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Translocation dynamics of knotted polymers
under a constant or periodic external field†

Vivek Narsimhan,a C. Benjamin Rennerb and Patrick S. Doyle*a

We perform Brownian dynamics simulations to examine how knots alter the dynamics of polymers moving

through nanopores under an external field. In the first part of this paper, we study the situation when the

field is constant. Here, knots halt translocation above a critical force with jamming occurring at smaller

forces for twist topologies compared to non-twist topologies. Slightly below the jamming transition, the

polymer’s transit times exhibit large fluctuations. This phenomenon is an example of the knot’s molecular

individualism since the conformation of the knot plays a large role in the chain’s subsequent dynamics.

In the second part of the paper, we study the motion of the chain when one cycles the field on and off. If

the off time is comparable to the knot’s relaxation time, one can adjust the swelling of the knot at the pore

and hence design strategies to ratchet the polymer in a controllable fashion. We examine how the off time

affects the ratcheting dynamics. We also examine how this strategy alters the fluctuations in the polymer’s

transit time. We find that cycling the force field can reduce fluctuations near the knot’s jamming transition,

but can enhance the fluctuations at very high forces since knots get trapped in metastable states during

the relaxation process. The latter effect appears to be more prominent for non-torus topologies than

torus ones. We conclude by discussing the feasibility of this approach to control polymer motion in

biotechnology applications such as sequencing.

1 Introduction

Knots are found everywhere in our daily lives, whether they be
fashion accessories or items to fasten two objects together.
However, unknown to many people, knots also play an impor-
tant role in biology. For example, knots in the umbilical cord
create complications during child birth,1 and knots in DNA alter
the kinetics of transcription,2 so much so that nature has evolved
specific enzymes to control the topology of these chains.3–5

Driven by these observations, there has been considerable interest
in recent years to understand how these self-entanglements alter
the physical properties of polymers at the molecular scale.6–8 By
now, we know that knotting in long polymer strands is mathema-
tically inevitable.9,10 This phenomenon leads to drastic changes in
the polymer’s dynamics (relaxation,11,12 coil-stretch13,14) and its
mechanical properties (rupture strength15). We are now at the
stage where researchers can test recent theories16–18 via single-
molecule experiments. For example, researchers can now tie
knots into actin filaments19 or DNA20 via optical tweezers, and
others are able to create knotted conformations via application
of an electric field.21,22

In this paper, we discuss how knotting on an open, linear
chain alters the chain’s motion through small pores. This process,
known as translocation, has wide ranging applications in
biology and biotechnology. Viruses eject their DNA into hosts
through small pores in the cell membrane.23,24 Similarly, nano-
pore sequencing consists of passing DNA through a thin hole via
an imposed electric field. If the resulting electric signal is sensitive
to chemical detail, this event can be used to read the sequence
along the chain’s backbone.25–27 This idea, proposed by Deamer
and co-workers28–30 and now implemented by Oxford Nanopore,31,32

is a promising next-generation technology as it allows long DNA
reads with little to no chemical modification. Its single-molecule
nature allows one to sample genetic heterogeneity among cell
populations, which is ideal for detecting rare events such as the
onset of cancer.

Currently, one limitation facing nanopore sequencing is that
DNA moves too quickly through the pore, rendering the elec-
tric signal to be noisy.27,30,33 There are several proposals in the
literature to address this issue,34–36 most of which involve
binding proteins onto DNA to ratchet it through the pore or
using exonucleases to hydrolyze the end of the chain one nucleo-
tide at a time.37–39 The idea we present here uses entangle-
ments such as knots to retard the motion of the polymer. The
advantage of this technique is that little chemical modification
is required and it could be generalized to other polymer systems.
As little has been examined on this front, we would like to
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perform simulations to provide physical insight into this
process.

Our paper is divided into two parts. First, we will discuss the
translocation dynamics of a knotted polymer under constant
field. Previous authors have simulated this process,40,41 finding
that knots completely halt translocation above a critical force.
Suma et al.41 also examined the effect that topology plays in this
process, finding that twist knots jam more easily than torus
knots. We verify these effects in our simulation, and we examine
another phenomenon that has been unreported thus far. Close to
the jamming transition, we find that the translocation speed
exhibits large fluctuations because the knot’s dynamics are
extremely sensitive to its conformation as it enters the pore.
These observations are evidence of caging, stick-slip motion,
and molecular individualism42–44 of a polymer knot. From a
practical standpoint, these results state that there are force
regimes where translocation will be difficult to control and thus
should be avoided.

The primary contribution to this manuscript comes from
the second part of the paper where we study the translocation
dynamics of a knotted polymer when the applied field is periodic.
We find that by cycling the field on and off at the relaxation time
scale of the knot, we can control the swelling of the knot and
hence ratchet the polymer through the pore. We examine how the
translocation speed varies as a function of the cycle time. We also
discuss limitations of this approach to control polymer motion.
At large field amplitudes, we observe significant fluctuations in
the translocation speed because the knot gets trapped in certain
conformations during its relaxation. Remarkably, this effect
appears most pronounced for particular chain topologies. We
discuss the implication of these results in the conclusion.

We note that the glassy physics of locally-dense, single poly-
mers have been receiving increasing attention in the scientific
community. For example, recent experiments shown that col-
lapsed DNA can jam at the pores of viral capsids.45 It is of interest
to manipulate these arrested states, and we hope to provide
insight into tight, knotted systems here.

2 Methods

Fig. 1a shows the geometry of our Brownian dynamics simula-
tions. We represent a polymer as a linear chain of N beads of
diameter b connected by N � 1 rods of length l. The rod length
l is equal to the Kuhn length of a polymer, and we vary the bead
diameter to alter the roughness along the polymer backbone,
which gives rise to friction when segments slide over each other
in an entanglement.47 In the main manuscript, we will examine
the situation when the bead diameter is equal to the rod length
(b = l). In the ESI,† we will briefly discuss results when the
beads are not touching (b = 0.8l, i.e., more corrugated land-
scape) and slightly overlapping (b = 1.5l, i.e., a smoother energy
landscape). The model here is the simplest representation of a
flexible polymer that captures the essential features of intra-
chain friction.48 It should yield order-of-magnitude estimates of
jamming forces and time scales while summarizing the major

trends in the translocation process. Note: if one were to more
accurately determine the jamming behavior of a tightly knotted
chain, one likely has to resort to all-atom, explicit solvent simula-
tions to capture all the details of the short-range, intra-chain
interactions. This task is computationally intensive and likely
cannot be simulated for the time scales of interest here.

In our simulations, we tie a knot at the center of the chain and
insert one end of the chain into a cylindrical pore of length L and
radius R. Beads inside the pore are subject to a spatially-uniform
but time-varying body force f (t) along the pore’s axis. This model,
albeit simple, is a commonly-used, low-order representation of a
polymer electrophoresing through a pore.40,49–51 We simulate a
chain of N = 200 beads and set the pore’s radius and length to be
R = l and L = 10l. This way, a jammed knot of size 10–20 beads
will be much smaller than the polymer chain but larger than
pore’s diameter, which will allow jamming to occur at sufficiently
large forces. Like in previous studies,40,49,52,53 we neglect hydro-
dynamic interactions between chain segments and set the drag
coefficient of each bead to be z. Thus, the length and time scale
of the problem are the rod size l and its diffusion time td = l2z/kT,
where kT is the thermal energy. Typical values for single-stranded
DNA are b = l = 1 nm (its nominal width40,41) and td = l2z/kT E
3pZl3/kT E 2.3 ns. To enforce the excluded volume interactions
between chain segments, we apply a stiff harmonic potential
between overlapping beads with spring constant H = 5000 kT/l2.
Similarly, we localize the chain inside the pore by applying a
repulsive harmonic potential on beads that overlap with the pore
wall. More details can be found in the ESI,† including how we
create the initial conditions.

In this paper, we vary the body force f (t) in time and see how
this parameter affects the velocity of the knotted polymer through
the pore. The forces we apply are between f = 1–20 kT/l. If we
assume the effective, screened charge across 1 nm of single-
stranded DNA is q = �1.25e, these forces correspond to a voltage
drop of 0.20–4.1 V across the nanopore, values that have been
achieved experimentally.54 See ESI† for more details, which is
inspired by the analysis of van Dorp et al.55 The signals we pulse
have a off times around 20td E 46 ns, values that have been
attained in electroporation studies.56 We also examine what
role the chain’s topology plays in the translocation dynamics.
The knot types we study are in Fig. 1b. The 31, 51, and 71 knots

Fig. 1 (a) Schematic of Brownian dynamics simulation. A knotted polymer
translocates through a pore with a force f (t) per bead. (b) Types of knots
simulated (Alexander–Briggs notation46).
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are torus knots, which are knots whose contour can be mapped
onto a surface of a torus. The 31, 41, 52, and 61 knots are twist
knots, which are created by taking a linear chain, forming a
loop with any number of half turns, and then passing one chain
end through the loop. We note that the 31 knot is a member of
both families.

To measure the boundaries of the knotted region in our simu-
lations, we employ two techniques. The first technique involves
projecting the knot onto a plane parallel to the pore axis and then
determining the smallest subset of crossings that retains the
chain topology via computation of the Alexander polynomial.57,58

Since there are many planes that satisfy this condition, we choose
the plane that gives rise to the smallest knot size. When the knot
is jammed at the pore wall, we can also use a simpler technique
to obtain the knotted boundary. We start one bead into the pore
and calculate its number of nearest neighbors, defined as the
number of beads within a cutoff radius Rcutoff = 1.2b. We march
left until Nneighbors = 2, at which we assign this bead as the left
knot boundary. We typically use the simpler technique to calcu-
late the knot’s radius of gyration when it is jammed at the pore,
although it can only be used in the situation when the knot is
relatively tight and its topology is not too complex (as is here).

3 Results – constant force

Fig. 2a shows trajectories of a knotted polymer moving through a
pore when the body force f is constant in time and the bead
diameter is the same as the rod length (b = l). The y-axis is the
fraction of polymer translocated, defined as f = (L0� s)/L0, where s
is the contour of the polymer that has not entered the pore region
and L0 is the total length of the polymer. The results plotted here
are for the 41 topology – one of the more common knot types
observed in bulk and in channels.59 When the knot contacts the

pore – as indicated by the bend in the graphs – the polymer slows
noticeably as the knot acts an additional source of chain friction.
At low applied forces ( f = 3 kT/l), the polymer traverses the pore at
a constant speed, albeit slower than the unknotted case. At high
forces ( f = 7 kT/l), translocation completely halts since the knot
jams at the pore entrance. This qualitative behavior has been
observed in simulations by Huang et al.,60 Rosa et al.,40 and
Suma et al.41 At very high forces, the knot becomes tight and
the probability of polymer reptating through its core becomes
exponentially small.47

At intermediate forces ( f = 5 kT/l), we observe qualitatively
different behavior. Some trajectories are completely jammed,
others move through the pore at uniform speed, while others
exhibit stick-slip motion. In this situation, the configuration of the
knot at the pore wall plays a large role in the chain’s dynamics.
Fig. 3a demonstrates an example of this effect. In this graph, we
see a trace of one polymer with a 41 knot moving through a pore.
The polymer switches between jammed and unjammed states, and
during the transition, the radius of gyration of the knotted region
makes distinct hops. The number of monomers in the knotted
core changes as well. Results for the other knot topologies (31, 51,
52, 61) are shown in the ESI.† For the most part, we observe a broad
distribution in the polymer’s transit times when the knot is close
to the jamming transition, although for other knot topologies, we
see large fluctuations at other force values as well.

Fig. 3b plots the forces at which we observe significant stick-
slip behavior for the 41 knot. This figure shows the fraction of
time the polymer is jammed over an ensemble of 20–50 runs.
When this fraction is O(0.5), stick-slip is significant and hence
polymer motion is difficult to control. Although this regime
should avoided from a practical standpoint, it is interesting from
a physical perspective since it is an example of caging47,61 and
molecular individualism42–44 of the knot.

Fig. 2 Dynamics under constant force. (a) Traces of polymer translocation for a 41 knot. At low forces, the knots move through the pore at a nearly
constant velocity. At high forces, the knot jams and halts the polymer’s motion. At intermediate forces, large fluctuations are observed in the polymer
translocation. For all plots, we show traces from 20 runs. (b) Average velocity as a function of force for different knot types. Non-twist knots (71 and 51)
jam at much larger forces than twist knots (31, 41, 52, and 61). Error bars are standard deviations. The results here are for the case when the bead diameter
is equal to the rod length (b = l).
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We close this section by graphing the mean translocation
speed hvi as a function of applied force f for several different knot
topologies (Fig. 2b). We measure this quantity by fitting each
polymer trajectory like in Fig. 2a to a straight line after the knot
contacts the pore. We calculate the mean and standard deviation
from 20 runs. One observation from these results is that the twist
knots (31, 41, 52, and 61) jam much more easily than non-twist
knots (51 and 71). This corroborates the observations by Suma
et al.,41 and that paper gives an elegant mechanistic explanation
for why this discrepancy exists. In short, the twist knots dissipate
tension much more easily than non-twist knots, which leads to
less force being transmitted to the chain outside the pore. One
difference in our graph is that we examine a larger dynamic force
range (e.g., we see that the 51 knot eventually jams). We also plot
error bars, so one can see what forces lead to large fluctuations
relative to the mean (see f = 5 kT/l for the 41 knot, f = 7 kT/l for the
52 knot, and f = 10 kT/l for the 51 knot). We note that the values of
jamming we obtain in this study are larger than the ones reported
by Suma et al.41 This result can be expected as we use nearly hard-
sphere repulsions to enforce excluded volume interactions while
the other authors use softer intra-chain interactions that allow
knots to tighten more easily. We also use a larger pore diameter
(R = l as opposed to R = 0.775l).

In the ESI,† we examine how the roughness of the polymer
backbone alters the jamming physics. As expected, knots with a
more corrugated backbone (b = 0.8l, i.e., non-touching beads)
jam at lower forces than ones with a less corrugated backbone
(b = l, i.e., touching beads). If the backbone is fairly smooth
(b = 1.5l, i.e., overlapping beads), the knots jam at very large
forces for certain topologies but fail to jam for other topologies.

In the next section, we will see that the corrugation plays a large
role in relaxation behavior of the knot – i.e., how the knot swells
from its tightened state.

4 Results – pulsed force field

In the previous section, we found that knotted polymers jam at
the pore’s entrance above a critical force. This observation presents
a method to control the motion of the polymer by cycling the
applied force. Fig. 4a and b shows the schematic of this idea.
We apply force f1 above the jamming transition for time t1,
followed by zero force for time t2, and then repeat this process
ad-infinitum. During the first part of the cycle, the knot jams at
the pore entrance and halts the polymer’s motion. During the
relaxation cycle t2, the knot swells and diffuses away from the
pore. This process introduces slack into the chain, which allows
it to ratchet through the pore when the force is turned back on.
Thus, by controlling the relaxation dynamics of the chain, one
can manipulate the polymer’s speed.

We demonstrate this claim in Fig. 4c and d. In Fig. 4c, we plot
the trajectories of a polymer with a 31 knot under a pulsed field
with parameters f1 = 7 kT/l and f2 = 0 kT/l. We vary the time t2

spent in the off-cycle but keep the total cycle time t1 + t2 to be
constant (t1 + t2 = 100 l2z/kT). The bead size is equal to the rod
length (b = l). In the figure, we see that the polymers traverse
through the pore in a step-wise fashion with the mean velocity
increasing with increasing time spent in the off-cycle. We plot
the average translocation speeds of 31 and 41 knots in Fig. 4d, the
knots most commonly found in vitro.62 Again, we can tailor the
average speed at which polymers move through the pore, and
furthermore, these speeds are demonstrably slower than the free
chain case (Fig. 4d inset). Translocation speeds for other knot
topologies are shown in the ESI.†

How does cycling the force field affect the fluctuations in the
polymer’s speed? In some situations, the cycling will reduce the
relative fluctuations, while in other situations it will enhance
them. We demonstrate the former in Fig. 5. In part (a), we plot
trajectories of a polymer with a 61 twist knot when we cycle the
force field between f1 = 7 kT/l and f2 = 0 kT/l. We keep the total
cycle time constant at t1 + t2 = 100 l2z/kT and vary the time t2

spent in the off cycle. We note that force f1 for this topology is
slightly below the jamming transition and hence leads to large
fluctuations when the cycle time t2 is zero or nearly zero.
However, when the off cycle is t2 = 20 l2z/kT, the fluctuations
are suppressed and the translocation speed becomes fairly con-
stant. The reason why this phenomenon occurs is that during
the off part of the cycle, the knot swells considerably – more than
the contour that reptates through the pore during the on cycle
(Fig. 5b). Thus, the relaxation dynamics in this case swamp out
any fluctuations that rise due to the knot contacting the pore.

In Fig. 6, we show a situation where the cycling gives rise to
the opposite effect – i.e., enhanced fluctuations. In this graph,
we show the 31 and 41 knot moving through the pore when we
cycle the force field between two values: f = f1 and f2 = 0. We vary
the force f1 during the on cycle but keep the cycle times the

Fig. 3 Stick-slip motion of knotted polymers at intermediate forces.
(a) Trajectory of a 41-knotted polymer under constant force (f = 5 kT/l). When
the motion stalls, the knot’s radius of gyration makes a distinct hop. The red
line is a piece-wise constant fit to the radius of gyration. Right: Snapshots of
the knot show that the number of monomers in the knotted core changes
during stick-slip motion. The bead size is equal to the rod length (b = l), but
the beads are drawn small for illustrative purposes. (b) Fraction of time a knot is
trapped as a function of force for the 41 topology. We consider a knot trapped
if it moves less than 0.4l for times greater than 250 l2z/kT. The data points are
averages over 20–50 runs.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
 2

01
6.

 D
ow

nl
oa

de
d 

on
 0

9-
09

-2
02

4 
04

:0
3:

38
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00545d


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 5041--5049 | 5045

same at t1 = 80 l2z/kT and t2 = 20 l2z/kT. The forces we examine
are well above the jamming transition for the two knot topologies.
When f1 = 7 kT/l, the polymers ratchet through the pore in a step-
wise fashion with a fairly uniform velocity. When the applied force
is very large ( f1 = 15 kT/l), the 41 knot exhibits large fluctuations
in its speed while the dynamics of the 31 knot stays the same.

We observe such enhanced fluctuations for the non-torus knot
topologies (41, 52, and 61) but have yet to observe these effects for
the torus topologies (31, 51, 71) – see ESI† for more details. We offer
an explanation for this phenomenon below.

Fig. 5 Reduction of fluctuations near jamming transition. (a) Trajectories
of a 61 knot when we cycle the force field on and off between f1 = 7 kT/l
and f2 = 0. f1 is close to the jamming transition for this knot topology. The
total cycle time is t1 + t2 = 100 l2z/kT and we vary the off time t2.
Increasing the off time reduces fluctuations in the polymer’s transit time.
(b) Knot size vs. time for one trajectory when the off time is t2 = 20 l2z/kT.
The knot swells by 4% of the chain during relaxation, which is larger than
the maximum amount of contour reptating through the knot in the
constant force case (maximum 2% of chain). In all simulations, the bead
size is equal to the rod length (b = l).

Fig. 6 Enhanced fluctuations due to cycling at large forces. Top row:
Trajectories of a 41-knotted polymer moving through a pore via a force
field cycling on and off. The on time is t1 = 80 l2z/kT, and the off time is
t2 = 20 l2z/kT. At moderate forces (f1 = 7 kT/l), the polymer ratchets
through the pore with a fairly constant velocity. If the force becomes too
large (f1 = 15 kT/l), the polymer’s speed exhibits large fluctuations. This
phenomenon appears primarily for the non-torus knots (41, 52, 61) but not
for the torus knots (31, 51, 71) (see ESI† for details). Bottom row: Trajectories
of a 31 knot at the same forces. Here we do not observe large fluctuations.
In these simulations, the bead size is equal to the rod length (b = l).

Fig. 4 Dynamics with oscillating force. (a) Periodic force profile applied to polymer inside pore. (b) Snapshots of polymer movement when we cycle
the field on and off. The polymer jams during the on cycle and relaxes during the off cycle, which allows us to ratchet the polymer through the pore.
(c) Trajectories of polymer translocation with a 31 knot. We alternate between a constant field (f1 = 7 kT/l) and no field (f2 = 0 kT/l). The total cycle time is
fixed: t1 + t2 = 100 l2z/kT. By adjusting the off time t2, we control the speed at which the polymer moves through the pore. Faint lines are trajectories
from 20 runs, and dark lines are averages from these runs. (d) Average translocation speed vs. off time for the 31 and 41 knot. The inset shows the speed of
the unknot (01). The parameters are f1 = 7 kT/l, f2 = 0 kT/l, t1 + t2 = 100 l2z/kT. Error bars are standard deviations from 20 runs. All results are for the case
when the bead diameter is equal to the rod length (b = l).
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When a knot jams at very large forces, it may become trapped
in a metastable state with an escape potential of several kT.
To verify this statement, we ran a simulation of a knotted polymer
at the pore wall undergoing a step relaxation (Fig. 7a). The initial
topology is a 41 knot, and the initial force is f = 15 kT/l, i.e., the
force at which we observe large fluctuations when we cycle the
field as in Fig. 6. When we turn off the field, we see that some
trajectories of the 41 knot remain jammed while others swell
easily (Fig. 7b). The knot’s caging appears to be dependent on
how it contacts the pore wall before the field is turned off.
In Fig. 7c, we divide all knot trajectories into two populations –
one that remains jammed during relaxation and one that remains
unjammed. If we plot the average density profile of these two
populations before relaxation begins, we see that the two profiles
are distinct. We observe a similar distinction for the knot’s radius
of gyration (Fig. 7c) as well as a simple visual check of the knot’s
conformation (Fig. 7b). Videos of the step relaxation simulation are
in the ESI.†

This caging phenomenon is highly dependent on knot topology
and the friction along the polymer backbone. For the case when
the bead size is equivalent to the rod length (b = l), we observe that
torus topologies (31, 51, 71) relax normally while non-torus ones
(41, 52, and 61) fail to unjam at large initial forces (f Z 15 kT/l).
If the polymer backbone is more corrugated (b = 0.8l, i.e., non-
touching beads), this effect is more pronounced. However, if the
polymer’s backbone is fairly smooth (b = 1.5l, i.e., overlapping
beads), we find that the knots relax normally even at very large
initial forces (f = 40 kT/l). See ESI† for more details.

5 Discussion

In this study, we investigate the feasibility of using knots to slow
down and control the translocation of polymers through nano-
pores. Under a constant, external field, we find that:
� Knots halt translocation above a critical force
� Twist knots (31, 41, 52, 61) jam more easily than non-

twist knots
� For many topologies, polymers experience large fluctuations

in their transit times when the knot is slightly below its jamming
transition.

These observations show that polymer motion can be dras-
tically altered by the friction created from self-entanglements.
This friction is generated by chain segments sliding past each
other in the knotted core, and the resistance to this motion
depends on the short-range interactions in the knotted region
as well as the tension at the pore entrance. The model we employ
here is the simplest representation of a flexible chain that captures
the essential features of this friction.47 It treats the polymer
backbone as an energy landscape corrugated at a monomer length
scale, a result borne from recent optical tweezer experiments as
the origin of solid friction between polymer filaments.63 Thus,
although we do not take into account all the short-range inter-
actions in a polymer like single stranded DNA, we expect our
model to capture the generic features of a translocation experiment
and give order-of-magnitude estimates for the critical voltages
required for jamming.

For the model we choose (the nominal chain width b is
approximately equal to the Kuhn step l), a voltage drop of roughly
1.4 V is needed to jam a 31 or 41 knot of ssDNA along a pore of
2 nm diameter and 10 nm depth. For more complex topologies
(51, 61), double the voltage is needed. If experiments show that the
transition occurs at a smaller voltage than expected, the energy
landscape along the polymer backbone is more corrugated than
the model suggests – i.e., there is greater friction due to chains
sliding past each other. In general, these experiments can provide
insight into how friction arises between chain entanglements, an
area that is receiving increasing interest in the polymer physics
community as well as in studies with granular, macroscopic
chains.64,65 Furthermore, the stick-slip phenomenon observed in
this manuscript is fascinating from a physics standpoint as it
demonstrates how polymers under the same operating conditions
exhibit vastly different dynamics depending on the knot’s configu-
ration. It is one of many examples of molecular individualism of a
polymer strand42–44 and it shows how topology plays a large role
in the polymer’s dynamical fluctuations.

In the second part of the manuscript, we examine the dynamics
of a knotted chain when the external field is cycled on and off.
If the off time is comparable to the relaxation time of the knot,
we can adjust the swelling of the knot and hence ratchet the
polymer through the pore. If we perform step relaxation simu-
lations of knots (Fig. 8) and fit the knot size during relaxation to
an exponential function y = a[1 � exp(�t/tknot)], we obtain a
relaxation time of tknot E 20–35 l2z/kT and a change in knot size
of a E 8 � 18l for the topologies studied so far (provided that
the knots do not arrest during relaxation). This corresponds to

Fig. 7 Failure to unjam during relaxation. (a) We run a simulation of a 41

knot with the force profile on the right. fpore = 15 kT/l. The bead size is
equal to the rod length (b = l). (b) During the relaxation process, the knot
size swells for certain configurations but remains arrested for others (100 runs
total). Representative snapshots of the knot before relaxation is shown on the
right. Beads are removed for illustration purposes. (c) Average number of near-
neighbors (R o 1.2b) and radius of gyration for the two populations (jammed
vs. unjammed) before relaxation occurs.
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a time scale of tknot E 40–70 ns and a change in knot size of
8–18 nm for single stranded DNA over the time scale studied
(200 ns). We expect both of these quantities to increase for more
complex topologies. We also expect the knot to swell further at
much longer times to a metastable size of E140 monomers.17

When the initial tension on the chain is sufficiently large, the
knot can arrest during relaxation. This effect is more pronounced
for non-torus topologies than torus ones, and this effect can
ultimately lead to large fluctuations in the polymer’s transit times
through the nanopore (Fig. 6). Again, we note that the forces at
which we observe this phenomenon are dependent on the knot’s
internal friction, which in turn is dependent on the corrugated
energy landscape along the polymer backbone. Our model pre-
dicts a voltage drop of approximately 3 V is needed across a pore
of 2 nm diameter and 10 nm depth to observe the caging of the 41

and 52 knots during relaxation. If the polymer backbone is more
corrugated than our model suggests, then this phenomenon will
be more prominent. We also note that in some instances, the
caging of the knot depends on the geometry of the knot just
before it relaxes (Fig. 7c). This observation indicates that the
knot’s dynamics exhibit memory, which is an interesting topic to
examine in the future.

In this work, we do not study how the pore size and the overall
chain length alter the dynamics of the knotted polymer. The
former is likely to modify the critical force for jamming, while
the latter is likely to modify the polymer’s speed, especially if
the chain is large and long-range hydrodynamic interactions
are included. These effects are ripe for future investigation.
Additionally, it would be interesting to inspect how the charge
relaxation inside the pore alters the knot’s dynamics. In most solid
state pores, the time scale of charge relaxation is tcap = RsCp = 75 ps
to 1 ms,66–68 where Rs is the resistance of the ionic solution and

Cp is the pore’s capacitance. If tcap 4 tknot, the knot will remain
under tension during charge rearrangement and hence one
will have to cycle at a time scale comparable to tcap. Lastly, it is
important to extend this study to semi-flexible chains such as
double stranded DNA, since many sequencing applications
utilize this polymer.

6 Conclusion

In this paper, we study the dynamics of a knotted polymer moving
through a pore under an external field. We examine the dynamics
when the field is constant in time and when the field periodically
switches on and off. We find the latter case can be used to control
the knot’s swelling at the pore entrance and hence control the
polymer’s motion through the pore. We discuss how this strategy
alters the fluctuations in the polymer’s transit times. Cycling the
field can reduce fluctuations near the knot’s jamming transition,
but can increase fluctuations at very large forces as the knot gets
trapped in metastable states during relaxation. Although the
predictions here have yet to be experimentally tested, we provide
some order-of-magnitude estimates of voltages and cycle times
where we expect knot jamming and ratcheting dynamics to occur.
We also briefly address how the roughness along the polymer
backbone alters the frictional dynamics of this system.

This study is interesting not only for applications such as
nanopore sequencing, but it also provides insight into how self-
entanglements give rise to friction in chains, an area of active
research in the polymer physics community. This study also
describes the relaxation behavior of a tight knot, which to this
date has been unreported. This phenomenon may be important
in direct optical mapping69 where tight knots in genomic-length
DNA appear as false deletions that obscure data analysis.70 Other
applications where entangled polymers move through pores
include tertiary oil recovery,71 chromatography, and virus-to-
cell transmission.72 Lastly, after initial submission of this work,
Szymczak performed simulations of knotted proteins moving
through pores.73 Molecular motors apply forces in an on–off
fashion, which allow these proteins to ratchet through pores in
a manner similar to what we observe here.
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and J. A. Odell, J. Non-Newtonian Fluid Mech., 1993, 49, 63–85.

72 W. Mothes, N. M. Sherer, J. Jin and P. Zhong, J. Virol., 2010,
84, 8360–8368.

73 P. Szymczak, Sci. Rep., 2016, 6, 21702.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
 2

01
6.

 D
ow

nl
oa

de
d 

on
 0

9-
09

-2
02

4 
04

:0
3:

38
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6sm00545d



