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Discovering the optimum process parameters of ultra-fast reactions, such as lithium–halogen exchange

reactions, is typically achieved by time and resource inefficient methods including one factor at a time

optimization (OFAT) or classical factorial design of experiments (DoE). Herein, we demonstrate the

development of a machine learning workflow coupled with a flow chemistry platform for the optimization

of the reaction conditions of a lithium–halogen exchange reaction. Flow chemistry platform allowed us to

precisely control the process parameters (temperature, residence time and stoichiometry) and enabled

robust and reliable data collection to train a machine learning algorithm. A Bayesian multi-objective

optimization algorithm TSEMO (Thompson sampling efficient multi-objective optimization) was used to

optimize the process parameters and to build process knowledge for different optimization campaigns with

different mixing intensifications (capillary reactor vs. microchip reactor). The algorithm successfully

identified a set of optimal conditions corresponding the trade-off between yield and impurity in different

optimization campaigns. Furthermore, the optimization results and Gaussian process (GP) surrogate models

within TSEMO were further analyzed to infer the operating regime of the system for different mixing

intensifications (mixing controlled vs. reaction-controlled regime). The machine learning workflow has

proven to be robust and data efficient, revealing rich information about the reaction studied compared to

single-objective, OFAT and DoE approaches.

1. Introduction

Organolithium compounds, such as aryllithiums are powerful
tools in organic synthesis due to their high reactivity and
versatility.1,2 The reaction between an aryl halide and alkyl
lithium is extremely fast and highly exothermic; the resulting
aryllithium intermediates have short lifetimes. The reaction
time scale is usually of the order of mixing time which makes
these reactions difficult to control and study. When batch
processing is employed, such reactions are carried out at
cryogenic conditions (below −70 °C) to avoid side reactions

and to prolong the lifetime of unstable aryllithium
intermediates.3 However, poor mixing characteristics of batch
processing can result in hotspot formation leading to
formation of byproducts and low yields when highly reactive
functional groups are present.4

Continuous flow reactors offer a viable solution to handle
fast, exothermic reactions with unstable intermediates.5,6

Flow reactors offer superior heat and mass transport
properties due to high surface area to volume ratio which
prevents the hot spot formation and large temperature
gradients in highly exothermic reactions. In addition, precise
control over the residence time within millisecond range
enables the utilization of flash chemistry,7 where highly
reactive and unstable intermediates can be created in situ and
consumed in a subsequent step prior to their decomposition.
Using flow reaction technology lithium–halogen exchange
reactions can be performed under milder conditions with
precise control over the process parameters such as
temperature, mixing and stoichiometry, leading to improved
yield and selectivity compared to their batch counterparts.
These advantages offered by continuously flow reactors have
been demonstrated on various lithium–halogen exchange
reactions in the published reports.8–12

React. Chem. Eng., 2024, 9, 619–629 | 619This journal is © The Royal Society of Chemistry 2024

a Cambridge Centre for Advanced Research and Education in Singapore, CARES

Ltd. 1 CREATE Way, CREATE Tower #05-05, Singapore 138602, Singapore
bDepartment of Chemical Engineering and Biotechnology, University of Cambridge,

Cambridge CB3 0AS, UK. E-mail: aal35@cam.ac.uk
c Accelerated Materials Ltd, 71-75, Shelton Street, WC2H 9JK London, UK
d Pfizer Process Development Centre, RCMF, Shanbally, Ringaskiddy, P43 X336,

Cork, Ireland
e Innovation Centre in Digital Molecular Technologies, Yusuf Hamied Department

of Chemistry, University of Cambridge, Lensfield Rd, Cambridge CB2 1EW, UK

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3re00539a

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

2-
11

-2
02

5 
14

:0
9:

26
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d3re00539a&domain=pdf&date_stamp=2024-02-26
http://orcid.org/0000-0002-1246-1993
http://orcid.org/0000-0001-7621-0889
https://doi.org/10.1039/d3re00539a
https://doi.org/10.1039/d3re00539a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3re00539a
https://pubs.rsc.org/en/journals/journal/RE
https://pubs.rsc.org/en/journals/journal/RE?issueid=RE009003


620 | React. Chem. Eng., 2024, 9, 619–629 This journal is © The Royal Society of Chemistry 2024

Despite the widespread utilization of continuous processing
in lithium–halogen exchange reactions, building process
knowledge and obtaining optimum process parameters are
achieved by rather inefficient methods. For example, intuition-
based methods such as one factor at a time optimization
(OFAT)13–15 or/and 2D temperature/residence time mapping
(brute-force DoE)16–18 have been widely used to identify the
optimum process parameters including residence time,
temperature, solvent, reaction stoichiometry, mixer type etc.
These methods require an exponentially increasing number of
experiments as the number of parameters increases, making
them time and resource efficient. In addition, complex
interactions and non-linearities between different process
parameters may not be identified leading to identification of
local optima. Moreover, these methods focus on fixed values of
continuous variables, potentially missing the optima between
these values. Furthermore, 2D temperature/residence time
mapping is typically effective when prior knowledge about the
reaction, such as the optimum reaction stoichiometry, is
available. This constraint limits their applicability when no
information is known about the reaction. Finally, even if the
reaction mechanism of lithium–halogen exchange reactions is
well understood, optimization through kinetic profiling and
mechanistic model development are difficult due to extremely
short time scales of such reactions.

Machine learning algorithm-guided process optimization of
reaction conditions has become increasingly popular to
overcome the limitations of DoE and intuition-based
approaches. The number of machine learning methods that
could be used for the optimization of chemical systems has
increased drastically in recent years.19 Some of the commonly
used machine learning methods are: SNOBFIT (stable noisy
optimization by branch and fit),20 Nelder–Mead simplex,21

Bayesian approaches for single objective such as SOBO22 and
multi objective problems including TSEMO,23 ParEGO,24

Chimera.25 In particular, TSEMO has been widely utilized to
solve various multi-objective problems including optimization
of reaction conditions,26–29 solvent selection,30 optimization
including life-cycle assessment,31 and distributed self-driving
laboratories.32

Algorithmic optimization of the process parameters of an
ultra-fast lithium–halogen exchange reaction via Bayesian
optimization has recently been demonstrated by Ahn and
coworkers.16 A single-objective optimization approach was used,
which provided limited information about the trade-offs
between the conflicting objectives (yield vs. impurity) and the
influence of the different process parameters on the target
objectives. In addition, they covered a small decision space for
the optimization since prior knowledge (reaction stoichiometry)
was available from their previous work.33

In this study we developed a generic, computer-controlled
flow chemistry platform combined with a machine learning
workflow that enables the optimization of a lithium–halogen
exchange reaction exhibiting competing reaction pathways
and conflicting objectives. Our flow platform consists of
commercially available parts including pumps, temperature

control unit, tubings, and fittings. The flow chemistry
platform is capable of precisely controlling temperature,
reaction stoichiometry and residence time to sub-second
scale which allowed us to collect robust and reliable data for
an extremely fast and difficult to control chemistry. Using a
proven ML algorithm (TSEMO), we optimize the process
parameters and understand their influence on the target
objectives. This work demonstrates the first example of
algorithmic process optimization of an extremely fast
lithium–halogen exchange reaction with conflicting
objectives.

2. Experimental
2.1. Materials

Aryl bromide starting material (compound 1, in Scheme 1)
was obtained from Pfizer Inc. 2 M n-butyllithium (n-BuLi)
solution in cyclohexane, anhydrous tetrahydrofuran with 250
ppm BHT as inhibitor, 99.9% (THF), anhydrous methanol,
99.8% (MeOH), anhydrous hexane 95%, acetonitrile 99.9%
(HPLC grade) were purchased from Sigma Aldrich and used
as received. Aryl bromide was vacuum dried before the
reaction to remove the trace amount of moisture adsorbed
onto the solid surface. Before the reaction, moisture content
of THF and aryl bromide solution was analyzed via Karl
Fischer titrator (Mettler-Toledo C10SX) using Hydranal
Coulomat A as the titration solution. If the moisture content
was more than 50 ppm, the solutions were discarded and
prepared again.

2.2. Machine learning workflow

In this work, we employed the Summit34 implementation of
TSEMO23 (Thompson sampling for efficient multi objective
optimization) algorithm to optimize the yield vs. impurity as
competing objectives (Scheme 1). TSEMO has shown to
outperform most of the state-of-the-art multi-objective
optimization algorithms including ParEGO, EIM-EGO, and NSGA-

Scheme 1 Reaction schemes (a) and (b), and the decision space (c).
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II.35 A small dataset is collected by using a space-filling latin
hypercube sampling (semi-random, but well-spaced selection)
(LHS) as training to initialize TSEMO. Within the algorithm,
individual Gaussian process (GP) surrogate models are built for
the two targets – yield and impurity – to approximate their
response surfaces. Subsequently, the algorithm draws random
samples from GPs through Thompson spectral sampling. Then, a
multi-objective genetic algorithm (NSGA-II) is called to identify
the Pareto front of the random samples. Finally, TSEMO suggests
a set of experiments from Pareto front (of randomly selected GP
samples) which aim to improve the hypervolume of the actual
Pareto front (of the experimental data). The suggested experiment
is performed, and the result is added to the training set. This
process continues iteratively until a termination criterion is
satisfied. We used hypervolume improvement as the termination
criterion.

Hypervolume is defined as the volume of the objective
space between the current Pareto front and an anti-utopian
point of [yield, impurity] = [0, 100]. The hypervolume was
calculated for each experiment along the current Pareto front.
To avoid premature termination, the optimization was only
terminated when the hypervolume remained unchanged for
10 consecutive experiments indicating that TSEMO could not
identify a better solution beyond the current Pareto front.
Throughout the study, a single experiment was executed,
analyzed, and processed by TSEMO before the conditions for
the subsequent experiment were generated.

2.3. Reactor platform

A schematic representation of the reactor platform is shown
in Fig. 1 (photographs of the experimental are given in ESI†).
Aryl bromide 1, n-BuLi and THF streams were pumped via
syringe pumps (Harvard apparatus PHD ULTRA push/pull)

equipped with medium-pressure switch valve boxes (Harvard
apparatus) to provide continuous and uninterrupted flow. 25
mL Hamilton gastight syringes were used for n-BuLi and THF
while 50 mL syringes were used for aryl bromide. Methanol
was delivered by a syringe-free positive displacement pump
(VICI The Cheminert® M50). Anhydrous THF and n-BuLi
solution was joined in a 0.5 mm ID T-mixer and mixed in a
0.6 mL static mixer (Vapourtec).

The dilution of the n-BuLi solution with THF served two
purposes: i) to lower the freezing point of cyclohexane, ii) to
reduce the flow rate difference between n-BuLi and aryl
bromide pumps to prevent backflow. Cooling loops were
integrated into each stream before the reaction zone. All fluid
delivery lines, and cooling loops were made of 0.8 mm ID
PFA tubing.

Two different reactors were employed within the reaction
zone: 0.5 mm ID T-mixer equipped with 16 cm-long 0.8 mm
ID PFA tubing and a commercially available microchip
reactor (HTM-ST, Little Things Factory). A quench stream
(MeOH) was introduced from a 0.5 mm ID T-mixer for both
reactors. Subsequent to quenching, a 0.75 m long, 0.8 mm ID
PFA tubing was used for sample collection. Cooling lines and
reactors were fitted to a Polar Bear Plus Flow Synthesizer
(Cambridge Reactor Design), which was enclosed within a
glass dome, to control temperature and to minimize the
influence of moisture.

2.4. Lithium–halogen exchange reaction

Before the reaction, all fluid delivery lines were purged with
anhydrous hexane and dry argon to remove any trace
amounts of moisture in the system. In addition, all the glass
syringes were dried in an oven to remove the trace amounts
of moisture adsorbed on syringe surfaces. Aryl bromide

Fig. 1 A schematic representation of rector setup to perform machine learning-driven optimization of the lithium–halogen exchange of reaction
given in Scheme 1b.
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solution in anhydrous THF was prepared using Schlenk
technique and loaded in syringes. Anhydrous THF and
n-BuLi solution were directly loaded in syringes from the
corresponding reagent bottles. During the reactions, all the
solutions were kept under argon atmosphere since
n-butyllithium can react with moisture in the air or
atmospheric oxygen which reduces the yield.

We developed an event sequence for pumps to perform the
lithium–halogen exchange reaction. The event sequence helped
us to reduce material consumption due to high flow rates, avoid
cross contamination of reaction conditions between samples
and, most importantly, prevent reactor fouling due to low
solubility of the aryl-lithium intermediates. We observed that
without a proper start-up or shut-down sequence, n-BuLi
solution remained in cooling loop flowed to aryl bromide line,
or the reagents stayed in the reaction zone for extended
amounts of time which both resulted in formation of high
amounts of insoluble aryl-lithium intermediates and hence
reactor fouling. However, using such an event sequence resulted
in dispersion along the reactor. We used the concept of
residence time distribution (RTD) to analyze the dispersion
behavior of the system and predict the steady state time as we
will discuss in detail below.

Briefly, the sequence starts with setting the reaction
temperature (T). Once the system reaches the desired
temperature, n-BuLi and aryl bromide lines are purged for 30 s
at 0.5 mL min−1 flow rate. Thereafter, n-BuLi and THF pumps
are set to the desired flow rates based on the experimental
condition (stoichiometry and residence time) while aryl
bromide pump is set to 1 mL min−1. After a certain waiting time
(tI), aryl bromide and MeOH pumps are also set to the desired
flow rate dictated by the experimental condition. A sample is
collected after the system reaches the steady state (tII). After the
sample collection, n-BuLi and MeOH flow rates are set to zero
while aryl bromide and THF flow rates are set to 1 mL min−1 for
cleaning until all the remaining n-BuLi in cooling loop, reaction
zone and sample collection zone leave the system (tIII). Finally,
aryl bromide and THF flow rates are set to zero to end the
sequence. Off-line analysis of the collected sample was done by
UPLC-MS (Agilent 1260 Infinity II-MS).

We used an open-source lab automation package Flab
(https://github.com/njoseGIT/flab) to control the pumps, the
reactor and to execute the events sequence. The whole workflow
was controlled by a custom written Python program which
performs the optimization by TSEMO within Summit, calculates
the pumps flow rates (Q1, Qn-BuLi, QTHF, QMeOH), reaction time
scales (tI, tII, tIII), and volumetric consumption of the individual
streams, performs the event sequence within Flab and keeps a
log file. For better clarity and replicability, reader can refer to
pseudo-code provided in ESI.†

3. Results and discussion
3.1. Initial exploration of decision space

In this work, we studied the machine learning optimization of
Li–Br exchange of aryl bromide 4-(4-bromo-3-(((tetrahydro-2H-

pyran-2-yl)oxy)methyl)phenoxy)benzonitrile, 1. In the previous
report,36 aryl-lithium intermediate of 1 is created by Li–Br
exchange which is followed by the electrophilic quench by
B(MeO)3 to form the corresponding aryl boronic acid ester,
Scheme 1a. The key step in this process is the reaction between
n-BuLi and aryl bromide 1 to create the aryl lithium
intermediate. This step is extremely sensitive to mixing
efficiency, residence time, temperature, stoichiometry and,
hence, is difficult to control. In addition, it was reported that
the molar equivalence of the electrophilic quench agent and the
residence time of the quench step were not critical parameters
for the process.37 Therefore, we focus our attention on the
machine learning optimization of the key step in a simplified
reaction as demonstrated in Scheme 1b. In this process, aryl-
lithium intermediate is quenched by excess methanol to afford
the protonated product 2. The only impurity for this reaction
was identified as 3 which forms as a result of the reaction
between n-BuLi and cyano substituent in 1.

Since the formation of 2 and 3 are competing parallel
reactions, it would be impossible to identify a single set of
utopian conditions which correspond to maximum yield of 2
without any 3. Consequently, in this work, we set up a multi
objective optimization problem where we optimized the yield
(of 2, maximize) and impurity (3, minimize) as competing
objectives. Three continuous variables (residence time,
temperature, n-BuLi equivalence) were optimized for this
multi-objective problem. It is important to stress that the
residence time and the mixing efficiency were closely related
in our flow rector setup. Therefore, changing residence time
also changes mixing efficiency in the reactor.

The bounds of continuous variables were established
based on the equipment limitations and preliminary
feasibility studies such that TSEMO would not explore
outside of the robust operation regime of the reactor setup.
For example, the lower limit of residence time was set as
0.185 s (Q1 ~ 25 mL min−1) since pumps could not handle
higher flow rates due to high pressure drop in the valve
boxes. Similarly, the lower boundary of temperature (−30 °C)
was the lowest temperature achievable by Polar Bear system.

The upper limits of residence time, temperature and
n-BuLi were selected based on the preliminary flow
experiments performed in the reactor setup. The values
exceeding the upper limits shown in Scheme 1c resulted in
reactor fouling due to rapid generation and accumulation of
aryl-lithium intermediates in the reaction zone. Similarly, we
also tested different concentrations of solution of 1 in THF
(0.3–0.1 M). Concentrations of 1 higher than 0.1 M resulted
in rapid clogging of the reactor due to low solubility of the
lithiated intermediate. Details of preliminary experiments
and observations can be found in ESI.†

3.2. Analysis of the dispersion characteristics of the system

In this section, we discuss the dispersion characteristics of the
flow chemistry platform through the residence time distribution
(RTD). Understanding the dispersion characteristics of the

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
 2

02
3.

 D
ow

nl
oa

de
d 

on
 0

2-
11

-2
02

5 
14

:0
9:

26
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://github.com/njoseGIT/flab
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3re00539a


React. Chem. Eng., 2024, 9, 619–629 | 623This journal is © The Royal Society of Chemistry 2024

system was crucial for accurate prediction of the steady state
time to collect a reliable sample and to reduce the material
consumption by avoiding prolonged waiting times.

As described briefly in Experimental section, each
experimental run begins with the entire system, except for
the aryl bromide line, filled with THF which is used to clean
the reactor between experiments. Once a reaction starts, the
washing solvent THF is replaced by the reaction mixture
leading to dispersion due to laminar flow regime in the
system. More specifically, dispersion occurs: i) within the
n-BuLi cooling loop when THF is displaced by n-BuLi
solution/THF mixture, ii) within the reaction zone when THF
is displaced by the aryl-lithium intermediate, iii) within the
sample collection tube when starting material/product
mixture of 1/2/3 travels through the tubing. Similar
dispersion phenomena also occur when THF is introduced to
clean the reactor. In such scenario, using plug flow
assumption (τ = V/Q where τ is the residence time, V is the
system volume, Q is the volumetric flow rate) to estimate the
total residence time of the system before sample collection
would result in underestimation of the sample collection
time, and hence training the machine learning algorithm
with unsteady-state condition data. Therefore, we analyzed
the dispersion behavior in our system by residence time
distribution (RTD) theory to estimate steady state time for
sample collection.

We identified the suitable dispersion model in our system
based on the flow map38 by calculating Bodenstein number
Bo = udt/D, where u is the superficial velocity, dt is the
channel diameter, D is the molecular diffusivity, and the
aspect ratio of the corresponding part of the system L/dt,
where L is the tube length. To encompass the entire decision
space, we used the upper and lower limits of the residence
times and stoichiometric ratios given in Scheme 1. Our
findings reveal that the majority of the decision space falls
within the axial dispersion model to intermediate regime.
For the sake of simplicity, we opted to use the axial
dispersion model throughout the study. The dispersion
coefficient in axial dispersion model is given by eqn (1):38

D ¼ u2dt
2

192D
(1)

Axial dispersion coefficient allowed us to predict the reactor
Peclet number:

PeR ¼ uL
D

(2)

Finally, the mean residence time is predicted from the
reactor Peclet number:

t ¼ V
Q

1þ 2
PeR

� �
(3)

This simple methodology does not contain any adjustable
parameters and values of all parameters are available from
experimental conditions or fundamental calculations. We
applied this methodology to predict the mean residence time of

the different sections of the system in which dispersion occurs.
The steady state time of the whole system for sample collection
was predicted by summing up the mean residence times across
these sections. We tested this methodology by predicting steady
state time of 15 randomly generated reaction conditions and
compared the results with the plug flow residence time of the
same conditions. Our results indicate a substantial
underprediction of steady-state times, ranging from 50 to 100%
when plug flow residence time was used (see Fig. S6†).
Moreover, we experimentally tested our methodology by
collecting 10 samples at 30 s time intervals for three distinct
reaction conditions where the first sample was collected after
the predicted residence time passed. The average yield and the
impurity of these conditions are as follows: i) 47.3 (±1.8)% yield,
19.5 (±1)% impurity, ii) 94.5 (±0.3)% yield, 4.68 (±0.46)%
impurity, iii) 61.5 (±1.3)% yield, 0.84 (±0.15)% impurity. Low
standard deviation of yield and impurity indicates that the
collected samples belong to the steady-state operation. It is
worth noting that we did not perform any tracer experiments
since theoretical estimation was found to be sufficiently
accurate for our application. However, more in-depth analysis
of dispersion characteristics of the system would be possible
through step/pulse input experiments. The readers can refer to
the relevant section of ESI† for the detailed calculation and
analysis of RTD (section 5).

3.3. Algorithm-guided reaction optimization of lithium–

halogen reaction

In this section we present results of three different multi-
objective optimization campaigns of the Br–Li exchange
reaction shown in Scheme 1b and describe how process
knowledge could be obtained from the optimization results.

In the first campaign, space-filling LHS was used to
generate 12 training experiments to initialize the
optimization. Subsequently, TSEMO designed 34 further
iterations (full list of reaction conditions for all experiments
is provided in ESI†) to establish a clear Pareto front (Fig. 2a).
The highest yield was found to be 94.1% at the cost of 4.1%
impurity. The lowest impurity was 0.25% with a much poorer
yield of 59%. Between these two edge points, the Pareto front
illustrates the complete trade-off between yield and impurity.
The Pareto front shows that yield can be significantly
increased from 59% to 94.1% at the cost of an increase in
impurity from 0.25 to 4.1%. The best performing reaction
conditions of different optimization campaigns in terms of
maximum yield are summarized in Table 1.

To visualize the influence of continuous variables on the
target objectives, the experimental data are plotted with
respect to temperature, residence time and n-BuLi
equivalence where the shell and core color of the data points
are correlated with yield and impurity (Fig. 2b). All the good
performing experimental results (higher yield and lower
impurity) are clustered around τ = 0.2 s, n-BuLi (eq.) = 1, and
T < −20 °C indicating the optimum operation region of the
process. Furthermore, assessing the change in yield and
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impurity in x, y, z axes reveal important details regarding
how different operational conditions influence the reaction
objectives.

The most notable change was observed when τ was
increased at relatively constant n-BuLi equivalence and
temperature. For example, at T = −18 °C and 0.97 molar
equivalence of n-BuLi, increasing the residence time from

0.273 s to 0.98 s resulted in a dramatic decrease in yield from
86.6% to 24% while the impurity increased from 7.4% to
13.4%. However, decreasing τ below 0.23 s did not lead to a
significant change in yield and impurity amount under
otherwise identical conditions.

It is important to highlight that the change in the
residence time of the Br–Li exchange step was achieved by
changing the flow rate (Q1, Qn-BuLi, QTHF) of different streams
at the constant reactor length. These observations are in line
with the previous studies of lithium–halogen exchange
reactions in microreactors12,14,37 where increasing the total
flow rate improves the reaction yield through improved
mixing and efficient utilization of highly reactive, short-lived
aryl-lithium intermediates. Low flow rates (high residence
times) result in incomplete mixing of 1 and n-BuLi streams,
and hence lower yield. On the other hand, incomplete mixing
also increases the impurity by means of formation of high
n-BuLi concentration zones across the cross-section of the
reactor which promotes the side reaction with the cyano
substituent. Moreover, increased residence times cause
unstable aryl-lithium intermediate to decompose before an
electrophilic quench to form a stable product which can also
result in a drop in the yield.

Increasing the molar equivalence of n-BuLi along the y axis
at relatively constant τ and T first increased the product yield
without a significant change in the impurity up to ∼1.08 molar
equivalent of n-BuLi since more unreacted starting material
could be converted to the product. However, beyond 1.08 molar
equivalents of n-BuLi, the product yield started to decrease
while impurity increased. For example, at τ = 0.185 s and T =
−(20–25) °C, increasing the molar equivalence of n-BuLi from
1.037 to 1.1 resulted in a decrease in yield from 93.16% to 92%
whereas the impurity increased from 2.5 to 8.15%. This
observation suggests that the trade-off point of n-BuLi
equivalence is somewhere between 1.08 to 1.1.

In lithium–halogen exchange reactions, increasing
temperature promotes side reactions and leads to a faster
decomposition of unstable aryl-lithium intermediates.10 Even if
TSEMO primarily suggested temperature values closer to the
lower limit of the decision space, it was still possible to get
reasonably high yields at higher temperatures. For example, at τ
= 0.24 s with 1.128 molar equivalent of n-BuLi and T = −3.5 °C,
80% yield was obtained with 18.8% impurity. The weaker
dependency of the reaction objectives on temperature suggests
that the reaction is physics-controlled (mixing) rather than
kinetically controlled. The effect of different continuous

Fig. 2 Results of the three parameter multi-objective optimization of
the Br–Li exchange reaction shown in Scheme 1 in 0.8 mm ID, 16 cm
long 80 μL capillary reactor with 12 training experiments. (a) The
Pareto front plot of yield vs. impurity which highlights the clear trade-
off between the two objectives. The tip of the Pareto plot is magnified
in the inset plot for visual clarity. (b) Plot of the experimental
conditions executed during the optimization with the reaction profiles.
The shell color of each point denotes yield (%) whereas the core color
of each point denotes per cent of impurity formed.

Table 1 A summary of the top two best performing reaction conditions of every optimization campaign

Entry Reactor # of training τ (s) T (°C) n-BuLi (eq.) Yield (%) Imp (%)

1 Tube 12 0.191 −23.41 1.08 94.1 4.1
2 Tube 12 0.23 −30 1.05 93.3 3.4
3 Tube 3 0.185 −16.3 1.06 93.8 4.8
4 Tube 3 0.2 −30 1.05 93 5.5
5 Chip 12 0.24 −28.6 1.00 96 3.6
6 Chip 12 0.266 −23.5 1.00 95.6 3.3
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variables on reaction objectives will be discussed in more detail
in the following sections of the paper.

The reaction conditions selected by TSEMO in 34
optimization experiments showed that with respect to
exploration/exploitation dilemma observed in Bayesian
optimization, TSEMO in this work demonstrated a great
tendency to exploitation. In contrast to the training
experiments where LHS uniformly scans the decision space,
TSEMO consistently proposed reaction conditions near
Pareto-efficient points from the initial optimization iterations
(Fig. 2a). The best-performing point was suggested as the
23rd optimization experiment. Moreover, throughout the
entire 34-experiment optimization process, TSEMO only
assessed residence time values greater than 0.6 seconds on
three occasions, which further highlights the algorithm's
tendency to efficiently exploit. Similar exploitative behavior of
TSEMO algorithm has been reported in previous studies.26,28

To further investigate efficiency of the algorithmic
optimization of the Br–Li exchange reaction at low data
regime, the optimization was repeated only with three poorly
yielding training experiments. These experiments were also
generated by LHS and TSEMO designed an additional 41
experiments to form a Pareto front (Fig. 3a). Similar edge
points as the previous optimization campaign were observed
with the highest yield of 93.8% at the cost of 4.8% impurity
(Table 1). Furthermore, two optimization campaigns
produced similar Pareto fronts (see Fig. 5 below) highlighting
consistency between the optimization campaigns.

Despite the localization of the LHS results on low yield
and high impurity, the algorithm successfully identified new
regions of the decision space corresponding to better results.
After eight initial optimization iterations, TSEMO already
generated yield and impurity values closer to Pareto front.
Interestingly, the best-performing condition was suggested as
the 11th experiment which was earlier than the first
optimization campaign. In addition, the reaction profiles of
different experimental conditions in Fig. 3b reveal that
despite the lack of information regarding the upper limit of
the n-BuLi equivalence compared to the original run, the
algorithm only suggested two experiments beyond 1.1
equivalence of n-BuLi to explore the decision space. However,
the algorithm explored the upper limits of temperature and
residence time more often than in the original run.

The final optimization campaign was performed in this
study to understand how mixing intensification would
change the optimum reaction conditions in the decision
space. For this purpose, we replaced the T-mixer capillary
reactor (D = 0.8 mm, L = 16 cm) setup with a microchip
reactor embedded with in-line static mixing elements (Little
Things Factory, HTM-ST). It has been demonstrated that
HTM-ST mixer has superior mixing properties over a T-mixer
when the flow rate is higher than 8 mL min−1.39 The internal
volume of the capillary reactor is 80 μL while that of
microchip reactor is 60 μL. Therefore, in order to study the
sole effect of the mixing characteristics of the system on
target objectives, we added another 0.8 mm ID 4 cm long PFA
tubing after the microchip reactor to equalize volumes of
both systems at 80 μL.

To optimize the target objectives, a similar procedure to
the first optimization campaign was followed: 12 training
experiments were generated by LHS and performed.
Thereafter, TSEMO designed 28 more experiments to form a
Pareto front (Fig. 4a). The highest yield was 96% at the cost
of 3.6% impurity. The lowest impurity was 0.76% with 67%
yield. The comparison between the best-performing results of
the two systems (T-mixer with capillary tube vs. microchip
reactor) reveals that it was possible to get a slightly higher
yield and a lower impurity as a best-performing point in the
microchip reactor. Interestingly, the chip system required 8%
less n-BuLi to obtain a better overall performance than the
T-mixer capillary reactor (Table 1 entry 1 vs. entry 5).

In addition, the comparison between the reaction profiles in
Fig. 2b and 4b highlights several distinctions between the two

Fig. 3 Results of the three parameter multi-objective optimization of
the Br–Li exchange reaction shown in Scheme 1 in 0.8 mm ID, 16 cm
long 80 μL capillary reactor with three training experiments. (a) The
Pareto front plot of yield vs. impurity which highlights the clear trade-
off between the two objectives. The tip of the Pareto plot is magnified
in the inset plot for visual clarity. (b) Plot of the experimental
conditions executed during the optimization with the reaction profiles.
The shell color of each point denotes yield (%) whereas the core color
of each point denotes the per cent of impurity formed (%).
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systems. Notably, the target objectives were improved
considerably between τ = 0.2–0.4 s in the chip system, thereby
illustrating the impact of mixing intensification on the outcome
of the optimization. For example, at τ = 0.39 s, T-mixer capillary
reactor resulted in 65.5% yield and 9% impurity with T = −18 °C
and n-BuLi = 0.9 eq. whereas the chip resulted in 82.55% yield
and 10% impurity with T = −18 °C and n-BuLi = 0.97 eq.
Moreover, even at very high residence times (low flow rates) the
chip reactor still provided better reaction outcomes. For
instance, at τ ∼ 1 s, the T-mixer capillary reactor resulted in
31.8% yield and 31% impurity with T = −25 °C and n-BuLi =
1.39 eq. whereas the chip resulted in 56.65% yield and 35%
impurity with T = −15 °C and n-BuLi = 1.3 eq. Curiously, we also
observed a more pronounced effect of higher temperatures on
the outcome of the optimization in the chip reactor compared
to the original tube setup. For example, at τ = 0.481 s and 0.808
eq. n-BuLi the T-mixer capillary reactor resulted in 50% yield
and 10% impurity at T = 8.3 °C while the chip reactor resulted

in 32% yield and 1.2% impurity at τ = 0.205 s and 0.805 eq.
n-BuLi at the same temperature despite its superior mixing
performance. The overall improvement of the target objectives
at a wider range of residence times and more substantial
temperature influence within the chip system suggest that the
controlling mechanism of the reaction is altered, and kinetics
of the reaction is more relevant in the chip system.

Finally, comparison between Pareto-efficient points of
different optimizations in Fig. 5 reveals that all the optimization
campaigns produced a similar Pareto front with chip reactor
producing slightly better results than the T-mixer capillary
reactor.

The optimization campaigns shown in Fig. 2–4 highlight the
utility of the multi-objective optimization in Br–Li exchange
reactions compared to single-objective and DoE approaches. For
example, unlike the previous work on the machine learning
optimization of Br–Li exchange reaction with single objective
wherein a single optimum solution was identified,16 we
identified a set of Pareto-efficient solutions (Fig. 5). Within
these Pareto-efficient solutions, one objective cannot be
improved without making the other one worse off, highlighting
the complete trade-off between the two objectives. It is
important to highlight that all the conditions along the Pareto
front represent viable solutions. Depending on the specific
process requirements such as impurity tolerance or downstream
strategy, a specific condition can be selected from this range of
solutions. On the other hand, if we applied a five-level, three-
factor DoE approach to obtain process knowledge for this Br–Li
exchange reaction, it would take 5 × 5 × 5 = 125 experiments to
obtain a response surface for a single campaign. Consequently,
more information about the process can be extracted with fewer
number of experiments through multi-objective Bayesian
optimization compared to DoE approach.

3.4. Sensitivity of the developed statistical models to input
variables

Gaussian process (GP) surrogate models that are used in the
TSEMO algorithm are not only useful during the

Fig. 4 Results of the three parameter multi-objective optimization of
the Br–Li exchange reaction shown in Scheme 1 in HTM-ST microchip
reactor with 12 training experiments. (a) The Pareto front plot of yield
vs. impurity which highlights the clear trade-off between the two
objectives. The tip of the Pareto plot is magnified in the inset plot for
visual clarity. (b) Plot of the experimental conditions executed during
the optimization with the reaction profiles. The shell color of each
point denotes yield (%) whereas the core color of each point denotes
the per cent of impurity formed (%).

Fig. 5 Pareto efficient points of yield vs. impurity related to
optimization of Br–Li exchange reaction in Scheme 1 with different
optimization campaigns.
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optimization of the target objectives, but also the
hyperparameters of the surrogate models can provide
additional insight into the chemical system. Especially, the
lengthscale hyperparameter describes importance of the
input variables in the target objectives, a concept known as
automatic relevance detection.40 The lower value of the
lengthscale hyperparameter indicates a greater contribution
of the corresponding input variable to the target objective.
Lengthscales of continuous variables for the tube and the
chip reactors are tabulated in Table 2.

For the T-mixer capillary reactor, the residence time and
n-BuLi equivalence are significantly more relevant to obtain
high yield while temperature is the least relevant variable. On
the other hand, n-BuLi equivalence is the most relevant
parameter to obtain low impurity. These observations are in
agreement with our discussion above that the reaction is
mainly controlled by the physical step (mixing). In the chip
reactor, temperature and n-BuLi equivalence are the most
relevant parameters while residence time has a smaller
contribution to achieve a high yield. Similarly, this situation
further supports our argument that controlling mechanism
of the reaction is altered and temperature is more important
than in the T-mixer capillary reactor.

Besides the lengthscales, low output variance (σf), and
noise hyperparameter (σnoise), see Table 2, indicate high
quality and the consistency of the collected data which
further highlights robustness of the flow reactor setup
developed in this work. As a result, the trained GP surrogate
models can be used to make accurate predictions of reaction
conditions which are unseen by the model during the
optimization. This idea is illustrated in Fig. 6. We generated
30 random experimental conditions, performed in the T-
mixer/capillary reactor and analyzed the results by UPLC-MS.
On the other hand, we used the GP surrogate models built
within TSEMO for yield and impurity from the first
optimization campaign (Fig. 2) to predict the outcome of the
same 30 experiments. Since the GP models are constantly
updated with every experiment, we used the models at the
end of the optimization campaign (after 46 total
experiments). For every point predicted, the mean and the
standard deviation were calculated from the average of 1000
samples drawn from GPs (full list of reaction conditions and
GP predictions for all experiments is provided in ESI†). We
confirmed that the randomly generated experiments were
different than the optimization experiments suggested by
TSEMO. The results in Fig. 6 indicate that the GP surrogate

models could predict the outcome of the unseen reaction
conditions with around 5.5% mean absolute error (MAE) and
6–7% RMSE. In addition, the standard deviations of the
predictions were lower near the target objectives (high yield
and low impurity) as the model has more information about
these regions in the decision space. The model accuracy can
be further improved for process modeling purposes by
performing post-optimization experiments in high-
uncertainty regions.

Finally it is worth stressing that optimizing process
parameters and extracting implicit knowledge through GP
surrogate models are tied to the experimental setup due to
complex interactions between the chemistry and the physical
setup through mixing and heat transport characteristics. In

Table 2 Hyperparameters of the GP surrogate models for the two different reactors studied

Hyperparameter

Tube Chip

GP1 (yield) GP2 (impurity) GP1 (yield) GP2 (impurity)

θτ 0.15 0.61 0.54 0.7
θT 1.03 0.58 0.35 0.88
θn-BuLi 0.31 0.25 0.38 0.55
σf 0.71 1.16 1.02 2.01
σnoise 6.9 × 10−4 2.9 × 10−3 9 × 10−3 3.9 × 10−3

Fig. 6 Yield (a) and impurity (b) predictions of 30 experimental
conditions unseen by the Gaussian process (GP) surrogate model of
the first optimization campaign (Fig. 2). The mean (data points) and the
standard deviation (error bars) of the predictions were calculated from
the average of 1000 samples drawn from the GPs. Black solid line
represents the parity line.
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other words, the knowledge generated in this work may not
be applicable to other experimental setups and physical
information of the system needs to be included.

Conclusions

In conclusion we have demonstrated an optimization
workflow consisting of a flow chemistry platform and multi-
objective Bayesian optimization algorithm (TSEMO) towards
the optimization of an ultra-fast lithium–halogen exchange
reaction. The flow chemistry platform allowed precise control
of temperature, stoichiometry, and residence time below the
sub-second range for a difficult to control chemistry which
enabled robust and reliable data collection. Three continuous
variables were optimized to maximize the yield and to
minimize the impurity. We applied this workflow to three
different optimization campaigns with different numbers of
training data sets and mixing intensifications. TSEMO was
able to rapidly exploit the decision space and locate the
optimum reaction conditions and trade-off zones (Pareto
front) within 50 experiments. In addition, the reaction
conditions suggested by TSEMO allowed us to gain insight
into the effects of the different process parameters (residence
time, temperature, stoichiometry, mixing efficiency) on the
target objectives. Moreover, the use of Gaussian process
surrogate models within TSEMO provided additional
interpretability about the interactions within the system. The
hyperparameters of the surrogate models could be analyzed,
which infers the contribution of the input variables to the
target objectives. In addition, we also demonstrated that the
Gaussian process surrogate models could be used to gain
additional information about the process via prediction of
the unseen experimental conditions. Hence, this workflow
provides a robust and data efficient approach for identifying
optimum process parameters of lithium–halogen exchange
reactions compared to single objective optimization, OFAT
and factorial DoE methods. The analysis and design
principles in this work are general and can be extended to
other reactions to build process knowledge.
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