
RSC 
Sustainability

RSC 
Sustainability
Accepted Manuscript

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been accepted 
for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  J. V. Paulin, RSC

Sustain., 2024, DOI: 10.1039/D4SU00219A.

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d4su00219a
https://pubs.rsc.org/en/journals/journal/SU
http://crossmark.crossref.org/dialog/?doi=10.1039/D4SU00219A&domain=pdf&date_stamp=2024-07-09


A greener prescription: the power of natural organic materials in 

healthcare

João V. Paulin

São Paulo State University (UNESP), School of Sciences, Department of Physics and 

Meteorology, Bauru/SP, Brazil.

ORCID id: 0000-0002-2379-6203

E-mail: jv.paulin@unesp.br

Sustainability spotlight

Technological progress needs to be aligned with sustainable practices as it can have a negative 

impact on the environment. Using natural materials can reduce plastic pollution, develop 

biodegradable medical electronics to improve patient outcomes and reduce healthcare costs, 

as well as enable the development of energy-harvesting and energy-storage devices that can 

power implantable and wearable health devices. This approach is, therefore, related to SDG 3 

(Good Health and Well-being), SDG 7 (Affordable and Clean Energy), SDG 12 (Responsible 

Consumption and Production) and SDG 14 (Life Below Water).
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Abstract

Natural organic materials (NM), which are biodegradable, biocompatible, renewable, and 

electroactive, offer a sustainable solution to the environmental impact of technological 

progress. This perspective emphasizes NM’s potential to reduce environmental impact and 

create sustainable solutions for medical devices and disposable products. Nonetheless, 

challenges remain in scaling up production and addressing durability. Integrating natural 

systems into technological processes can help achieve a more eco-friendly and balanced 

future.

Introduction

In today's world, technological progress and environmental degradation can be viewed 

as two sides of the same coin. As much as the former is celebrated, we cannot close our eyes 

to the warning signs of the adverse impact of human-driven activities on the environment.1,2

From smartphones and smart homes to self-driving cars and artificial intelligence, the 

fast pace at which electronic technology is evolving is shaping our lives and how we approach 

healthcare. Take, for example, the recent coronavirus disease (COVID-19) outbreak. 

Biosensors, in particular, have shown immense promise for real-time health monitoring and 

disease control.3 Nonetheless, their uninterrupted use further increased the amount of single-

use medical items and non-biodegradable plastics.2,4,5 As the demand for healthcare 

electronics grows, its development must be aligned with sustainable practices to mitigate the 

adverse impact on the environment.
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Nature & Healthcare

In order to achieve sustainable healthcare technology, Nature itself can have a solution. 

Through the years of evolution and adaptations, Nature has provided us with an extensive 

range of organic materials derived from animals, plants, fungi, and bacteria. These natural 

organic materials (NM) possess mechanical, physical, and chemical properties that align with 

current healthcare needs.6–8 They are also biologically active, biocompatible, biodegradable, 

renewable, and cost-effective.6–8 

One significant advantage of NM is its biodegradability, which offers a low carbon 

footprint solution to address the problem of plastic pollution and replace conventional fossil-

fuel-based plastics.9–11 The feasibility of such a substitution is becoming increasingly evident 

to the extent that the US government has set an admirable goal of ensuring that 90 % of all 

plastic will be from a bio-based origin within the next two decades.12 For example, natural 

polymers such as cellulose (found in the cell walls of plants) and chitin (found in the 

exoskeletons of crustaceans and insects) provide solutions to combat plastic pollution due to 

their biodegradability and impressive mechanical properties.8,13 Cellulose, for instance, 

exhibits exceptional strength and durability comparable to traditional plastics, along with 

resilience to weather and chemicals.14,15 Similarly, chitin demonstrates biocompatibility, 

biodegradability, and remarkable resistance to microbial degradation,9,16 making it valuable 

in medical and environmental applications. 

The NM used in bioplastics can be sourced from renewable plant biomass and natural 

sources, promoting environmental sustainability and reducing dependence on non-renewable 

resources.17,18 Bioplastics can also be designed to be biodegradable or compostable, 

facilitating reuse through recycling or organic waste management systems.10,11,19 Ongoing 

advancements in extraction techniques aim to enhance efficiency and minimize 

environmental impact.10,17 Enhancing their mechanical properties and extending their lifespan 

through formulation optimization is also a research theme.17,18 These attributes underscore 

their role as a sustainable alternative to conventional plastics. It is worth noting that, while 

more environmentally friendly than traditional petroleum-based plastics, bioplastics can still 

contribute to undesirable land use and greenhouse gas emissions.9

Another interesting consequence of using nature in healthcare is developing new 

medicines from plants and microorganisms, the so-called bioprospecting. A good example is 

Taxol, a plant-based chemotherapeutic agent obtained from yew trees. U.S. Food and Drug 
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Administration (FDA) approved this compound for treating different types of cancers because 

it inhibits cell proliferation.20 

However, Nature is capable of much more. The core of the earliest evidence from 

humankind implants, back to the Neolithic period, was based on ivory, nacre, various types of 

animal tissues, silk, and wood. Nowadays, silk fibers are re-emerging as promising candidates 

for use in sutures, ligaments, and tendons, as they are flexible and incredibly strong.8 Silk 

offers a slower degradation rate than absorbable fiber sutures like polyglycolic acid (PGA). 

While PGA dissolves in about 60-90 days, silk can take up to two years to completely degrade 

in vivo,21,22 providing prolonged support for wound healing and causing less inflammatory 

response. In ligament and tendon repair, silk supports cell attachment and proliferation, 

promoting better healing and integration with native tissues than synthetic materials like 

polyethylene terephthalate.8,21,23 However, the scalability of silk production and its 

standardization for medical use still require further research and development.22 

To add on, natural rubber latex (NRL) has shown multiple applications in enhancing 

tissue repair in critical bone defects and chronic wounds, as well as enabling a sustained and 

controlled local drug release.24,25 As an example, the antioxidant activity of curcumin has been 

preserved after incorporation into NRL, providing anti-aging benefits with promising 

applications in the cosmetics industry.26 Additionally, the treatment of inflammatory diseases 

and candida spp. infected burn wounds have been achieved by combining NRL with synthetic 

drugs like ibuprofen,27 organic materials such as silver sulfadiazine,28 and composites made 

with natural resins (red propolis) and metallic copper ions.29

In reality, NM is witnessing an enormous blossoming in healthcare in terms of 

exploration and applications. These materials are being considered for various healthcare 

settings, such as biomedical implants, bioprosthetics, bioadhesives, sealants, cardiovascular 

therapy, cosmetics, surgical sutures, sensors, tissue grafts and engineering, and wound 

healing (Fig. 1).8 Therefore, the economic impact of these materials in the biomedical field can 

be impressive.
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Fig. 1. Typical healthcare applications of a few natural organic materials.

The development of implantable sensors and diagnostic tools is sparking a notable sense 

of excitement due to the potential to provoke a new era in healthcare through unprecedented 

precision and efficacy.6,8,30 Although these biodevices are electronic systems designed to 

interact with biological and living tissue safely, they are generally built upon non-renewable 

plastics and metal sources, which may lead to inflammation, rejection, or even toxic effects in 

the body. By contrast, implementing the inherent biocompatibility of NM into the system 

would make them less likely to cause any adverse reaction.6,8 Indeed, electronic devices based 

on hyaluronic acid (HA) showed no cell cytotoxic response,31   in contrast to poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a well-known biocompatible 

synthetic polymer.32 In this case, fluorescence-activated cell sorting revealed that the 

PEDOT:PSS device can have a damaged cell ratio higher than 41 %, which is significantly higher 

than the HA-based device with 5.7 % cell damage.31 

Similarly, the ability of NM to naturally degrade over time and be metabolized by the 

body can improve patient outcomes by reducing the need to remove the implanted devices, 

thus avoiding potential surgical complications.6,8,30 Also, reduced healthcare costs would be 

expected since there will be no need for additional surgeries or treatments. Consequently, 
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such medical electronics could be more accessible to low-income communities, improving 

their quality of life.

NM also possesses electrical, optical, and magnetically active features essential for 

developing high-performance and accurate biodevices to better interact with living tissue.30,33 

These devices could monitor the patient's health and provide real-time data, enabling the 

detection and treatment of complications at an early stage.

Another exciting area for health electronics relies on energy-harvesting devices that can 

convert body heat, biofluids, and human-body motions into electricity.1,6,34,35 These systems 

would have the efficacy to power implantable and wearable health devices without the need 

for batteries or constant charging. As an emerging demonstration, a flexible and transparent 

triboelectric nanogenerator capable of harvesting energy from water, wind, and human 

motion was developed using silver nanowires and a cellulose-based material.35 Combining the 

above characteristics with the renewability of NM can assist in reducing the carbon footprint 

associated with resource extraction (by minimizing the use of toxic chemicals and pollutants) 

and use.

Challenges and opportunities

There are several benefits to using NM, but there are also challenges associated with 

their technological development. For instance, NM's performance and durability may limit 

their use in long-term applications compared to traditional inorganic materials. Additionally, 

the harsh conditions of standard nano and microfabrication techniques need to be adapted 

to NM's soft and gentle traits to implement them into the devices.36

The main challenge is producing NM on a large scale, which may require specialized 

equipment or expertise to separate it from its natural source and remove any impurities or 

contaminants.7 These factors can increase production costs and create additional obstacles to 

commercialization and widespread adoption. Furthermore, large-scale production of NM can 

have a significant environmental impact, particularly if energy-intensive processes are used. 

Reducing this impact will require innovative methods and more sustainable practices.37

Noteworthily, adding financial value to what is typically seen as waste from the 

agricultural and food industries can be a viable possibility to alleviate such a rise in cost.7,38 

This means that the "waste" products such as corn stover, sugarcane bagasse, coffee grounds, 

and fruit peels can be processed to isolate carbon-rich material and natural extracts with all 
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the abovementioned properties. In addition, this approach has the advantage of reducing 

environmental pollution by avoiding the burning or disposing of such products in unplanned 

landfills, thereby lowering the carbon footprint of the production process.

The advances in chemistry and materials science also offer a promising alternative to 

develop materials that have not only the unique properties of the NM but also the chemical 

flexibility to tailor their properties to any specific needs.7,33 Thus, greater versatility and 

customization in material design can improve performance and efficiency. Additionally, 

adopting a synthetic approach can assist in mitigating ethical concerns associated with animal-

based materials by avoiding harmful and exploitative practices.7

The use of NM in healthcare is a developing concept with great potential to revolutionize 

the field, but it's not a one-size-fits-all solution. As research in this area advances, input from 

scientists, engineers, and healthcare professionals will lead to innovative nature-based 

biodevices with a real impact on patient outcomes. Whether or not to use NM will depend on 

the specific application, environmental impact, and economic feasibility. While inorganic 

materials have been viewed as the best option for their superior durability, we must also 

consider the environmental impact of their production and disposal.2 NM, on the other side, 

offers a sustainable alternative to reduce the strain on non-renewable resources and promote 

a healthier ecosystem. However, it is crucial to manage the production of NM to keep costs 

feasible and minimize environmental impact, including reducing carbon emissions through 

energy-efficient methods.37

Combining the best of these two worlds could further positively impact healthcare by 

maximizing its advantages. This connection can result in a medical setting with enhanced 

durability, cost-effectiveness, and biodegradability while still addressing the medical needs of 

biocompatibility and mechanical softness that inorganic materials do not match. J. A. Rogers's 

group showed a good representation of a direct couple of the brain tissue and rigid and 

inflexible metallic electrodes using NM. They demonstrated that silk (from Bombyx mori 

silkworms cocoons) is dissolved and resorbed by the biological tissue, allowing a spontaneous 

and conformal wrapping process of the ultrathin electronics at the biotic/abiotic interface.39 

Accordingly, the mechanical mismatch of this interface is reduced without losing the 

implanted electrode performance.

Eumelanin in Focus
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Eumelanin is a key natural pigment found throughout nature. In humans, it is present in 

the skin, hair and eyes, as well as several internal regions of the body, like the locus coeruleus 

and substantia nigra regions of the brain, inner ear (cochlea) and melanoma cells,7,40 to cite a 

few. Eumelanin draws attention not only for its biological role in photochemical reactions, 

antioxidant protection, and neurological disorders but also for its unique properties and 

applications in healthcare and biotechnology.7

As part of the broader exploration into the use of natural organic materials in medical 

technology, eumelanin presents intriguing characteristics such as biocompatibility,41,42 

biodegradability,43,44 and photoprotection,7,40 which offer new avenues for developing 

sustainable and biodegradable medical settings. Indeed, in the medical realm, eumelanin has 

already been explored as thermo- and/or photostabilizers,45–47 bioremediation,48–50 matrix for 

bactericidal systems,51 controlled drug delivery,52,53 photothermal therapeutic agent,54–56 and 

reduced inflammation.57,58

Eumelanin also showed photoconversion59 and energy storage capabilities.60–63 For 

instance, using an eumelanin anode (0.6 g of active material) along with a manganese oxide 

cathode could sustain 5 mW of power for 20 hours.61 Meanwhile, an eumelanin cathode (0.6 g 

of active material) with a sodium-titanium phosphate anode generated 18 mW of power for 

16 hours.60 These power outputs are sufficient to satisfy the power needs of several current 

medical devices.64 Additionally, eumelanin systems exhibit stable specific capacities (over 

60 mAh/g) after 500 cycles, with Coulombic efficiencies maintained above 99.2%.61 In 

supercapacitor configuration, eumelanin-based electrodes also show Coulombic efficiencies 

close to 100 % even after 5000 cycles.59,65 Thus, these systems can be rechargeable. Besides, 

active electrode material in these configurations fits the standard sizes typically used in 

wireless ingestible devices.64

NM has an intrinsic ability to generate electrical charges, but it has been notoriously 

hard to obtain electrically conductive variants over the years. Unlike solid-state electronics, 

where electron and hole transfer are common, most biological activity is driven by cation and 

anion fluidic motions.66 This fundamental difference creates challenges in selecting suitable 

materials for biotic-abiotic interfaces. Here, eumelanin can be a good material candidate, as 

it shows electroactivity7,67–69 with the ability to transduce ionic signals into electronic ones.70–

72 Aligning eumelanin’s processability into self-healing73 and flexible substrates62,72 with the 

aforementioned feature makes it a versatile material for the fabrication of advanced wound 
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dressing systems. Indeed, eumelanin derivatives have been tested as pH sensors after contact 

with human plasma72 and in bacterial cultures74 without compromising their effectiveness. 

Not only can eumelanin be integrated into bioelectronic systems, but it can also play an 

active role in the wound-healing process itself.75–77 Eumelanin is known for its antioxidant, 

antibacterial, and tissue-regeneration properties, offering significant potential for improving 

wound treatment outcomes. By incorporating eumelanin into formulations for dressings, it is 

possible to harness its properties to protect tissues against oxidative stress, prevent 

infections, and modulate the inflammatory response. Also, eumelanin can promote tissue 

regeneration, thus accelerating the healing process. The possibility of developing eumelanin-

based drug delivery systems also presents an exciting opportunity to deliver therapeutic 

agents directly to the wound site, providing targeted and effective treatment. This innovative 

approach holds the potential to significantly enhance wound care outcomes, offering a 

promising solution to the ongoing challenge of wound healing.

Given eumelanin’s hydration-based conductive properties,68,78–80 it could also be 

integrated into wearable transient to assess skin hydration, monitoring human respiration 

patterns and speech recognition by tracking alterations in water molecules concentration 

through air exhalation.81,82

Despite its numerous advantages, eumelanin is constrained by challenges that should 

not be overlooked. The production process can be complex and time-consuming and is not 

yet fully optimized for large-scale industrial production.7,83 Costly extraction and purification 

procedures further restrict its viability in commercial sectors. Additionally, scalability issues 

persist, with current manufacturing techniques needing refinement to ensure yield and 

consistency. Nonetheless, promising cost-effective methodologies are emerging as 

researchers are exploring innovative methods to overcome these obstacles and enhance the 

feasibility of eumelanin for broader industrial use.84,85

Moreover, natural variations in eumelanin sources contribute to inconsistencies in 

quality and properties,7,80 making it difficult to produce reliable, cost-effective product 

development. Potential solutions lie in in vitro synthesis, promising controlled and consistent 

production conditions.

Furthermore, achieving precise structural control during eumelanin synthesis remains a 

significant challenge. Structural integrity dictates its physical and chemical properties, 

including electrical conductivity and optical characteristics, which depend heavily on its 
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molecular arrangement.63,86–88 Advances in chemistry and material science are being explored 

to manipulate eumelanin's molecular structure,89–93 leading to predictable properties 

essential for any specific application. Continued research and development efforts are 

imperative to make eumelanin viable for various commercial industries.

Conclusion

With the science community embracing different perspectives and new and innovative 

approaches in healthcare, the promises to uncover opportunities for growth and success are 

limitless. A holistic approach is essential for comprehending the positive effects of NM that 

could emerge on the environment, economy, and social spheres. As always, there are multiple 

solutions to this problem, and considering NM is just one of them. Nevertheless, the outlined 

approach is not only beautiful but also incredibly effective. By working together to put the 

power of Nature to good use, a better world for ourselves and future generations can be 

mastered.
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