-particle interactions derive from the shorter-range
hardcore repulsion rather than the 10 nm hydrophobic at-
traction24 and consequently have a greater spring constant
kr ≈ 20ka

27 and substantially inhibit the fluctuations in the
positions of the triblock Janus particles. This leads to rises
in free energy as shown in Fig. 9. Both the bending modu-
lus and the repulsive bonds tend to limit the position fluctua-
tions of the triblock Janus particles in the same way, so that
the bending modulus has a greater effect on the open struc-
tures than on the FCC lattice, leading to closer free energies
as κb increases. The free energy differences are greater for
the pyrochlore than the perovskite lattices, reflecting the fact
that triblock Janus particles with patch size appropriate to the
pyrochlore lattice have six repulsive bonds per particle in the
FCC lattice, while perovskite-size patches lead to four repul-
sive bonds in the FCC lattice.

Transforming to a finite-pressure system via a Legendre
transformation, one obtains the Gibbs free energy per parti-
cle

g = f + pv, (12)

where p is the pressure and v the volume per particle. From
this, one may determine the dominant phase at a given patch
size and pressure, as shown in Figure 10. At low pressures,
either the perovskite lattice or a mixture of pyrochlore and
HT (depending on whether the patch size is enough to allow
four bonds) is present. The perovskite lattice, despite having
a lower free energy difference (cf. Fig. 9) is present at higher
pressures than the pyrochlore owing to its denser structure.

Note that unlike the dimensionless moduli against bond
length fluctuations, ka2/2πkBT , which decrease with increas-
ing temperature, the dimensionless bending modulus has en-
tropic rather than energetic origins and so does not scale with
temperature. This leads to nontrivial temperature dependence
in the dynamical matrix and corrections to the phase diagram
in Fig. 10, but because the bending modulus is much weaker
than the central-force moduli at all relevant temperatures, this
effect on the free energy is very small.

3.3 Comparison of model to experiment and simulation

In developing our analytic model, we made a number of ap-
proximations. In treating the effect of patchiness as purely
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Fig. 8 Close-packed FCC lattices formed by triblock Janus
particles. (a) and (b) show the FCC lattice in which each triblock
Janus particle has 6 bonds in its attractive patches, corresponding to
the patch size that supports the pyrochlore/HT lattices at zero
pressure. (c) and (d) show the FCC lattice in which each triblock
Janus particle has 8 bonds in its attractive patches, corresponding to
the patch size that supports the perovskite lattices at zero pressure.
In (a) and (c), attractive bonds are denoted by green lines and
repulsive bonds by dashed black lines. The green dots in (c)
represent sites attractively bonded to the red site, and the black dots
to repulsively bonded sites.
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Fig. 9 (a) Free energy difference between the FCC and the
pyrochlore lattices as a function of κb/kaa2 for kr = 20 (top, blue
curve) and kr = 1 (bottom, black curve). (b) Free energy difference
between the FCC and the perovskite lattices as a function of κb/kaa2

for kr = 20 (top, blue curve) and kr = 1 (bottom, black curve).

entropic, we assume a system in which the range of interac-
tions is much shorter than the angular fluctuations. This is
justified in experimental systems24, in which the range of the
hydrophobic interaction is ∼ 100 times less than the particle
diameter, and particle orientations can change by more than
10◦. This justifies treating the angular interaction as sharply
excluding certain orientations while not affecting the orienta-
tions of others, leading to the orientational entropy of Eq. (2).
Similarly we may treat the hydrophobic central force inter-
actions between bonded particles as harmonic in Eq. (9) ow-
ing to the smallness of the fluctuations. These approximations
lead to a model which qualitatively describes the free energy
of such a system, but quantitative tests of a particular experi-
mental system would require incorporating more precise char-
acterization of the hydrophobic interactions into a numerical
calculation.

Simulations have examined both the kagome lattice in 2D33

and the pyrochlore/HT lattices in 3D22. These simulations,
which used a square-well attractive potential, found that the
open lattices became stable when the bond strength was sev-
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Fig. 10 Equilibrium phase diagram showing the transition between
open and close-packed lattices. Open lattices are more able to
fluctuate and are favored at high temperature, whereas high
pressures favor the close-packed face-centered cubic lattice.

eral times temperature—strong enough for the lattice to con-
dense from a fluid phase, but weak enough that bonds could
break to escape from kinetic traps. In accordance with our
own results, these simulations found that for a given patch
size, the pressure at which the system transitioned from the
close-packed to the open lattice was proportionate to the tem-
perature. Our theory reveals the entropic mechanism of the
stability of open lattices, and is able to capture the patch size
dependence of the phase boundary.

4 Conclusion

In this paper, we discuss the self-assembly of three- dimen-
sional open crystal lattices from patchy colloidal particles.
We have shown that entropy of the particles not only stabilize
these open lattices against mechanical instability, but also fa-
vor open structures over energetically equivalent close-packed
ones.

The entropic mechanisms discussed in this paper provide a
framework for designing simple building blocks for the self-
assembly of colloidal open lattices. We show that by har-
nessing entropic effects, open lattices can spontaneously form
without having to control surfacing pattern of colloidal parti-
cles beyond currently available experimental techniques: reg-
ular open lattices are favored by entropy.
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