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The synthesis and characterisation of the S = 1/2 Fe(l) complex [Fe(depe),] " [BArh]™ ([1]*[BArl "), and the
facile reversible binding of N, and H, in both solution and the solid state to form the adducts [1-N,]* and
[1-H,l*, are reported. Coordination of N, in THF is thermodynamically favourable under ambient
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Introduction

Recent years have seen great interest in the pursuit of well-
defined transition metal (TM) complexes capable of catalysing
the reduction of N, to NH; or N,H,.* One of the most compel-
ling rationales for studying such systems is that their mecha-
nistic details can be more readily discerned, in comparison with
the complex proton-coupled electron transfer (PCET) steps
operative within nitrogenase enzymes.> The utility of Fe in
biological N, fixation,> and the anthropogenic Haber-Bosch
process,* has prompted researchers to target Fe complexes as
potential synthetic catalysts. These ‘artificial’ nitrogenases
employ chemical H" and e~ sources to reduce N, through PCET
pathways, although this process competes with proton reduc-
tion to H,, which can preferentially sequester active metal sites.’
Facile displacement of H, by N, is thus an important aspect to
maintaining a productive N,-fixing catalytic cycle, and an
understanding of the binding of these small molecules to low-
valent Fe centres could lead to more selective and efficient
catalysts for the production of azanes. While the coordination
chemistry of N, and H, to Fe(0) and Fe(u) complexes is well-
documented,® analogous detailed studies containing Fe() are
scant,” despite the potential relevance of this low-valent oxida-
tion state in Fe-based synthetic nitrogenases. We recently re-
ported that the Fe(0) bisphosphine complex, Fe(depe),(N,)
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N, and H, coordination under ambient conditions is unique for a paramagnetic Fe complex.

[1-N,; depe = Et,PCH,CH,PEt,] is a highly selective catalyst for
the PCET-mediated conversion of N, to N,H, with H" and e~
equivalents.® Herein we report the related low-spin Fe(1) species
[Fe(depe),]" ([1]") which is shown to reversibly coordinate N, or
H,, with the latter being a rare case of a thoroughly-
characterised paramagnetic o-H, complex. Furthermore, this
behavior is found to occur both in solution and in the solid-
state.

Methods

The ESR spectroscopic methods used for characterizing
molecular structure are based on the following spin Hamilto-
nian, representing the electron Zeeman, nuclear Zeeman,
hyperfine and nuclear quadrupole components, respectively.

H = §’g§+ ZEgN,ig"‘ Z:S\IAiii + Zi/; Qki;c (1)
7 7 %

The bold symbols are 3 x 3 tensors (or matrices) and the
vector of Cartesian spin operators are defined in appropriate
Hilbert space eigenbasis. The third term of the spin Hamilto-
nian, hyperfine or Hyr is composed of an isotropic component,
Qiso, transformed to a 3 x 3 matrix by, 1 defined as the identity
matrix, and an anisotropic component, T.

ﬂHF = Z ‘/S‘\,I:aiso,i]]' + T:]Z (2)

It is the anisotropic tensor component that returns the
structural relations of the spin system, based on the summation
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of dipolar interactions between the position vectors of the
central iron atom and surrounding positions, approximated as
ligand nuclei position vectors.’

T, = (18 Hp 8y [4172) X Z[f, (1+2g, /. )(Jlr,,

J

-35.5,) /1]

(3)

Eqn (3) includes contribution of all centres, pj;, of spin
density f; at distance r; to the hyperfine interaction matrix for
a single nucleus position, p;. The principal axis elements in the
limit of an axial tensor are [T, —T, 2T] where the perpendicular
component (eqn (4)) is used to estimate a distance in a single
point-dipole approximation:

T = freeftpgNUN/T (4)

Analysis of the nuclear quadrupole term of the spin Hamil-
tonian of eqn (1) for an I = 1 nucleus (relevant to >’H and **N in
this work) can provide useful information on bonding and
electronic structure,' and is given by:

0 = K x diag[—(1 — ), —(1 + 1), 2] (5)

where K is the axial quadrupole interaction (=e’q,,Q/4h) and 7 is
the orthorhombic asymmetry parameter. In the limit of pure
quadrupole frequencies (v; = A/2) the mgy = +1/2 manifold
frequencies are v, = K(3 + 1), v = K(3 — 1), and v, = 2Kn, for
a positive hyperfine interaction.'* In the opposite manifold, m;
= —1/2, there are two single quantum (sq) peaks and a double
quantum (dq) transition, which corresponds to v, in the mg =
+1/2 manifold. A formula for the double quantum frequency in
the limit of small hyperfine anisotropy is:*>

Viq = 2vers” + K3 + )] (6)

where v, is the effective frequency of the Larmor and hyperfine,
Ver+ = v17A/2, based on the DC field and unpaired electron.

Results and discussion

Previously, we showed that N,H,/NH;-producing reactions of
1-N, with the acid [Ph,NH,]'[TfO]” (TfO = CF;SO;) formed an
Fe(1) species, which was shown by X-ray crystallography to be
[Fe(depe),(n'-N,)] [TfO] ™ ([1-N,]'[TfO]).® Variable-temperature
ESR spectra of this compound were complicated, however,
which we postulated may be due to competitive N, vs. [TfO]~
coordination. In order to suppress the latter, and hence better
resolve the behaviour of the [1-N,]" fragment, we subsequently
utilised the more weakly coordinating [BAr;|~ (BAr; = B[3,5-
{CF3},CeHs]4)- Thus, oxidation of 1-N, with 1 eq. [Cp,Fe] [BAr",]”
(Cp = CsHs) produced a deep-blue solution, from which an
intensely blue crystalline solid was obtained following work-up
and recrystallisation from Et,O/pentane under Ar.** A single
crystal suitable for X-ray diffraction was subsequently isolated
which solved and refined as the 15 valence electron (VE), N,-free
compound [Fe(depe),]'[BAr;|~ ([1]'[BAri] ", Fig. 1(a) and (b)). In
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Fig. 1 (a) Synthesis of [1]*[BArf]~. (b) ORTEP diagram of the
[Fe(depe),]™ fragment in [11*¥[BArG]~; thermal ellipsoids shown at 30%
probability, H atoms and [BAr§]~ counterion omitted for clarity (C and
P occupancies are 0.5 as a consequence of a second symmetry-
generated orientation of the two depe ligands; this has also been
omitted for clarity). (c) CW X-band ESR spectrum of
[1]+[BArZ]’ (PhMe : DFB 7 :1; Ar; 40 K); black line: experiment; grey
line: simulation. *[1-N]*[BArk]l~ impurity due to trace N, in the Ar
atmosphere.

the structure the [1]" and [BAr}| ™ ions are well separated, with no
close C or F contacts between the anion and the Fe centre.

The [1]" cation was found to be disordered and, while the
structural model is in good agreement with the X-ray crystallo-
graphic data (with the molecular connectivity and absence of an
N, ligand being conclusive), the interatomic distances are
approximate and will not be discussed in detail.** The FeP, unit
is pseudo square planar and exhibits a tetrahedral distortion, as
seen by a dihedral angle of 12.41(11)° between the two Fe(PP)
[Fe(1)P(1)P(4) and Fe(1)P(1{)P(4i)] coordination planes, which is
very similar to that observed in the approximately square-based
pyramidal [1-N,]'[TfO]™ (15.39(9)°). Evidently, coordination of
N, results in minimal reorganisation of the [Fe(depe),]" frag-
ment. While two CH; groups from ligand ethyl groups from
each depe moiety are directed towards the vacant axial coordi-
nation sites of the Fe centre, large Fe---H separations suggest an
absence of any agostic or anagostic interactions, which is sup-
ported by DFT results (vide infra)."®

Neither solid samples nor solutions of [1]"[BAr]” under Ar
showed bands attributable to an »yy stretch in their IR or
Raman spectra, further confirming the absence of N, in the
complex. [1]'[BAr;] ™ is insoluble in alkanes, PhH and PhMe, yet
highly soluble in THF and in the highly polar, non-coordinating
1,2-difluorobenzene (DFB). *'P NMR spectra (DFB, Ar) of
[1]'[BAri]™ are silent, whereas very broad paramagnetically-
shifted resonances for the [1]" moiety feature in the "H NMR
spectrum (see ESI{). The solution-phase magnetic moment
(Evans NMR, DFB, 243-298 K, Ar) was found to be 1.75 ug, and
the X-band ESR spectrum (PhMe/DFB glass, Ar, 40 K) revealed
a rhombic signal (g; = 2.483, g, = 2.234, g; = 1.985) with an
isotropic g-value (giso) of 2.23, [giso = (gx + & * £2)/3; Fig. 1(c)].
These data are consistent with a low-spin (S = 1/2, d”) Fe(r)
centre. The strong similarity between the X-band ESR spectrum
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of a powdered sample of [1]"[BAr;]™ (Ar, 1 bar, 40 K) and solu-
tion measurements implies that [1]" is virtually isostructural in
solution and the solid state.

Dissolution of [1]'[BArf]” in N,-saturated solvents (1 atm;
DFB or THF) afforded forest-green solutions at room tempera-
ture, which became pale yellow upon cooling to —30 °C; either
heating these solutions above room temperature, or degassing
with Ar, resulted in the rapid reappearance of the characteristic
blue colour of [1]"[BAr}] . An IR active »yy stretch at 2067 cm ™™
confirmed coordination of N, to [1]" to form [1-N,]", which is
intermediate in value between those seen for 1-N, and the
related Fe(u) [trans-Fe(H)(N,)(depe),]” (1975 cm ' and
2102 em™ ! respectively);® this trend may be readily accounted
for by decreased Fe — N, m-backbonding as the oxidation state
increases.

The thermodynamics of N, coordination were obtained from
variable temperature UV-vis spectroscopy by monitoring the
concentrations of [1]" and [1-N,]" via their absorption features
(Amax (nm) = 618 and 1018, respectively; Fig. 2).” N, association
with [1]" is accordingly found to be exoergic (AGys =
—4.9(1) kcal mol ") with, as expected, a favourable enthalpy
(AH®° = —13.1(1) keal mol™') and an unfavourable entropy (AS®
= —27.6(1) cal K™ mol™ ") contribution; these values compare
well with those for N, binding by (P;B)Co [P = 0-(PiPr,),CsHa;
AH® = —13.9(7) keal mol ™, and AS® = —32(5) cal K™ * mol "],
which also produces an S = 1/2 dinitrogen complex.'®**

The X-band ESR spectra of rapidly freeze-quenched N,-
saturated DFB or THF solutions (40 K) of [1]"[BAr;| ™ revealed
a pseudo-axial signal which differs markedly from the rhombic
signal characteristic of the N,-free complex (giso = 2.07;
simulated g tensors = 2.0014, 2.0922, 2.125). Additionally,
hyperfine coupling to the four *'P nuclei was resolved for the
THF glass giving A(*'P) = 62.7(1) MHz (Fig. S5), which is very
similar to A, (*'P) previously obtained for [1-N,]'[TfO]™ [66.2(2)
MHz].?

Similar spectroscopic observations have been described for
the Fe() complex [Fe(DMeOPIPE),(N,)]" (DMeOPIPE = R,-
PCH,CH2PR,; R = CH,CH,CH,0Me), which were attributed to
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Fig. 2 Variable-temperature UV-vis spectra of [1]7[BArfl™ in THF
under 1 atm. N, ([BArh]~ counterions omitted). Thermodynamics of N,
binding: AH® = —13.1(1) kcal mol™, AS® = —27.6(1) cal K> mol™; Kaog
=413) x 10* ML,
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an equilibrium between yellow [Fe(DMeOPrPE),(N,)]" and
a purple N,-bridged bimetallic S = 1 species
{[Fe(DMeOPIPE),],(1-N,)}**; the latter is favoured at higher
temperatures and/or low p(N,).2* We noted that comparable
optical absorptions were observed for [1]" and [1-N,]" (see Table
S1, ESIt), and accordingly 2D-ESR (HYSCORE; HYperfine Sub-
level CORrElation) experiments were performed on equivalent
"N,- and "N,-saturated PhMe/DFB (7:1) solutions of
[1][BAri] ™, to fully ascertain the solution-phase coordination
mode of N, to [1]". As shown in Fig. 3, two "N signals were
clearly detected at the perpendicular field position, in panels a,
b, e, f.

The proximal nitrogen, '*N,,, gives intense double quantum
dq, dq correlation peaks in the (—, +) quadrant corresponding to
the N directly bound to Fe(1) centre, leading to peaks at
(¥16.2, £12.2) MHz and, from eqn (6), 4iso(**N,) may corre-
spondingly be calculated as 14.3 (£0.1) MHz.** For the distal
nitrogen, '*Ng4, field-dependent °N, simulations of 4-pulse
HYSCORE provide 4j5o(**Ng) = 4.4 MHz (seen in ESI, Fig. S71). A
clearly-resolved quadrupole interaction of N, reveals a very
small asymmetry n ~ 0, which compares well with sp-hybridized
"N found in N=N and [C=N]".*“ For the "N (red in Fig. 3), it
was found that K = 0.9 MHz. In the case of the '*N,,, the data
was insufficient for a more precise determination, and the
quadrupole values of "*N4 were used as an approximation. For
ligand atoms directly bonded with covalent character, a point-
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Fig. 3 X-band 2D ESEEM spectra of 2.5 mM [1-3*N,]*[BArh]™ in THF,
with standard 4-pulse HYSCORE (panels (a—d)), and DONUT HYS-
CORE? (panels (e—h)), at two fields (3471 G: (a, b, e and f); 3800 G: (c,
d, g and h)) and two 7 values (200 ns: (a, ¢, e and g); 132 ns: (b, d, f and
h)) while 7, = 800 ns for DONUT. The samples were frozen glasses at
20 K and measured with pulse lengths of t/2 = 8 ns and = = 12 ns,
initial variable delays of 100 ns, and a time step of 20 ns over 200 points
in both axes. The microwave frequency was 9.7449 GHz. Experimental
data is in black, while separate simulations of two N are overlaid in
red and cyan.
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dipole model can be inaccurate; for "*Ng T = 1.2 MHz, and for
N, the simulation value was T = 0.6 MHz. To confirm that
both N signals derive from the same molecule (considering
that no large "N hyperfine coupling was observed) close
examination of the dq, dq peaks at 3471 G reveals weak multi-
nuclear combination frequency peaks such as {Np“(dq),
N,%(dq), N4°(dq)} (seen in Fig. S71), a signal class previously
reported by Stich et al. for Mn,(in/wv) Catalase.* It is notable that
no ‘half-field’ resonance (g = 4) was observed in the CW-ESR
experiments, which would be expected for the hypothetical
triplet (S = 1) {[Fe(depe),]»(1-N,)}** due to a formally forbidden
AM, = 2 transition, as has been documented for other transi-
tion metal diradicals.*® Collectively alongside other spectro-
scopic data, these observations strongly support the solution-
phase assignment of [1-N,][BAri]~ as [Fe(depe)y(n'-
N=N)|"[BAr}] .

Given that {TM(c-N,)} and {TM(c-H,)} fragments are related
by the same VE count, numerous diamagnetic metal-ligand
platforms have been shown to interconvert these species under
N, and H, mixtures;*® however, analogous open-shell examples
are extremely rare.*® Furthermore, only two thoroughly charac-
terised paramagnetic dihydrogen ligand complexes have been
reported to date: (P;B)Co(H,)" and (P5Si)Fe(H,);” both of these
are idealised C; symmetric, trigonal bipyramidal S = 1/2
complexes. In spite of the different coordination geometry
and cationic charge, admission of H, (1 atm.) to DFB or THF
solutions of [1][BAr;|” demonstrated clear reaction (Fig. 4(a)),
as evidenced by an immediate colour change to pale green (Apax
= 850 NM, £ma = 19 m> mol ™) and the appearance of a new
near-axial ESR signal (X-band, PhMe/DFB, 40 K; g = [2.000,
2.085, 2.160], giso = 2.08, Fig. S6}), which displays more
pronounced hyperfine splitting for g, and g; than seen for
[1-N,]'[BAr;]".”” The most plausible identities of this species
are the Fe(1) adduct [Fe(depe),(o-H,)]" ([1-H,]") or the Fe(ur)
oxidative addition product [Fe(depe),(H),]" ([1(H).]").?® Using
the DFT-optimised structures of [1-H,]" and [1(H),]" (vide infra),
the angle (8) between the g; principal axis and the Fe-H vectors
was calculated to be 16° and 31°, respectively.

Orientation-selective ENDOR has previously been used to
differentiate between Fe(H,) and Fe(H), formulations using
electron-"H dipolar hyperfine coupling interactions, where only

® H—H ® H—H (©]
) P, WP H P, | WP "I, Hp Po, | &P
s B e el 8
P P -Hp 7 P solution P” | P
solution only H
(UM or solid [1-H,* SLow [2]
blue green
g
H—H T H H H
(b) 'FT \ 7/
Fe' ‘\P o Fe'!
Fe

Fig. 4 (a) H, coordination by [1]*[BArk] . (b) Schematic showing angle
B between g_; principal axis and Fe—H bond vectors, relevant to
electron-'H dipolar coupling for alternative [1-(Hy)]* and [1(H),]*
structures, from reaction of [1]* and H,. P = PEt,;
[BArG]~ counteranions omitted.
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small 8 angles (<15°; see Fig. 4(b)) were able to reproduce the
observed experimental lineshape.”” The 1 : 2 : 1 hyperfine seen
at the five negative *'P peaks of gp,;,, in CW-ESR of Fig. S6,1 was
interrogated more closely with H,/D,-saturated solutions of
[1]'[BAr;]” using 'H Davies ENDOR (Electron-Nuclear DOuble
Resonance) and both 'H & H HYSCORE experiments (see
Fig. 5). Fits to data from both techniques used two H hyperfine
interaction values, for "H A(*H) = [~17.99, —19.93, 26.58]/MHz,
while the values were scaled by the nuclear g-factor ratio g,(*H)/
ga(*H) = 0.1535 for the ?H HYSCORE simulation, revealing
a dipolar component of T = 15.2 MHz. The Fe-H distance, rreg
(A), can thus be obtained from rpeyy (A) = ¥ (p(re)79-06/T), using
a spin density of p(r¢) ~ 0.83 as remainder of the large isotropic
3'P hyperfine interactions;*>*' this coupling is consistent with
an Fe-H bond distance of 1.64 A. Considering the spin density
at Fe and the coordinating ligand atoms and DFT coordinates
(vide infra), eqn (3) was used to fit an angle of 26 = H-Fe-H, § =
5.5°, using the empirical principal dipolar values [-14.2, —16.2,
30.4] MHz (written as [-T(1 — ¢), —T(1 + §), 27], with ¢ as the
rhombicity parameter); this value is in excellent agreement with
that found for (P;Si)Fe(H,) (8 = 6°),” which was interpreted as
indicative of partial rotational averaging of the dipolar inter-
action. However, the angle 8 = 5.5° includes spin density on
opposing “’H, and Morris et al., has shown that rotational
motion can reduce H-H dipolar interactions by up to a factor of
four, implying that 8 = 5.5° should be considered an upper
limit.**

Simulations of ENDOR data for [1-H,]" in Fig. 6 are consis-
tent with the DFT structure (vide infra), in having two classes of
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Fig. 5 X-band 4-pulse HYSCORE spectra of [1-H,]*[BArkl~ (panels
(a—c)) and [1-2H,]*[BArf] ™~ (panels (d-f) at 2.5 mMin 7 : 1 PhMe : DFB,
each collected at three field positions as indicated by g-value. The
samples were frozen glasses at 20 K and measured with pulse lengths
for °H of 7t/2 = 12 ns and 7t = 8 ns, T = 204 ns, initial variable delays of
100 ns and a time step of 20 ns over 300 points in both axes. The pulse
lengths for 'H were /2 = 8 ns and T = 12 ns, t = 144, 140, 132 ns (top
to bottom), initial variable delays of 100 ns and a time step of 8 ns, and
200 points in both axes. The microwave frequency was 9.7411 and
9.7583 GHz, respectively. Experimental data is in black, while simula-
tions are overlaid in red.
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31p hyperfine interaction, a;,(*'P) = 69.3 MHz of P in-plane
orthogonal to the Fe(1)-H, bond and a;s,(*'P) = 66.3 MHz for
the P bent out-of-plane; furthermore the P-Fe-P depe ligand
angle of 85.5° suggests that the symmetry lies closer to 2-fold
than 4-fold. Correspondingly, these results provide strong
evidence that [1-H,]" is best described as a non-classical ¢-H,
adduct.

Freshly-prepared solutions of [1-H,]" are sufficiently stable
for detailed in situ characterisation and, as with solutions under
N,, vacuum/Ar-degassing resulted in regeneration of spectro-
scopic signals attributed to [1]', demonstrating reversible
coordination of H,. Nevertheless, attempts to obtain thermo-
chemical information for H, binding were unfortunately frus-
trated by slow and irreversible formation of the Fe(u) trishydride
trans-[Fe(depe),(H)(H,)]", [2]".>* Appreciating that ligation of N,
or H, to [1]" results in minimal deformation of the [Fe(depe),]"
core,* we speculated that binding of these gases might also be
reversible in the solid state, as in solution. Gratifyingly,
admission of either N, or H, to powdered samples of
[1]'[BAr]” led to comparable colour changes (deep blue to
yellow or green, respectively), consistent with clean conversion
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Fig. 6 X-band Davies ENDOR spectra of [1-*H,]T[BAr]~ at 2.5 mM in
7 :1 PhMe : DFB, collected at nine field positions as indicated by g-
value along the right side. The sample was a frozen glass at 20 K and
measured with pulse lengths of t/2 = 40 ns and T, = =80 ns, T =
300 ns, RF pulse = 16 us, and 1 ps before and 2 s after the RF pulse,
with stochastic frequency stepping. The microwave frequency was
9.7621 GHz. Experimental data is in black, while simulations of 3!P
values are red, and simulations of *H are in blue (as discussed in main
text).
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Fig.7 Reversible binding of H, by [1]*[BAr§]~ in the solid-state: CW X-
band ESR spectra of powdered [1]*[BArk]~ under Ar (black), followed
by evacuation and subsequent admission of H, (1 bar, [1-H,]*[-
BArg]™, pink), and sequential evacuation to 10~° mbar and backfill with
Ar (blue). All spectra recorded at 40 K.

to [1-(N,/H,)]'[BAri]s) . ESR spectra closely matched those
obtained in solution, strongly suggesting that the geometry of
the [Fe(depe),]" core is preserved in both phases upon N, and or
H, coordination. Crucially, removal of N,/H, from these
samples under vacuum led to complete restoration of the
original ESR signal of [1]" (Fig. 7 and S2f), confirming that
binding is fully reversible (over multiple cycles) in the solid
state; importantly, no loss in signal intensity was observed
(which would be expected from formation of diamagnetic [2]")
under H,. Furthermore, ready exchange of the N, ligand for H,
is achieved via simple evacuation of N, and replacing with H,,
and vice versa.

ESR spectra of [1]'[BAr;|” obtained in the presence of
a single equivalent of N, or H, allow for a quantitative
comparison of the binding affinities of the two gases; the ratio
[1-L]"/[1]" (L = N, or Hy; determined by signal intensity at 303 K)
is significantly larger for H, (44) than N, (0.15), revealing that
binding of the former is almost 300 times more favourable at
ambient temperature.* For comparison, (P;B)Co(L) (L = N,, H,)
are in rapid dissociative equilibrium in solution under similar
conditions, whereas (P;Si)Fe(L) species require several days to
interconvert (proposed to proceed via an associative mecha-
nism involving partial dechelation of the P;Si ligand);”** both
demonstrate a preference for H, binding, albeit to differing
degrees (K /Ky, = 2 and 50 for Co and Fe, respectively). This
difference in exchange kinetics was postulated to result from
the poorer m-backbonding capability of Co vs. Fe which leads to
weaker M-L interactions. Hence it is plausible that the ready
reversibility of N, and H, exchange for [1]" relative to (P;Si)Fe
could also be due (in part) to poorer m-donation from the
former, by virtue of its cationic charge, which is also manifest in
the higher vy stretch value of the former (2067 vs. 2003 cm™ ).

Computational calculations

In order to probe the structure and electronic properties of [1]",
[1-N,]", and [1-H,]', density functional calculations were
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carried out using the ADF program suite version 2014.1.> The
Slater-type orbital (STO) basis sets were of triple-{ quality
augmented with a one polarization function (ADF basis TZP).
Core electrons were frozen (C, N 1s; Fe 2p) in our model of the
electronic configuration for each atom. The local density
approximation (LDA) by Vosko, Wilk and Nusair (VWN)*” was
used together with the exchange correlation corrections of
Becke and Perdew (BP86).%

Optimized geometries were ascertained as local minima via
frequency calculations. Geometry optimisation of base-free [1]"
with § = 1/2 resulted in a D, structure consistent with X-ray
crystallographic data, with an angle of approximately 7°
between the two iron-ligand Fe(PP) coordination planes
(Fig. 8(a)); fixing the spin state to S = 3/2 showed the alternative
high-spin structure to be some 0.77 eV (approximately
17.8 keal mol™") higher in energy. Geometry optimisation of
[1-N,]" results in a structure of C, symmetry with a slightly
increased angle between the two Fe(PP), planes of 19°
(Fig. 8(b)). The coordination geometry around Fe is square-
based pyramidal with P-Fe-N, angles of 94.8° and 95.6°. The
calculated stretching frequency for the bound N, ligand was
2059 cm™ ', which is in good agreement with experiment
(2067 em ™). Geometry optimisation of [1-H,]" (Fig. 8(c)) gave
a o-complex with a H-H bond length of 0.899 A (cf. free H,: 0.74
A)® and an average Fe-H distance of 1.61 A, which correlates
well with 2D-ESR data. An alternative [1-(H),]" isomer
(Fig. 8(d)), corresponding to the product of H, oxidative addi-
tion and containing two well-separated hydride ligands (H---H
= 1.57 A and Fe-H distances of 1.51 A), could also be located,
albeit 12 kcal mol ™" higher in energy than [1-H,]" (see Table S2
in ESI for further detailst).

Since all compounds had unpaired spins the DFT calcula-
tions were unrestricted, with different orbitals for « and § spins.
The energies of the « spin electrons, of which there are more,
tended to be lower than those of the § spin electrons in corre-
sponding orbitals because of exchange stabilization (Fig. 9).

(b)

(d)

Fig. 8 DFT-optimised structures of (a) [11*, (b) [1-N,I*, (c) [1-H,l™, (d)
[1(H),1".
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Fig. 9 Electronic energy levels and their occupancy for [1]*, [1-N,]*
and [1-H,l*. The principal Fe character is indicated.

The unpaired electron in the three cases, [1]", [1-N,]", and
[1-H,], occupies an orbital of primarily d(z*) character; in the
case of [1-N,]" and [1-H,]" this is also hybridized with the Fe
4p(z) orbital (Fig. 10), and is antibonding with respect to the
coordinated N, or H,, thus explaining the weak association of
these ligands to the [Fe(depe),]" core. Of particular interest is
the virtual orbital (z) of [Fe(depe),]’, the isosurface of which is
shown in Fig. 10; its AO composition is predominantly Fe 4p(z)
and P 3p.

Time-dependent DFT (TDDFT) was used to calculate the
electronic absorption spectra of [1]", [1-N,]" and [1-H,]" (see

[1-Ha" 2!

[1:Ng]* 22
Fig. 10 Selected Kohn—Sham isosurfaces for [1]*, [1-N,]* and [1-H,]*

showing the z% occupancy of the unpaired electrons and the virtual
orbital for [1]* of primarily 4p, character.
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Table S3 and Fig. S15 in the ESIf). The numerical agreement
with experiment is only moderate, with the bands being calcu-
lated at higher energy than measured experimentally. All three
compounds have as their lowest energy bands d-d transitions,
with a 8 spin electron being excited into the hole in the d(z?)
orbital. However those bands of [1]" have effectively zero oscil-
lator strength on account of its high symmetry. The d—-d transi-
tions are of longer wavelength for [1]" than for [1-N,]" and
[1-H,]", which fits with the smaller HOMO-LUMO gap in the
former (see Fig. 9). The subsequent set of bands calculated at
587, 548 and 503 nm for [1]" fit well with the features found at
500 and 618 nm experimentally; they are of significantly higher
oscillator strength than the d-d bands of [1-N,]" and [1-H,]"
and correspond to excitation from the occupied 3d orbitals into
the Fe 4p, orbital. In [1-N,]" and [1-H,]’, the corresponding
band is absent as a consequence of ligand binding along the z
axis, hence their respective absorption spectra have no analo-
gous feature. Thus, in spite of the lack of numerical agreement
for the d-d bands, many features of the calculated spectra give
a good account of those observed.

Conclusions

In conclusion, we have synthesised and fully characterised an
open-shell, cationic Fe(1) complex, [1]'[BAr;]”, and demon-
strated the readily reversible coordination of N, and H, to the
S = 1/2 Fe centre. Remarkably, this facile exchange between N,
and H, coordination occurs in either solution or solid states
under ambient conditions, likely due to the very small struc-
tural change in transitioning between square planar [1]" and
square-based pyramidal [1-(N,/H,)]" species. Furthermore,
[1-H,]'[BArj]” is a rare example of a well-defined para-
magnetic o-H, complex, as corroborated by ESR spectroscopy
and DFT calculations. These results reveal that reversible
coordination of these small molecules to open-shell
complexes is neither restricted to neutral compounds nor C;
molecular symmetries, which until now, have been the only
known examples. Given the importance of Fe in catalytic N,
fixation, this work is of significant relevance to the ongoing
development and investigation of well-defined transition
metal catalysts for N, reduction, mediated by H'/e™ sources or
(ideally) H, as the terminal reductant.
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