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This study explores two cyclometallated Ir(n) complex families with
distinct therapeutic profiles. Benzothiophene derivatives (1, 2) exhibit
potent antiproliferative character in the dark, favoring chemother-
apy. while benzothiazole analogs (3 and 4) show high photocyto-
toxicity, ideal for photodynamic therapy. Photophysical studies and
subcellular localization analyses highlight ligand-driven selectivity
and the role of organelle targeting in therapeutic outcomes.

Chemotherapy and photodynamic therapy (PDT) are key cancer
treatments where metallodrugs have shown great potential. Since
cisplatin’s anticancer properties discovery in 1965, several Pt(u),
Ru(u), Au(1), As(1), and Fe(u) compounds have reached clinical
use.! Improving selectivity and potency remains central, often
through rational ligand design. Although PDT’s clinical adoption
was initially limited by technology, recent advances like TOOKAD®™
(Pd(u) porphyrin) and TLD1433 (Ru(n) complex)* have promoted the
interest in metal-based photosensitizers.>* Traditional tetrapyrrolic
photosensitizers face limitations in solubility, stability, and synthetic
accessibility, whereas d° metal complexes, particularly Ir(m) com-
pounds, offer tunable photophysical properties, efficient singlet
oxygen generation, and deep tissue penetration, making them
promising candidates for PDT applications.>® For example, Gasser
and Chao reported mitochondrial-targeting Ir(u) photosensitizers
that induce immunogenic cell death,” while Brabec® and Mao’
described complexes targeting mitochondrial DNA or damaging
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lysosomes, respectively. Additionally, Espino and Massager devel-
oped B-carboline-based Ir(m) photosensitizers with high selectivity
against prostate cancer cells."

Despite recent advances, achieving predictable therapeutic
selectivity remains challenging due to the complexity of the
tumor microenvironment, including oxidative stress, pH, and
cellular heterogeneity."" In fact we previously reported pyrazole-
based Ir(m) complexes showing cell-line-dependent activity as both
chemotherapeutic agents and photosensitizers, highlighting the
need for deeper mechanistic understanding.'” To further explore
how ligand design influences therapeutic outcomes, we investi-
gated [Ir(C"N),(N"N)]" complexes bearing either 2-pyridylben-
zothiophene (Py-Btp) or 2-phenylbenzothiazole (Ph-Btz) as C"N
ligands (Fig. 1), chosen for their oxygen-sensitive emission and
promising PDT potential.">'* In this study, we evaluate their
performance in combination with benzimidazole-based N"N
ligands for selective chemotherapy and PDT. Complexes 1-4 were
synthesized as shown in Fig. S1 and fully characterized by 'H and
BC NMR (including COSY, HSQC, and HMBC), HRMS, and
elemental analysis (Fig. S2-S27). Additional X-ray diffraction of
complex 3 supports the given octahedral connectivity, Fig. 2a, Fig.
S28 and Table S1.

Complexes 1-4 exhibited characteristic absorption features, with
intense LC (1 — m*) bands between 293-350 nm (¢ ~ 33000-
40000 M~ ecm ") and weaker MLCT bands in the 400-464 nm
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Fig. 1 Structures of complexes 1-4.
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Fig. 2 (a) Crystal structure of cationic complex 3 (H atoms omitted for clarity).
(b) Absorption and (c) emission spectra of 1—4 in DMSO (5 x 107> M). (d) Singlet
oxygen generation by 3 in CHsCN (5 x 10~> M) upon 450 nm excitation.

range (Fig. 2b)."”> The absorption tails beyond 500 nm suggest
contributions from triplet MLCT and/or LC states. UV-vis spectra
after 48 h in DMSO and PBS : DMSO (9: 1) confirmed good stability
(Fig. $30-S33). Upon irradiation, all complexes showed phosphor-
escence in fluid solution (DMSO and CH;CN) at 298 K (Fig. S34-
$43), with emission spectra presented in Fig. 2¢ and S44-S47 and
summarized in Table 1 and Table S2. Structured emission was
observed for benzothiophene-based complexes 1 and 2 (Zem, = 595-
598 nm, with tails >750 nm), consistent with a *LC (C*N, © — 7¥)
character.'® In contrast, benzothiazole analogues 3 and 4 emitted
near 570 nm with unstructured profiles, indicative of enhanced
MLCT (dn(Ir) — 7*(N~N)) / LLCT (r(C"N) — n*(N*N)) mixing."” In
aerated solution emission lifetimes were shorter in CH;CN than in
DMSO due to oxygen quenching (Fig. S34-S43). Accordingly,
quantum yields increased in deoxygenated DMSO, reaching
38% (1 and 2), and 83% (3 and 4).

Singlet oxygen generation was confirmed by emission at
1272 nm under 450 nm excitation in aerated CH;CN (Fig. 2d
and Fig. S48-S50), with no signal in neat solvent, excluding
artefacts. Using perinaphthenone as a reference, 'O, quantum
yields ranged from 44-55%, highlighting the strong photosen-
sitizing potential of all complexes for PDT.

The antiproliferative activity of Ir(m) complexes 1-4 was
analysed in A549 (lung) and HeLa (cervical) cancer cells, in
the dark and under irradiation, Table 2. Upon light exposure,
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all complexes exhibited enhanced antiproliferative effect, prob-
ably related to 0, generation. In A549 cells, light-activated ICs,
values were <0.34 uM. In the dark, Btp complexes 1 and 2 were
active (ICso ~ 1 pM), while Btz analogues 3 and 4 were far less
(ICso ~ 100 uM), making them more suitable for PDT. In HeLa
cells, all complexes showed low micromolar ICs, values regardless
of light, indicating selective PDT activity of 3 and 4 in A549 cells.
Control ligands (Py-BzIm, Tz-BzIm) were inactive, and cisplatin
showed antiproliferative activity consistent with published data.'®

Given their strong PDT performance in A549 cells (PI = 291
for 3, 1054 for 4) and the chemotherapeutic potential of 1 and 2,
further biological analyses were conducted on representative
complexes from each family. LogP measurements revealed
slightly higher lipophilicity for 1 and 2, which could influence
uptake. However, ICP-MS analysis showed similar cellular accu-
mulation of 1 and 3 (200.9 + 56 and 186.3 + 37 (ng mL™')/10°
cells), suggesting that differences in their antitumor activity are
not solely due to uptake (Fig. S51a).

Cell death mechanism was assessed by Annexin V and PI
staining and flow cytometry, and dose-dependent apoptosis
was confirmed under light exposure (Fig. 3a and b). Complex
3 triggered significant cell death even at low doses (~90% at
2 X ICsp; Fig. 3b-left). In contrast, complex 1 toxicity was
moderate at this range (~30% cell death at 2 x ICs,) and was
enhanced with increasing dose (~70% cell death at 4 x ICs).

Under dark conditions, only complex 1 was evaluated, as
complex 3 exhibited a high ICs, value (99 + 1.3 uM). Complex 1
showed a modest cytotoxic effect even at the highest concentration
tested (~30% cell death at 13.7 x ICs, Fig. 3b-right), suggesting a
distinct mechanism of action in the dark and upon irradiation
(Fig. S51b). Moreover, cell cycle analysis showed that complex 1
inhibited cell proliferation under both dark and irradiated condi-
tions, producing only minor alterations in the G0/G1 and G2/M
phases. These results suggest a cytostatic effect at low doses in
both cases (Fig. 3c and Fig. S51c and d). However, complex 3 (ICs)
induced GO/G1 arrest in the dark (Fig. S51c). Furthermore,
complex 1 and 3 induced dose-dependent intracellular ROS gen-
eration in the dark and under irradiation respectively (Fig. S51e)
consistent with previous reports on similar Ir(m) complexes.”®
These results suggest that both complexes induce light-triggered
apoptosis, particularly potent in the case of complex 3. In fact,
complex 1 at concentrations close to the IC5;, would exert a
cytostatic effect after irradiation, and this effect also predominates
in darkness. Subcellular localization is known to play a critical role
in the therapeutic efficacy and selectivity of metallodrugs. To better

Table 1 Photophysical data of 1-4 measured in DMSO and/or CHsCN solution at 298 K

Aem/TM (Aexe/nm)” Jem/NM (Zexc/nm)b %/us /us (rd/us) Pern” (Pem”) Dp (102)b
1 597, 649, 706 (480) 592, 642, 703 (475) 1.71 0.19 (4.52) 0.02 (0.38) 0.44
2 597, 649, 706 (475) 590, 642, 700 (450) 3.47 0.20 (4.92) 0.02 (0.38) 0.44
3 552, 587, 637 (470) 530, 572, 617 (425) 1.86 0.27 0.16 (0.83) 0.55
4 555, 590, 640 (470) 541, 567 (425) 0.89 0.23 0.15 (0.82) 0.50

Note: Emission (Zem), lifetimes of excited state (z), emission quantum yields (®) and 'O, generation quantum yield (*O,, @) of compounds 1-4 in
(2 % 10°° M) in DMSO or CH;CN solutions at 298 K.  Aerated DMSO solution. b Aerated CH;CN solution. ¢ N, saturated DMSO solution. ¢ N,

saturated CH;CN solution.
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Table 2 1Csq values (uM) of compounds 1-4, Py-BzIm, Tz-BzIlm and cisplatin incubated with A549 and Hela. Log P values of complexes 1-4

A549 IC54(DARK) (IC5(Irr.)) A549 PI HeLa IC54(DARK) (ICs(Irr.)) HeLa PI Log P
1° 0.99 + 0.24 (0.015 £ 0.002) 66 1.76 £ 1.01 (0.010 =+ 0.005) 176 1.59
24 0.65 & 0.12 (0.017 % 0.003) 38 0.70 % 0.60 (0.010 % 0.003) 70 2.49
3¢ 99 + 1.30 (0.34 + 0.02) 291 >5 (0.030 £ 0.022) — 1.47
4° 116 + 1.10 (0.11 £ 0.02) 1054 1.50 + 0.70 (0.010 £ 0.001) 150 1.63
Py-BzIm” >100 (n.d.) — 68.50 & 0.90 (n.d.) — n.d.
Tz-BzIm® >100 (n.d.) — >100 (n.d.) — n.d.
Cisplatin® 9.39 + 0.08 (n.d.) 8.05 + 0.13 (n.d.) — n.d.

“ Conditions: 48 h incubation in the dark and under irradiation (470 nm, 10 min, 1.6 ] cm~2). PI = ICs,(dark)/ICs,(light). * Conditions: 48 h
incubation in the dark only, as these compounds are not light-activatable. Log P values from the shake-flask method." n.d.: not determined.

understand the differing therapeutic outcomes of the two Ir(m)
families, the intracellular distribution of complexes 1-4 was
examined in A549 cells using confocal microscopy. Mitochondria
were stained with MitoTracker Deep Red (MTDR). All complexes
were internalized by the cells and did not accumulate in the
nucleus. Notably, complexes 1 and 2 predominantly localized to
mitochondria, as indicated by strong colocalization with MTDR
(Pearson coefficients: 0.78 and 0.62, respectively). This mitochon-
drial accumulation likely contributes to their higher antiprolifera-
tive activity in the dark, given the central role of mitochondria in
cellular function. In contrast, complexes 3 and 4 showed poor
mitochondrial localization (Pearson coefficients <0.35), which
may explain their reduced dark activity (Fig. 4 and Fig. S52). These
observations are consistent with the organelle’s pivotal role in
energy production and survival of cells*' and with prior studies
reporting enhanced biological activity in iridium complexes engi-
neered for mitochondrial targeting."?

To further confirm the higher mitochondrial accumulation
of the benzothiophene-based complex (1) compared to its
benzothiazole counterpart (3), mitochondrial Ir content was
quantified by ICP-MS, Fig. S53. Complex 1 showed greater
uptake (5.52 ng/10° cells) than complex 3 (3.65 ng/10° cells),
likely due to its higher logP value. This aligns with the
negatively charged mitochondrial membrane favoring the accu-
mulation of lipophilic, cationic species like complex 1.>*
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Fig. 3 (a) Dot plots showing A549 cell death after 48 h incubation with 1 and 3,

followed by 470 nm irradiation (10 min, 1.6 J cm~2) using Annexin V-CF Blue/PI
staining. (b) Cell death induced by 1 and 3 under light and dark conditions. (c)
Cell cycle distribution for compound 1 at the indicated dose post-irradiation.
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Fig. 4 (a) Confocalimages of A549 cells incubated with complex 1 (6 uM, 2 h),
then stained with MitoTracker Deep Red (MTDR, 100 nM, 30 min). (b) Same for
complex 4. Excitation: 458 nm (1 and 4), 633 nm (MTDR). Emission: 552—
623 nm (1 and 4), 638-755 nm (MTDR). PC: phase contrast.

To investigate possible lysosomal localization, additional
colocalization assays were performed using LysoTracker Deep
Red (LTDR). While LTDR showed strong fluorescence in control
conditions, its signal disappeared when co-incubated with any
of the Ir complexes (Fig. S54), suggesting fluorescence quench-
ing, likely due to singlet oxygen generated upon light activation.
This is in line with previous studies reporting singlet oxygen-
mediated quenching of fluorescent dyes such as LysoTracker by
Danglot and Collot.** To determine if this quenching was
specific to LTDR, LysoTracker Green (LTG) and LysoTracker
Red (LTR) were also tested. Both dyes displayed fluorescence in
control cells but were quenched in the presence of the Ir
complexes, supporting lysosomal localization and the potential
involvement of singlet oxygen in dye quenching (Fig. S55).
However, cell-free fluorescence studies under controlled condi-
tions failed to reproduce the quenching effect, suggesting that
it may be specific to the cellular environment.

Overall, the colocalization assays indicate that complexes 1-
4 localize to both mitochondria and lysosomes. Complexes 1
and 2, which bear benzothiophene ligands, exhibit greater
mitochondrial accumulation than their benzothiazole analo-
gues (complexes 3 and 4), a feature that may underlie their
higher antiproliferative activity under dark conditions. At first
glance, this seems counterintuitive, since mitochondrial dys-
function is typically associated with apoptosis,” yet complexes
3 and 4, which show lower mitochondrial accumulation, are the
ones inducing apoptotic cell death.
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Fig. 5 (a) Percentage of A549 cells with disrupted mitochondrial membrane
potential after treatment with complexes 1 and 3, in the dark and post-
irradiation (470 nm, 10 min, 1.6 J cm™2). *p < 0.05; **p < 0.01; ***p <
0.001. (b) Morphology and viability of A549 spheroids after 6 days of treatment
with complexes 1 and 3 at their ICsq values (dark conditions). Scale bar: 50 um.

To resolve this apparent discrepancy, mitochondrial membrane
potential (MMP) was assessed by flow cytometry. As shown in
Fig. 5a, complex 3 caused a pronounced loss of MMP following
irradiation, consistent with mitochondrial damage and apoptosis.

In contrast, complex 1 had minimal impact on MMP, both
in the dark and under irradiation, with only a slight decrease
observed at higher doses. These findings support the previously
observed cytostatic profile of complex 1 under both conditions,
while highlighting the photoactivated cytotoxic nature of
complex 3, driven by significant mitochondrial impairment.
Finally, 3D multicellular tumor spheroids (MCTSs) were used to
mimic in vivo tumor conditions. Treatment of A549 MCTSs with
complex 1 led to significant inhibition of growth after six days,
outperforming both complex 3 and cisplatin, Fig. 5b and
Fig. S56, S57. This supports the higher antitumor activity in dark
of complex 1 in both 2D and 3D models and underscores its
promise for chemotherapeutic therapy via a cytostatic pathway.

This study presents two families of cyclometallated Ir(m) com-
plexes with distinct therapeutic profiles governed by ligand struc-
ture. Benzothiophene-based complexes (1 and 2) showed potent
antiproliferative activity in the dark, consistent with a cytostatic
mechanism and mitochondrial accumulation, making them pro-
mising chemotherapeutic agents. However, at high concentra-
tions, an apoptotic cell death pattern is observed specially under
irradiation. In contrast, benzothiazole-based complexes (3 and 4)
exhibited strong photocytotoxicity and induced apoptosis upon
light activation even at low concentrations, correlating with
mitochondrial dysfunction and singlet oxygen generation, posi-
tioning them as effective photosensitizers for PDT. Notably,
complexes 3 and 4 displayed marked cell-line selectivity, showing
higher PDT activity in A549 than in HeLa cells, indicating a
differential therapeutic response depending on the cancer type.
Subcellular localization, cell death mechanism, and activity in 3D
spheroids further support ligand-driven selectivity. These findings
highlight the potential of rational ligand design in tuning the
mode of action and selectivity of metal-based anticancer agents.
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